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Abstract

Let P be the set of all primes. A subgroup H of a group G is called P-subnormal in G,
if either H = G, or there exists a chain of subgroups

H = H0 6 H1 6 . . . 6 Hn = G,

with |Hi : Hi-1| 2 P for all i. A group G = AB with P-subnormal supersoluble
subgroups A and B is studied. The structure of its supersoluble residual is obtained.
In particular, it coincides with the nilpotent residual of the derived subgroup of G.
Besides, if the indices of the subgroups A and B are coprime, then the supersoluble
residual coincides with the intersection of the metanilpotent residual of G and all nor-
mal subgroups of G such that all corresponding quotients are primary or biprimary.
From here new signs of supersolubility are derived.
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1 Introduction

Throughout this paper, all groups are finite and G always denotes a
finite group. We use the standard notations and terminology of [7, 8].
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The supersoluble (nilpotent) residual of a group G is the smallest normal
subgroup K of G such that the quotient G/K is supersoluble (nilpo-
tent, respectively). The notation Y 6 X means that Y is a subgroup of
a group X and P be the set of all primes.

It is well-known that factorizable group G = AB with normal su-
persoluble subgroups A and B may be non-supersoluble [2, 6]. Suffi-
cient conditions for supersolubility of such groups were established
by Baer [2], Friesen [4], Vasil’ev and Vasil’eva [19]. We collect these
results in

Theorem A. Let G = AB be the product of two normal supersoluble sub-
groups A and B. Then the following hold:

(1) if G has a nilpotent normal subgroup W such that all Sylow sub-
groups of G/W are abelian, then G is supersoluble [19]; in particular,
if the derived subgroup G0 is nilpotent, then G is supersoluble [2];

(2) if the indices of A and B in G are coprime, then G is supersoluble [4].

In every assertions of Theorem A, the normality of A and B can be
replaced by subnormality. Indeed, we can replace the subgroups A
and B by the normal subgroups

AG
= A(AG \B) and BG

= (BG \A)B,

which are supersoluble by induction, and then apply to G = AGBG

the corresponding assertion of Theorem A. Here HG
= hHg

| g 2 Gi
is the smallest normal subgroup of G that includes H.

Not all sufficient conditions for supersolubility of a group G = AB
with normal supersoluble subgroups A and B can be generalized
to groups with subnormal factors. For example, it is known that a
group G = AB with normal supersoluble subgroups A and B is su-
persoluble whenever A \ B is nilpotent [9, Corollary 5]. The exam-
ple [2, p.186] demonstrates that the normality of any factor cannot
be weakened to subnormality.

In [10] V.S. Monakhov and I.K. Chirik obtained that the supersol-
uble residual of a group G = AB with subnormal supersoluble sub-
groups A and B coincides with nilpotent residual of mutual com-
mutator of subgroups A and B. From this we can extract all three
statements of Theorem A.

The normality of the factors A and B can be weakened to per-
mutability of some subgroups of A and B. Asaad and Shaalan in [1]
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were the first who studied groups that factorized by mutually per-
mutable subgroups, i.e. such subgroups A and B that satisfy the con-
ditions: UB = BU and AV = VA for all U 6 A and V 6 B. A detailed
account on this topic can be found in the monograph [3].

Recall that a subgroup A is seminormal in G, if there exists a sub-
group B such that G = AB and AX is a subgroup of G for ev-
ery subgroup X of B. Some results from [1] the authors of this ar-
ticle extended in [14] to groups with seminormal factors A and B.
In particular, we proved the supersolubility of a group G = AB
with seminormal supersoluble subgroups A and B in the following
cases: B is nilpotent, [14, Theorem 2.1]; the derived subgroup G0 is
nilpotent [14, Theorem 2.2]. Besides, we obtained that the supersol-
uble residual of a group G = AB with seminormal supersoluble
subgroups A and B coincides with the nilpotent residual of the de-
rived subgroup of G. Moreover, if the indices of the subgroups A
and B are coprime, then the supersoluble residual coincides with
the metanilpotent residual of G [14, Theorem 2.3]. Also the super-
solubility of G = AB when all Sylow subgroups of A and of B are
seminormal in G was proved [14, Theorem 2.4].

Another direction of research of a factorizable groups is related
to the following concept of P-subnormality. By Huppert’s Theo-
rem [7, VI.9.5], a group G is supersoluble if and only if for every
proper subgroup H of G there exists a chain of subgroups

H = H0 6 H1 6 . . . 6 Hn = G, |Hi : Hi-1| 2 P, 8i. (1)

Thus the following definition naturally arises.
A subgroup H of a group G is called P-subnormal in G, if ei-

ther H = G, or there is a chain subgroups (1). We use the nota-
tion HPsnG. This definition was proposed in [20] and besides, in
this paper w-supersoluble groups (groups with P-subnormal Sylow
subgroups) were investigated.

By the Jordan-Hölder Theorem, in a soluble group every subnor-
mal subgroup and every seminormal subgroup are P-subnormal. But
the converse statements do not hold in general. For example, in sym-
metric group S4 a subgroup h(1 2)i of order 2 is P-subnormal, but
not subnormal and seminormal.

The factorizable groups with P-subnormal factors were investi-
gated in [12, 13, 21]. We state some results.

Theorem B. Let G = AB be the product of P-subnormal supersoluble
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subgroups A and B. Then the following hold:

(1) if the derived subgroup G0 is nilpotent, then G is supersoluble (see Co-
rollary 4.7.2 of [21]);

(2) if G has a nilpotent normal subgroup W such that all Sylow sub-
groups of G/W are abelian, then G is w-supersoluble (see Co-
rollary 4.7.1 of [21]);

(3) if the indices of A and B in G are coprime, then G is w-supersolu-
ble (see Corollary 4.7.1 of [21]).

Section 5 contains examples showing that in (2) and in (3) the
group G may be non-supersoluble.

In the present work, further development of these directions is
obtained. A group G = AB with P-subnormal supersoluble sub-
groups A and B is studied. In Section 3 the structure of its supersolu-
ble residual is obtained. In particular, it coincides with the nilpotent
residual of the derived subgroup of G. Besides, if the indices of the
subgroups A and B are coprime, then the supersoluble residual co-
incides with the intersection of the metanilpotent residual of G and
all normal subgroups of G such that all corresponding quotients are
primary or biprimary. From here new signs of supersolubility are
derived. In Section 4 p-analogs of some results of Section 3 are ob-
tained. Section 5 provides examples illustrating the completeness of
the results.

2 Preliminary results

In this section, we give some definitions and basic results which are
essential in the sequel. A group whose chief factors have prime or-
ders is called supersoluble. Recall that a p-closed group is a group with
a normal Sylow p-subgroup and a p-nilpotent group is a group with
a normal Hall p0-subgroup.

Denote by G0, Z(G), F(G) and �(G) the derived subgroup, centre,
Fitting and Frattini subgroups of G respectively; Op(G) and Op0(G)

the greatest normal p- and p0-subgroups of G respectively. We use Ept

to denote an elementary abelian group of order pt and Zm to de-
note a cyclic group of order m. The semidirect product of a normal
subgroup A and a subgroup B is written as follows: Ao B. Denote
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by ⇡(G) the set of all prime divisors of order of G. A group G is
called primary if |⇡(G)| = 1, and biprimary if |⇡(G)| = 2.

The formations of all abelian, nilpotent and supersoluble groups
are denoted by A,N and U, respectively. Let F be a formation. Then GF

denotes the F-residual of G, that is the intersection of all those nor-
mal subgroups N of G for which G/N 2 F. The subgroups GA, GN

and GU are called abelian, nilpotent and supersoluble residual of G,
respectively. It is clear that the abelian residual of G coincides with
the derived subgroup of G, i.e. GA

= G0. We define

F �H = {G 2 E | GH 2 F}

and call F �H the formation product of F and H. Here E is the class of
all finite groups. As usually, F2

= F � F.

Lemma 2.1 (see Lemma 6 of [10]) Let G be a soluble group. Assume
that G 62 U, but G/K 2 U for every non-trivial normal subgroup K of G.
Then the following hold:

(1) G contains a unique minimal normal subgroup N and

N = F(G) = Op(G) = CG(N)

for some p 2 ⇡(G);

(2) Z(G) = Op0(G) = �(G) = 1;

(3) G is primitive; G = NoM, where M is maximal in G with trivial
core;

(4) N is an elementary abelian subgroup of order pn, n > 1;

(5) if V is a subgroup G and G = VN, then V = Mx for some x 2 G.

Lemma 2.2 (see Lemma 5.8 and Theorem 5.11 of [8]) Let F and H be
formations, K be normal in G. Then the following hold:

(1) (G/K)F = GFK/K;

(2) GFH
= (GH

)
F;

(3) if H ✓ F, then GF 6 GH.

Lemma 2.3 (see Lemma 3 of [11]) Let H be a subgroup of G, and N be
a normal subgroup of G. Then the following hold:
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(1) if N 6 H and H/N Psn G/N, then H Psn G;

(2) if H Psn G, then (H\N) Psn N, HN/N Psn G/N and HNPsnG;

(3) if H 6 K 6 G, H Psn K and K Psn G, then H Psn G;

(4) if H Psn G, then Hg Psn G for any g 2 G.

Lemma 2.4 (see Lemma 4 of [11]) Let G be a soluble group, and H be a
subgroup of G. Then the following hold:

(1) if H Psn G and K 6 G, then (H\K) Psn K;

(2) if Hi Psn G, i = 1, 2, then (H1 \H2) Psn G.

Lemma 2.5 (see Lemma 5 of [11]) If H is a subnormal subgroup of a
soluble group G, then H is P-subnormal in G.

Lemma 2.6 (see Lemma 8 of [11]) Let p be the greatest prime divisor
of |G|, and A be a p-subgroup of G. If A is P-subnormal in G, then A is
subnormal in G.

Lemma 2.7 (see Lemma 4.1 of [21]) Let A and B be P-subnormal sub-
groups of G, and G = AB. For the subgroup A, we fix a P-subnormal
chain

A = A0 6 A1 6 . . . 6 An-1 6 An = G

such that |Ai : Ai-1| 2 P for all i. Then the intersection Ak \ B is P-sub-
normal in Ak for all k.

Lemma 2.8 (see Theorem 4.2 of [21]) Let G = AB be the product of
soluble subgroups A and B. If A and B are P-subnormal in G, then G is
soluble.

Lemma 2.9 (see Theorem 4.4 of [21]) Let A and B be P-subnormal
subgroups of G, and G = AB. If A and B have an ordered Sylow tower of
supersoluble type, then G has an ordered Sylow tower of supersoluble type.

Recall that a group G is said to be siding if every subgroup of the de-
rived subgroup G0 is normal in G, see [16, Definition 2.1]. Metacyclic
groups, t-groups (groups in which every subnormal subgroup is nor-
mal) are siding. The group G = (Z6 ⇥ Z2)o Z2 (IdGroup(G)=[24,8],
[5]) is siding, but not metacyclic and a t-group.

Lemma 2.10 Let G be siding. Then the following hold:

(1) if N is normal in G, then G/N is siding;
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(2) if H is a subgroup of G, then H is siding;

(3) G is supersoluble.

Proof — (1) By [8, Lemma 4.6], (G/N)
0
= G0N/N. Let A/N be an

arbitrary subgroup of (G/N)
0. Then

A 6 G0N, A = A\G0N = (A\G0
)N.

Since A\G0 6 G0, we have A\G0 is normal in G. Hence (A\G0
)N/N

is normal in G/N.
(2) Since H 6 G, it follows that H0 6 G0. Let A be an arbitrary

subgroup of H0. Then A 6 G0 and A is normal in G. Therefore A is
normal in H.

(3) We proceed by induction on the order of G. Let N 6 G0

and |N| = p, where p is prime. By the hypothesis, N is normal in G.
By induction, G/N is supersoluble and G is supersoluble. ut

Lemma 2.11 (see Theorem A of [13]) Suppose that G has non-conjugate
subgroups H and K of prime indices. If H is nilpotent and K is supersoluble,
then G is supersoluble.

3 Factorizable groups with P-subnormal

supersoluble subgroups

In what follows, we will need to study the structure of the supersol-
uble residual of a w-supersoluble group. For this we introduce the
subgroup B(G) as the intersection of all normal subgroups of G such
that all corresponding quotients are primary or biprimary. More pre-
cisely, let p,q be primes and S{p,q} be the formation of
all {p,q}-groups. Notice that Np ✓ S{p,q} and Nq ✓ S{p,q}. For a
group G with |⇡(G)| > 2 we introduce the following notation:

B(G) =

\

8{p,q}✓⇡(G)

GS{p,q} .

If |⇡(G)| 6 2, we assume that B(G) = 1. Recall that N
2 is the class

of all metanilpotent groups and wU is the class of all w-supersoluble
groups.
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Theorem 3.1 If G 2 wU, then GU
= GN

2 \B(G).

Proof — Since G/N 2 wU for any normal subgroup N of G, it
follows that

G/GN
2

2 wU\N
2

and by [20, Theorem 2.13], G/GN
2 is supersoluble. Hence GU 6 GN

2 .
Because

G/GS{p,q} 2 wU\S{p,q},

by [20, Theorem 2.13] we have that G/GS{p,q} is supersoluble and
GU 6 GS{p,q} . Since p and q are arbitrary,

GU 6
\

8{p,q}✓⇡(G)

GS{p,q} = B(G).

Consequently GU 6 GN
2 \B(G). Check the converse inclusion. Since

every supersoluble group is metanilpotent, it follows that U ✓ N
2

and GN
2 6 GU by Lemma 2.2 (3). Hence

GN
2

\B(G) 6 GN
2 6 GU.

The statement is proved. ut

Corollary 3.2 If G 2 wU \ U, then |⇡(GU
)| 6 |⇡(G)|- 2.

Proof — Let ⇡(G) = {p,q, . . .}, p < q < . . .. By [20, Proposition 2.8],
every w-supersoluble group has an ordered Sylow tower of super-
soluble type, hence G is {p,q}-nilpotent and GS{p,q} is a {p,q}0-group.
Since B(G) 6 GS{p,q} , it follows that B(G) is a {p,q}0-group and

⇡(B(G))\ {p,q} = ;.

By Theorem 3.1, GU 6 B(G), hence |⇡(GU
| 6 |⇡(G)|- 2. ut

Theorem 3.3 Let A and B be supersoluble P-subnormal subgroups of G,
and G = AB. Then the following hold:

(1) GU
= (G0

)
N;

(2) if G has a nilpotent normal subgroup W such that all Sylow sub-
groups of G/W are abelian, then GU

= (G0
)
N

= GN
2 \B(G);
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(3) if (|G : A|, |G : B|) = 1, then GU
= (G0

)
N

= GN
2 \B(G).

Proof — (1) If G is supersoluble, then GU
= 1 and G0 is nilpo-

tent. Consequently (G0
)
N

= 1 = GU and the statement is true. Fur-
ther, we assume that G is non-supersoluble. Since every supersolu-
ble group has an ordered Sylow tower of supersoluble type, then
by Lemma 2.9, G has an ordered Sylow tower of supersoluble type.
Since U ✓ N �A, we have

G(N�A)
= (GA

)
N

= (G0
)
N 6 GU

by Lemma 2.2 (2-3). Next we check the converse inclusion. For this
we prove that G/(G0

)
N is supersoluble. By Lemma 2.2 (1), the derived

subgroup

(G/(G0
)
N
)
0
= G0

(G0
)
N/(G0

)
N

= G0/(G0
)
N

is nilpotent. Since

G/(G0
)
N

= (A(G0
)
N/(G0

)
N
)(B(G0

)
N/(G0

)
N
),

A(G0
)
N/(G0

)
N ' A/A\ (G0

)
N,

B(G0
)
N/(G0

)
N ' B/B\ (G0

)
N,

the subgroups

A(G0
)
N/(G0

)
N and B(G0

)
N/(G0

)
N

are supersoluble and by Lemma 2.3 (2), these subgroups are P-sub-
normal in G/(G0

)
N. By Theorem B (1), G/(G0

)
N is supersoluble.

(2–3) By Theorem B (2-3), G is w-supersoluble. Hence

GU
= GN

2

\B(G)

by Theorem 3.1. ut

Theorem 3.4 Let G be a group, and let A be a subgroup of G such that
|G : A| = p↵, where p 2 ⇡(G) and ↵ 2 N. Suppose that A is supersoluble
and P-subnormal in G. If G is p-closed, then G is supersoluble.
Proof — Let P be a Sylow p-subgroup of G. Since P is normal in G
and G = AP, we have G/P ' A/A\ P 2 U, in particular, G is soluble.
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We use induction on the order of G. Let N be a non-trivial normal
subgroup of G. If AN = G, then

G/N = AN/N ' A/A\N 2 U.

Let AN < G. Then AN/N is P-subnormal in G/N by Lemma 2.3 (2)
and supersoluble. Besides,

|G/N : AN/N| = |G : AN| =
|G : A|

|N : A\N|
= p↵1 , 0 < ↵1 6 ↵.

Consequently G/N satisfies the hypothesis of the theorem and by
induction, G/N is supersoluble. By Lemma 2.1, G contains a unique
minimal normal subgroup

N = F(G) = Op(G) = CG(N)

such that G = NoM and Op0(G) = 1. Since P is normal in G, we
have N = P and M is a Hall p0-subgroup of G. Because |G : A| = p↵,
it follows that M = A. Hence |P| = p, a contradiction. ut

Corollary 3.5 Let A and B be supersoluble P-subnormal subgroups of G,
and G = AB. Suppose that |G : A| = p↵, where p 2 ⇡(G). Then G
is p-supersoluble. If p is the greatest in ⇡(G), then G is supersoluble.
Proof — Let p be the greatest in ⇡(G). Since every supersoluble
group has an ordered Sylow tower of supersoluble type, then by Lem-
ma 2.9, G has an ordered Sylow tower of supersoluble type. Hence G
is p-closed. By Theorem 3.4, we have that G is supersoluble.

Let q be the greatest in ⇡(G), q > p and Q be a Sylow q-subgroup
of A. The subgroup Q is normal in A and P-subnormal in G by Lem-
ma 2.5 and Lemma 2.3 (3). By Lemma 2.6, Q is normal in G. The
quotient A/Q is P-subnormal in G/Q and |G/Q : A/Q| = p↵. By
induction, G/Q is p-supersoluble, hence G is p-supersoluble. ut

In [15] we proved that a group G is supersoluble if and only if, for every
prime p 2 ⇡(G), it has a supersoluble subgroup of index p. A stronger
result is obtained in Corollary 3.6.

Corollary 3.6 Let G be a group, p be the greatest in ⇡(G), p > q and
q 2 ⇡(G). If G has the supersoluble subgroups of indices p and q, then G
is supersoluble.
Proof — By Lemma 2.8, G is soluble. Let B be a supersoluble sub-
group of index q and P be a Sylow p-subgroup of B. Then P is normal
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in B and hence P is P-subnormal in G by Lemma 2.3 (3). By Lem-
ma 2.6, P is normal in G. By Theorem 3.4, G is supersoluble. ut

Theorem 3.7 Let A be a supersoluble P-subnormal subgroup of G,
and G = AB. Then G is supersoluble in each of the following cases:

(1) B is nilpotent and normal in G;

(2) B is nilpotent and |G : B| is prime;

(3) B is normal in G and is a siding group.

Proof — We prove all three statements at the same time using in-
duction on the order of G. Note that G is soluble in any case. By Lem-
ma 2.5, B is P-subnormal in G and G has an ordered Sylow tower of
supersoluble type by Lemma 2.9. If N is a non-trivial normal sub-
group of G, then AN/N is P-subnormal in G/N by Lemma 2.3 (2)
and

AN/N ' A/A\N

is supersoluble. The subgroup

BN/N ' B/B\N

is nilpotent or a siding group by Lemma 2.10 (1). Hence

G/N = (AN/N)(BN/N)

is supersoluble by induction. By Lemma 2.1, F(G) = N = Gp is a
unique minimal normal subgroup of G and N = CG(N), where p is
the greatest in ⇡(G).

Since A is P-subnormal in G, it follows that G has a subgroup M
such that A 6 M and |G : M| is prime. By Dedekind’s identity,

M = A(M\B).

The subgroup A is P-subnormal in M. The subgroup M\B satisfies
the requirements (1)–(3). By induction, M is supersoluble.

(1) If B is nilpotent and normal in G, then B = N. Hence G = AN
and A is a maximal subgroup of G. Since A is P-subnormal in G,
we have |G : A| = p = |N|, a contradiction. So, in (1), the theorem is
proved.

(2) Let B be nilpotent and |G : B| be prime. Since G = MB, it
follows that M and B are non-conjugate maximal subgroups of prime
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indices, M is supersoluble and B is nilpotent. By Lemma 2.11, G is
supersoluble, a contradiction. So, in (2), the theorem is proved.

(3) Let B is normal in G and is a siding group. If B is nilpotent,
then G is supersoluble by (1). Hence B0 6= 1. Because B0 is normal
in G and nilpotent, we have N = B0. If N is not contained in M, then

G = NoM

and |N| is prime, a contradiction. Let N be contained in M and N1

be a subgroup of prime order of N such that N1 is normal in M.
Then N1 is normal in B by definition of siding group. Hence N1 is
normal in G, a contradiction. So, in (3), the theorem is proved. ut

4 Applications to p-soluble groups

A group is said to be p-soluble (p-supersoluble), if the order of each of
its chief factors is either a p-power (equal to p), or a coprime to p.
We write pS for the class of all p-soluble groups and pU for the class
of all p-supersoluble groups. The classes of all p-closed and p-nil-
potent groups are equal to the products Np � Ep0 and Ep0 �Np re-
spectively, where Np is the class of all p-groups and Ep0 is the class
of all p0-groups. The classes pS, Np � Ep0 and Ep0 �Np are radical
hereditary saturated formations and

Np �Ep0 [Ep0 �Np ✓ pS.

Lemma 4.1 (see Lemma 11 of [9]) Suppose that a p-soluble group G is
not belong to pU, but G/K 2 pU for every non-trivial normal subgroup K
of G. Then the following hold:

(1) Z(G) = Op0(G) = �(G) = 1;

(2) G has a unique minimal normal subgroup N and

N = F(G) = Op(G) = CG(N);

(3) G is a primitive and G = NoM, where M is a maximal subgroup
of G with trivial core;

(4) N is an elementary abelian group of order pn, n > 1;
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(5) if M is abelian, then M is cyclic of order dividing pn - 1 and n is the
smallest positive integer such that pn ⌘ 1 (mod |M|).

Lemma 4.2 Let p 2 ⇡(G) and (| G |,p-1) = 1. Then G is p-supersoluble
if and only if G is p-nilpotent.
Proof — It is obvious that every p-nilpotent group is p-superso-
luble. Check the converse. Let G be a group of smallest order such
that G is p-supersoluble, but not p-nilpotent. Let H be an arbitrary
proper subgroup of G. Then H is p-supersoluble and (| H |,p- 1) = 1.
Therefore due to the choice of G, the subgroup H is p-nilpotent and G
is a minimal non-p-nilpotent group. By [17, Theorem 10.3.3], G is
a Schmidt group and by [18], G = P oQ, where P is a normal Sy-
low p-subgroup and Q is a cyclic Sylow q-subgroup. Since G is p-su-
persoluble, it follows that the order of p modulo q is equal to 1,
i.e. m = 1, see [18]. Hence q divides p- 1, a contradiction. ut

Lemma 4.3 (see Theorem 1 (1) of [12]) Let G = AB and r 2 ⇡(G). If A
and B are P-subnormal r-soluble subgroups of G, then G is r-soluble.

Lemma 4.4 (see Theorem 1 of [9]) Let A and B are normal p-supersolu-
ble subgroups of G, and G = AB. If the derived subgroup G0 is p-nilpotent,
then G is p-supersoluble.

Lemma 4.5 (see Lemma 1.4 of [14]) Let H be a maximal subgroup of G.
The subgroup H is seminormal in G if and only if |G : H| is prime.

Lemma 4.6 Suppose that A and B are seminormal subgroups in a p-solu-
ble group G, and G = AB. Then G is p-supersoluble in each of the following
cases:

(1) A is p-nilpotent and B is p-supersoluble (see Theorem 3.1 of [14]);

(2) A and B are p-supersoluble, and the derived subgroup G0 is p-nilpo-
tent (see Theorem 3.2 of [14]).

Theorem 4.7 Let G = AB, where A and B are P-subnormal in G, and
p 2 ⇡(G). Then G is p-supersoluble in each of the following cases:

(1) A and B are p-supersoluble, and (|G|,p- 1) = 1;

(2) A is p-supersoluble, B is p-nilpotent and normal in G;

(3) A is p-supersoluble, B is p-nilpotent and |G : B| is prime;

(4) A and B are p-supersoluble, and the derived subgroup G0 is p-nil-
potent.
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Proof — (1) We use induction on the order of G. Assume that the
claim is false and let G be a minimal counterexample. By hypothesis,
the subgroups A and B have the chains of subgroups:

A = A0 6 A1 6 . . . 6 An = G, |Ai : Ai-1| 2 P, 8i;
B = B0 6 B1 6 . . . 6 Bm = G, |Bj : Bj-1| 2 P, 8j.

By Dedekind’s identity,

An-1 = A(An-1 \B)

and by Lemma 2.7, An-1 \B is P-subnormal in An-1. Since

An-1 = A(An-1 \B)

and A is P-subnormal in An-1, we have by induction, An-1 is p-su-
persoluble and |G : An-1| is prime. Similarly, Bm-1 is p-supersoluble
and |G : Bm-1| is prime. It is clear that

G = An-1Bm-1.

Denote H = An-1 and R = Bm-1.
If N is a non-trivial normal subgroup of G, then the sub-

groups RN/N and HN/N are P-subnormal in G/N by Lemma 2.3 (2)
and p-supersoluble. Consequently G/N satisfies the hypothesis of
the theorem and by induction G/N is p-supersoluble. By Lem-
ma 4.1, G contains a unique minimal normal subgroup N such that

N = F(G) = Op(G) = CG(N)

and N is an elementary abelian subgroup of order pn, n > 1.
Suppose that N is not contained in R. Then G = NoR and |N| = p is

prime, a contradiction. Therefore we can assume that N 6 R \ H.
By Lemma 4.2, R and H are p-nilpotent. Then Rp0 is normal in R and

Rp0 6 CG(N) = N,

a contradiction. Hence R and H are p-groups. Thus G is a p-group,
and therefore G is p-supersoluble.

(2–3) We prove all two statements at the same time using induction
on the order of G. By Lemma 4.3, G is p-soluble in any case. If N is
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a non-trivial normal subgroup of G, then AN/N is P-subnormal
in G/N by Lemma 2.3 (2) and

AN/N ' A/A\N

is p-supersoluble, BN/N ' B/B\N is p-nilpotent. If B is normal in G,
then BN/N is normal in G/N. If |G : B| is prime, then either BN = G
and G/N ' B/B \N is p-supersoluble, or |G/N : B/N| = |G : B| is
prime. The quotient

G/N = (AN/N)(BN/N)

is p-supersoluble by induction and therefore we apply Lemma 4.1.
We save to G the notation of this Lemma, in particular,

F(G) = N = Op(G)

is a unique minimal normal subgroup of G and |N| = p↵, ↵ > 1.
Since A is P-subnormal in G, it follows that G has a subgroup M

such that A 6 M and |G : M| is prime. By Dedekind’s identity,

M = A(M\B).

The subgroup A is P-subnormal in M. The subgroup M\B satisfies
the requirements (1)–(2). By induction, M is p-supersoluble.

If B is p-nilpotent and normal in G, then B is nilpotent and B = N.
Hence G = AN and A is a maximal subgroup of G. Since A is P-sub-
normal in G, we have |G : A| = p = |N|, a contradiction. So, in (2), G
is p-supersoluble.

Let B be p-nilpotent and |G : B| be prime. By Lemma 4.5, M and B
are seminormal in G. Since G = MB, M is p-supersoluble and B
is p-nilpotent, it follows that by Lemma 4.6 (1), G is p-supersoluble.
So, in (3), G is p-supersoluble.

(4) By induction, we can assume that G = HR, where H and R
are p-supersoluble maximal subgroups of prime indices of G. By Lem-
ma 4.5, H and R are seminormal in G. Since G = HR, we have by Lem-
ma 4.6 (2), G is p-supersoluble. ut

By Lemma 4.2, the p-nilpotency of G with (|G|,p- 1) = 1 is equiva-
lent to its p-supersolubility. Hence for the smallest p 2 ⇡(G) we have
the following result.
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Corollary 4.8 (see Theorem 1 (2) of [12]) Let A and B be P-subnormal
in G, and let G = AB. Suppose that p is the smallest prime divisor of the
order of G. If A and B are p-nilpotent, then G is p-nilpotent.

Theorem 4.9 Let A and B be P-subnormal p-supersoluble subgroups
of G, and G = AB. Then GpU

= (G0
)
E
p0�Np .

Proof — If G is p-supersoluble, then GpU
= 1 and the derived sub-

group G0 is p-nilpotent. Consequently GpU
= 1 = (G0

)
E
p0�Np and the

statement is true. Further, we assume that G is non-p-supersoluble.
Since the derived subgroup of p-supersoluble group is p-nilpotent, it
follows that pU ✓ Ep0 �Np �A and

G(E
p0�Np�A)

= (GA
)
E
p0�Np

= (G0
)
E
p0�Np 6 GpU

by Lemma 2.2 (2-3).
Check the converse inclusion. For this we prove that G/(G0

)
E
p0�Np

is p-supersoluble. The derived subgroup

(G/(G0
)
E
p0�Np

)
0
= G0

(G0
)
E
p0�Np/(G0

)
E
p0�Np

= G0/(G0
)
E
p0�Np

is p-nilpotent. Since

G/(G0
)
E
p0�Np

=(A(G0
)
E
p0�Np/(G0

)
E
p0�Np

)(B(G0
)
E
p0�Np/(G0

)
E
p0�Np

),

A(G0
)
E
p0�Np/(G0

)
E
p0�Np ' A/A\ (G0

)
E
p0�Np ,

B(G0
)
E
p0�Np/(G0

)
E
p0�Np ' B/B\ (G0

)
E
p0�Np ,

the subgroups

A(G0
)
E
p0�Np/(G0

)
E
p0�Np and B(G0

)
E
p0�Np/(G0

)
E
p0�Np

are p-supersoluble and by Lemma 2.3 (2), this subgroups are P-sub-
normal in G/(G0

)
E
p0�Np . By Theorem 4.7 (4), G/(G0

)
E
p0�Np is p-su-

persoluble. ut

5 Examples

As can be seen in the following example, a group G factorized
by P-subnormal supersoluble subgroups and having coprime in-
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dices (Theorem B (3)) or containing a nilpotent normal subgroup W
such that all Sylow subgroups of G/W are abelian (Theorem B (2)),
can be non-supersoluble.

Example 5.1 The minimal non-supersoluble group

G = E
72 o S3

(IdGroup=[294,7]) is the product of subgroups

H = E
72 oZ3 and K = E

72 oZ2

of indices 2 and 3. The subgroups H and K are P-subnormal in G.

The following example shows that we cannot omit the condition
«G is p-closed» in Theorem 3.4.

Example 5.2 The group

G = (S3 ⇥ S3 ⇥ S3)oZ3

(IdGroup=[648,705]) has a P-subnormal supersoluble subgroups

A ' S3 ⇥ S3 ⇥ S3.

Besides |G : A| = 3 and G is not 3-supersoluble.

The following example shows that we cannot omit the condition
«(|G : A|, |G : B|) = 1» in Theorem 3.3 (3).

Example 5.3 The group

G = (S3 ⇥ S3)oZ2

(IdGroup=[72,40]) is metanilpotent and factorized by P-subnormal super-
soluble subgroups A ' Z3 ⇥ S3 and B = S3 ⇥ S3. The supersoluble resi-
dual GU ' Z3 ⇥Z3.

The following example shows that in Theorem 4.7 (1) the normality
of subgroup B cannot be weakened to P-subnormality.

Example 5.4 The group

G = (Z2 ⇥ (E
32 oZ4))oZ2
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(IdGroup=[144,115]) is non-supersoluble and factorized by subgroups

A = D12 and B = Z12.

The subgroup A has the chain of subgroups

A < S3 ⇥ S3 < Z2 ⇥ S3 ⇥ S3 < G

and B has the chain of subgroups

B < Z3 ⇥ (Z3 oZ4) < (Z3 ⇥ (Z3 oZ4))oZ2 < G.

Therefore A and B are P-subnormal in G.

The following example shows that in Theorem 4.7 (2) it is impossi-
ble to weak the restrictions on the index of subgroup B.

Example 5.5 The alternating group G = A4 is non-supersoluble and
factorized by subgroups A = E

22 and B = Z3. It is clear that A is super-
soluble and P-subnormal in G, and B is nilpotent and |G : B| = 22. The
group G = E

52 o Z3 is non-supersoluble and has a nilpotent subgroup Z3

of index 52. Therefore even for the greatest p of ⇡(G), the index of B cannot
be equal p↵, ↵ > 2.

The following example shows that in Theorem 4.7 (3) the normality
of subgroup B cannot be weakened to subnormality.

Example 5.6 The group G = Z3⇥ ((S3⇥S3)oZ2) (IdGroup=[216,157])
is non-supersoluble and factorized by P-subnormal supersoluble sub-
group A ' S3 ⇥ S3 and subnormal siding subgroup B ' Z3 ⇥Z3 ⇥ S3.
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