# On Products of Cyclic and Non-Abelian Finite p-Groups 

Brendan McCann

(Received Jan. 14, 2019; Accepted July 17, 2019 — Communicated by F. de Giovanni)


#### Abstract

For an odd prime $p$ we present some results concerning the structure of factorised finite $p$-groups of the form $G=A B$, where $A$ is a cyclic subgroup and $B$ is a nonabelian subgroup whose class does not exceed $\frac{p}{2}$ in most cases. Bounds for the derived length of such groups are also presented.


Mathematics Subject Classification (2010): 20D40, 20D15
Keywords: product of groups; factorised group; finite p-group

## 1 Introduction

The present paper explores the structure of factorised finite $p$-groups of the form $G=A B$, where $p$ is an odd prime and $A$ and $B$ are subgroups of $G$ such that $A$ is cyclic. It has been shown in [6] Theorem 6 that if $B$ is abelian of exponent at most $p^{k}$, then $\Omega_{k}(A) B \unlhd G$, where the characteristic subgroup $\Omega_{k}(W)$ of the finite $p$-group $W$ is given by $\Omega_{k}(W)=\left\langle w \in W \mid w^{p^{k}}=1\right\rangle$. Here we generalise this theorem in certain cases where $B$ is non-abelian. To this end, we present in Section 2 a series of results leading to Theorem 2.9, which shows that if $B$ has class less than $\frac{p}{2}$ and exponent at most $p^{k}$, then $\Omega_{k}(A) B \unlhd G$. The example of Section 3 shows that the result of Theorem 2.9 does not always hold when the class of $B$ exceeds $\frac{p}{2}$. As an application
of Theorem 2.9, it is shown in Corollary 4.3 that if $p \geqslant 5$ and $B$ has class two and exponent $p$, then $G$ has derived length at most three. Section 4 further provides a generalisation of [4] Theorem 5. This is used in Theorem 4.6 to show that the derived length of G can also be at most three if $p=3$ and $B$ has class two and exponent 3 . The latter bound is further shown to apply in the case where $p \geqslant 5$ and $B$ has class two and exponent $\mathrm{p}^{2}$.
We denote the $n$th term of the derived series of a group $G$ by $\mathrm{G}^{(n)}$. Thus $G^{(0)}=G, G^{(1)}=G^{\prime}$ and $G^{(n+1)}=\left[G^{(n)}, G^{(n)}\right]$ for $n \geqslant 1$. The derived length of a soluble group $G$ is denoted by $d(G)$. The ith term of the lower (or descending) central series of $G$ will be denoted by $K_{i}(G)$. Hence

$$
\mathrm{K}_{1}(\mathrm{G})=\mathrm{G}, \quad \mathrm{~K}_{2}(\mathrm{G})=\mathrm{G}^{\prime} \quad \text { and } \quad \mathrm{K}_{\mathrm{i}+1}(\mathrm{G})=\left[\mathrm{K}_{\mathrm{i}}(\mathrm{G}), \mathrm{G}\right]
$$

for $\mathfrak{i} \geqslant 2$. We denote the $\mathfrak{j}$ th term of the upper (or ascending) central series of $G$ by $Z_{j}(G)$. Thus $Z_{0}(G)=1, Z_{1}(G)=Z(G)$ and

$$
Z_{\mathfrak{j}+1}(\mathrm{G}) / \mathrm{Z}_{\mathfrak{j}}(\mathrm{G})=\mathrm{Z}\left(\mathrm{G} / \mathrm{Z}_{\mathfrak{j}}(\mathrm{G})\right)
$$

for $\mathfrak{j} \geqslant 1$. If G is nilpotent then $\mathrm{c}(\mathrm{G})$ will denote the class of G . $\mathrm{U}_{\mathrm{G}}$ denotes the core of the subgroup U of a group G . Thus

$$
\mathrm{u}_{\mathrm{G}}=\bigcap_{\mathrm{g} \in \mathrm{G}} \mathrm{u}^{\mathrm{g}} .
$$

The normal closure of $U$ in $G$ is denoted by $U^{G}$, so that

$$
\mathrm{u}^{\mathrm{G}}=\left\langle\mathrm{U}^{\mathrm{g}} \mid \mathrm{g} \in \mathrm{G}\right\rangle .
$$

We finally denote the cyclic group of order $p^{n}$ by $C_{p^{n}}$.

## 2 Structural results

In this section we make extensive use of the following theorem which is a consequence of two fundamental results concerning regular p-groups (see [3], III 10.2 Satz and 10.5 Hauptsatz).
Theorem 2.1 Let $G$ be a finite $p$-group such that $c(G)<p$. Then, for all $\mathrm{k}, \Omega_{\mathrm{k}}(\mathrm{G})=\left\{\mathrm{g} \in \mathrm{G} \mid \mathrm{g}^{\mathrm{p}^{\mathrm{k}}}=1\right\}$.

Our first four results deal with special cases that will find application in the proofs of Theorems 2.6 and 2.9.

Lemma 2.2 Let p be an odd prime and let $\mathrm{G}=\mathrm{AB}$ be a finite p -group for subgroups $A$ and $B$ such that $A$ is cyclic, $c(B)<\frac{p}{2}$ and $\exp (B)=p$. Then $\Omega_{1}(A) \mathrm{B} \unlhd \mathrm{G}$.

Proof - We use induction on $|\mathrm{G}|$. We may assume that G is non-cyclic and that

$$
\mathrm{G} \neq \Omega_{1}(\mathrm{~A}) \mathrm{B} .
$$

In particular, we may assume that $\Omega_{2}(A) \simeq C_{p^{2}}$.
If $\mathrm{B}_{\mathrm{G}} \neq 1$, then there exists

$$
1 \neq z \in \mathrm{~B}_{\mathrm{G}} \cap \mathrm{Z}(\mathrm{G})
$$

such that $\mathrm{o}(z)=\mathrm{p}$. By induction, we have $\Omega_{1}(\mathrm{~A}\langle z\rangle /\langle z\rangle) \mathrm{B} /\langle z\rangle \unlhd \mathrm{G} /\langle z\rangle$. If $A \cap\langle z\rangle=1$, then

$$
\Omega_{1}(A\langle z\rangle /\langle z\rangle)=\Omega_{1}(A)\langle z\rangle /\langle z\rangle,
$$

so $\Omega_{1}(A)\langle z\rangle B=\Omega_{1}(A) B \unlhd G$. We thus assume that $A \cap\langle z\rangle \neq 1$. Then

$$
\langle z\rangle=\Omega_{1}(A),
$$

so

$$
\Omega_{1}(A\langle z\rangle /\langle z\rangle)=\Omega_{1}\left(A / \Omega_{1}(A)\right)=\Omega_{2}(A) / \Omega_{1}(A) .
$$

Hence $\Omega_{2}(A) B \unlhd G$.
If $B \unlhd G$ then, since $A$ is cyclic, we trivially have $\Omega_{1}(A) B \unlhd G$. Now

$$
\Omega_{1}(A) \leqslant B \quad \text { and } \quad \exp (B)=p,
$$

so $\left|\Omega_{2}(A) B: B\right|=p$. Hence if $B \nsubseteq G$, then for $g \in G \backslash N_{G}(B)$, we see, by comparison of orders, that $\Omega_{2}(A) B=B^{9} B$. In addition, $B^{9}$ and $B$ are normal in $\Omega_{2}(A) B$ and $c\left(B^{g}\right)=c(B)<\frac{p}{2}$. Thus

$$
c\left(\Omega_{2}(A) B\right) \leqslant c\left(B^{g}\right)+c(B)<\frac{p}{2}+\frac{p}{2}=p .
$$

Moreover, $\Omega_{2}(A) B$ is the product of two subgroups of exponent $p$ and is thus generated by elements of order $p$. It follows by Theo-
rem 2.1 that

$$
\Omega_{2}(A) B=\Omega_{1}\left(\Omega_{2}(A) B\right)=\left\{g \in \Omega_{2}(A) B \mid g^{p}=1\right\}
$$

But then

$$
\exp \left(\Omega_{2}(A) B\right)=p
$$

which is a contradiction since $\Omega_{2}(A) \simeq C_{p^{2}}$. We thus conclude that

$$
\mathrm{B}=\Omega_{1}(\mathrm{~A}) \mathrm{B} \unlhd \mathrm{G} .
$$

If $\mathrm{B}_{\mathrm{G}}=1$, then by a result of Morigi ([7], Lemma 1, or [1], Lemma 3.3.8), we have $A_{G} \neq 1$, so

$$
1 \neq Z(G) \cap A \leqslant A
$$

By minimality, we then have $\Omega_{1}(A) \leqslant Z(G)$. We let $\widehat{B}=\Omega_{1}(A) B$ and have $\exp (\widehat{B})=p$ and $c(\widehat{B})<\frac{p}{2}$. Since $1 \neq \Omega_{1}(A) \leqslant \widehat{B}_{G}$, we can apply the above argument to see that $\Omega_{1}(A) B=\Omega_{1}(A) \widehat{B} \unlhd G$.

Lemma 2.3 Let $p$ be an odd prime and let $G$ be a finite $p$-group such that $c(G)<p$ and $\exp (G)=p^{2}$. Suppose, in addition, that there exists $z \in Z(G)$ with $o(z)=p$ and such that $\exp (G /\langle z\rangle)=p$. Then $\left|\mathrm{G}: \Omega_{1}(\mathrm{G})\right|=\mathrm{p}$.

Proof - We use induction on $|G|$. Since $\exp (G)=p^{2}$, there exists $x \in G$ such that $o(x)=p^{2}$. In addition, since $\exp (G /\langle z\rangle)=p$, we have $1 \neq x^{p} \in\langle z\rangle$, so $\langle z\rangle=\left\langle x^{p}\right\rangle$. We can thus assume that $x^{p}=z$. If $G=\langle x\rangle$, then $G \simeq C_{p^{2}}$ and $\Omega_{1}(G) \simeq C_{p}$, so $\left|G: \Omega_{1}(G)\right|=p$. We may therefore assume that $\langle x\rangle \neq \mathrm{G}$. We let $U$ be a maximal proper subgroup of $G$ such that $x \in U$. Then $|G: U|=p$ and $\exp (U)=p^{2}$. In addition, $z=x^{\mathrm{p}} \in \mathrm{U}$. Thus $\mathrm{U} /\langle z\rangle$ is a non-trivial subgroup of $\mathrm{G} /\langle z\rangle$, so $\exp (\mathrm{U} /\langle z\rangle)=\mathrm{p}$. Hence, by induction, we have

$$
\left|\mathrm{U}: \Omega_{1}(\mathrm{U})\right|=\mathrm{p} .
$$

Now $\Omega_{1}(\mathrm{U})$ is characteristic in U , so $\Omega_{1}(\mathrm{U}) \unlhd G$. Since $o(z)=p$, we have $z \in \Omega_{1}(\mathrm{U})$, so $\exp \left(\mathrm{G} / \Omega_{1}(\mathrm{U})\right)=\mathrm{p}$. In addition,

$$
\left|\mathrm{G} / \Omega_{1}(\mathrm{U})\right|=\mathrm{p}^{2}
$$

Hence $G / \Omega_{1}(\mathrm{U})$ is elementary abelian of rank 2. In particular,

$$
\Phi(\mathrm{G}) \leqslant \Omega_{1}(\mathrm{U})
$$

We let $\mathrm{y} \in \mathrm{G} \backslash \mathrm{U}$ and have

$$
\left|\langle\mathrm{y}\rangle \Omega_{1}(\mathrm{U})\right|=\mathrm{p}\left|\Omega_{1}(\mathrm{U})\right|=|\mathrm{U}| .
$$

Since $c(G)<p$, we see by Theorem 2.1 that $\Omega_{1}(G)=\left\{g \in G \mid g^{p}=1\right\}$. Since $o(x)=p^{2}$ we have $G \neq \Omega_{1}(G)$, so $\left|G: \Omega_{1}(G)\right| \geqslant p$. Now if $o(y)=p$, then we have $\langle y\rangle \Omega_{1}(\mathrm{U}) \leqslant \Omega_{1}(\mathrm{G})$ and see, by comparison of orders, that $\Omega_{1}(G)=\langle y\rangle \Omega_{1}(U)$ and hence $\left|G: \Omega_{1}(G)\right|=p$.

If $o(y)=p^{2}$, then $\left\langle y^{p}\right\rangle=\langle z\rangle$, and we may assume that $y^{p}=z^{-1}$. Applying the Hall-Petrescu Identity ([3], III 9.4 Satz), we see that there exist $c_{2}, \ldots, c_{p}$ with $c_{2} \in K_{2}(G), \ldots, c_{p-1} \in K_{p-1}(G)$ and $c_{p} \in K_{p}(G)$ such that

$$
x^{p} y^{p}=(x y)^{p} c_{2}^{\binom{p}{2}} \ldots c_{p-1}^{\left(\begin{array}{c}
p-1
\end{array}\right)} c_{p} .
$$

Now, $c(G)<p$, so $c_{p}=1$. In addition, $p$ is a divisor of each of $\binom{p}{2}, \ldots,\binom{p}{p-1}$. Moreover, $\left\langle c_{2}, \ldots, c_{p-1}\right\rangle \leqslant G^{\prime} \leqslant \Phi(G) \leqslant \Omega_{1}(G)$, so $c_{2}^{p}=\ldots=c_{p-1}^{p}=1$. It follows that $1=z z^{-1}=x^{p} y^{p}=(x y)^{p}$. But $x y \notin U$, as otherwise $U=G$. Hence $o(x y)=p$. We can now argue as above to see that

$$
\Omega_{1}(\mathrm{G})=\langle x y\rangle \Omega_{1}(\mathrm{U}),
$$

and that $\left|\mathrm{G}: \Omega_{1}(\mathrm{G})\right|=\left|\mathrm{G}:\langle x y\rangle \Omega_{1}(\mathrm{U})\right|=\mathrm{p}$.
We note that the wreath product $G=C_{p}$ wr $C_{p}$ is a finite $p$-group that satisfies $Z(G) \simeq C_{p}, \exp (G)=p^{2}$ and $\exp (G / Z(G))=p$. However, in this case we have $c(G)=p$ and $G=\Omega_{1}(G)$. This shows that the condition $c(G)<p$ in the statement of Lemma 2.3 is not redundant.

Lemma 2.4 Let p be an odd prime and let $\mathrm{G}=\mathrm{AB}$ be a finite p -group for subgroups $A$ and $B$ such that $A$ is cyclic and $c(B)<\frac{p}{2}$. If $A \cap B=1$, then $A \Omega_{1}(B) \leqslant G$.

Proof - We may assume that $A$ and $B$ are both non-trivial subgroups of $G$ and use induction on $|G|$. We also assume that $B \neq \Omega_{1}(B)$, as otherwise the result is trivial. By [7] Lemma 1 , either $B_{G} \neq 1$
or $A_{G} \neq 1$. If $B_{G}=1$ then we see, in particular, that

$$
1 \neq \Omega_{1}(A) \leqslant Z(G) \cap A_{G} .
$$

Then

$$
A / \Omega_{1}(A) \cap B \Omega_{1}(A) / \Omega_{1}(A)=(A \cap B) \Omega_{1}(A) / \Omega_{1}(A)=1_{G / \Omega_{1}(A)}
$$

By induction we have

$$
A / \Omega_{1}(A) \Omega_{1}\left(B \Omega_{1}(A) / \Omega_{1}(A)\right) \leqslant G / \Omega_{1}(A)
$$

Since $A \cap B=1$, we see that

$$
\Omega_{1}\left(B \Omega_{1}(A) / \Omega_{1}(A)\right)=\Omega_{1}(B) \Omega_{1}(A) / \Omega_{1}(A) .
$$

It follows that

$$
A / \Omega_{1}(A) \Omega_{1}\left(B \Omega_{1}(A) / \Omega_{1}(A)\right)=A / \Omega_{1}(A)\left(\Omega_{1}(B) \Omega_{1}(A) / \Omega_{1}(A)\right)
$$

and so we have $A \Omega_{1}(B) \Omega_{1}(A)=A \Omega_{1}(B) \leqslant G$.

We now assume that $B_{G} \neq 1$. Then $B_{G} \cap \mathrm{Z}(\mathrm{G}) \neq 1$, so there exists $z \in B_{G} \cap Z(G)$ such that $o(z)=p$. Now

$$
\mathrm{A}\langle z\rangle /\langle z\rangle \cap \mathrm{B} /\langle z\rangle=(\mathrm{A} \cap \mathrm{~B})\langle z\rangle /\langle z\rangle=1_{\mathrm{G} /\langle z\rangle}
$$

so, by induction, we have

$$
A\langle z\rangle /\langle z\rangle \Omega_{1}(\mathrm{~B} /\langle z\rangle) \leqslant \mathrm{G} /\langle z\rangle .
$$

We let $\widetilde{B} /\langle z\rangle=\Omega_{1}(B /\langle z\rangle)$. Then $\Omega_{1}(B) \leqslant \widetilde{B} \leqslant B$. In particular, we have $\Omega_{1}(B)=\Omega_{1}(\widetilde{B})$. Now

$$
A\langle z\rangle /\langle z\rangle \Omega_{1}(\mathrm{~B} /\langle z\rangle)=A\langle z\rangle /\langle z\rangle(\widetilde{B} /\langle z\rangle)
$$

so

$$
A\langle z\rangle \widetilde{B}=A \widetilde{B} \leqslant G
$$

Hence, if $\widetilde{B}$ is a proper subgroup of $B$, then

$$
|A \widetilde{B}|<|A B|=|G|
$$

so, by induction, we have

$$
A \Omega_{1}(B)=A \Omega_{1}(\widetilde{B}) \leqslant A \widetilde{B} \leqslant G,
$$

and are done. We thus assume that $\widetilde{B}=B$, so $\Omega_{1}(B /\langle z\rangle)=B /\langle z\rangle$. Since

$$
c(B /\langle z\rangle) \leqslant c(B)<\frac{p}{2}
$$

and $\mathrm{B} \neq\langle z\rangle$ (as otherwise the result is trivial), we see by Theorem 2.1 that $\exp (B /\langle z\rangle)=p$. By Lemma 2.2, we then have

$$
\Omega_{1}(\mathrm{~A}\langle z\rangle /\langle z\rangle)(\mathrm{B} /\langle z\rangle) \unlhd \mathrm{G} /\langle z\rangle .
$$

Since $A \cap B=1$, we further have

$$
\Omega_{1}(A\langle z\rangle /\langle z\rangle)=\Omega_{1}(A)\langle z\rangle /\langle z\rangle,
$$

so

$$
\Omega_{1}(\mathrm{~A}\langle z\rangle /\langle z\rangle)(\mathrm{B} /\langle z\rangle)=\Omega_{1}(\mathrm{~A})\langle z\rangle /\langle z\rangle(\mathrm{B} /\langle z\rangle) .
$$

It follows that $\Omega_{1}(A) B \unlhd G$. If $B \unlhd G$, then $\Omega_{1}(B) \unlhd G$ and so $A \Omega_{1}(B) \leqslant G$. If $B \not \not G$, then we let $g \in G \backslash N_{G}(B)$ and see, by comparison of orders, that $\Omega_{1}(A) B=B B^{9}$. But

$$
\left|\Omega_{1}(A) B: B\right|=\left|\Omega_{1}(A) B: B^{9}\right|=p,
$$

so $B$ and $B^{9}$ are both normal in $\Omega_{1}(A) B$. In addition, we have

$$
c\left(B^{g}\right)=c(B)<\frac{p}{2},
$$

so

$$
c\left(\Omega_{1}(A) B\right)<\frac{p}{2}+\frac{p}{2}=p .
$$

Again by Theorem 2.1, we see that

$$
\Omega_{1}\left(\Omega_{1}(A) B\right)=\left\{x \in \Omega_{1}(A) B \mid x^{p}=1\right\} .
$$

Now if $\exp (B)=p$, then $B=\Omega_{1}(B)$ and we are done. We thus assume that $\exp (B) \neq p$. Since $\exp (B /\langle z\rangle)=p$, we then have $\exp (B)=p^{2}$. In particular, we have $\Omega_{1}\left(\Omega_{1}(A) B\right) \neq \Omega_{1}(A) B$, so

$$
\left|\Omega_{1}(A) B: \Omega_{1}\left(\Omega_{1}(A) B\right)\right| \geqslant p .
$$

On the other hand, since $c(B)<p / 2$, we can apply Lemma 2.3 to see that $\left|B: \Omega_{1}(B)\right|=p$. In addition,

$$
\Omega_{1}(A) \leqslant \Omega_{1}\left(\Omega_{1}(A) B\right) \quad \text { and } \quad \Omega_{1}(A) \cap \Omega_{1}(B) \leqslant A \cap B=1 .
$$

Since $\Omega_{1}(A)$ normalises $B$, and hence normalises $\Omega_{1}(B)$, we have

$$
\Omega_{1}(A) \Omega_{1}(B) \leqslant G \quad \text { and } \quad\left|\Omega_{1}(A) B: \Omega_{1}(A) \Omega_{1}(B)\right|=p .
$$

But

$$
\Omega_{1}(A) \Omega_{1}(B) \leqslant \Omega_{1}\left(\Omega_{1}(A) B\right),
$$

so we conclude, by comparison of orders, that

$$
\Omega_{1}(A) \Omega_{1}(B)=\Omega_{1}\left(\Omega_{1}(A) B\right) \unlhd G .
$$

It then follows that $A \Omega_{1}(B)=A \Omega_{1}(A) \Omega_{1}(B) \leqslant G$.
Corollary 2.5 Let p be an odd prime and let $\mathrm{G}=\mathrm{AB}$ be a finite p -group for non-trivial subgroups $A$ and $B$ such that $A$ is cyclic and $c(B)<\frac{p}{2}$. If $A \cap B=1$, then
(i) $\Omega_{1}(B)^{G} \leqslant \Omega_{1}(A) \Omega_{1}(B) \leqslant G$;
(ii) $\exp \left(\Omega_{1}(B)^{G}\right)=p$.

Proof - By Lemma 2.4, we have $A \Omega_{1}(B) \leqslant G$. Noting that $c(B)<p / 2$, we see, by Theorem 2.1, that $\exp \left(\Omega_{1}(B)\right)=p$. Hence, by Lemma 2.2, we have

$$
\Omega_{1}(A) \Omega_{1}(B) \unlhd A \Omega_{1}(B) .
$$

In particular, $\Omega_{1}(A) \Omega_{1}(B)$ is a subgroup of $G$. But $\Omega_{1}(B) \unlhd B$, so

$$
\Omega_{1}(B)^{G}=\Omega_{1}(B)^{B A} \Omega_{1}(B)=\Omega_{1}(B)^{A \Omega_{1}(B)} \leqslant \Omega_{1}(A) \Omega_{1}(B) .
$$

If $\Omega_{1}(B) \unlhd G$, then $\exp \left(\Omega_{1}(B)^{G}\right)=\exp \left(\Omega_{1}(B)\right)=p$. If $\Omega_{1}(B) \nsucceq G$, then, by comparison of orders, we have $\Omega_{1}(B)^{G}=\Omega_{1}(A) \Omega_{1}(B)$. Hence $\left|\Omega_{1}(B)^{G}: \Omega_{1}(B)\right|=\left|\Omega_{1}(A)\right|=p$, so $\Omega_{1}(B) \unlhd \Omega_{1}(B)^{G}$. In addition, letting $g \in G \backslash N_{G}\left(\Omega_{1}(B)\right)$, we see, by comparison of orders, that

$$
\Omega_{1}(B)^{G}=\Omega_{1}(B) \Omega_{1}(B)^{g} .
$$

Thus $\Omega_{1}(B)^{G}$ is the product of two normal subgroups both of class less than $\frac{p}{2}$. It follows that $c\left(\Omega_{1}(B)^{G}\right)<p$. Since $\Omega_{1}(B)^{G}$ is gener-
ated by elements of order $p$, we again apply Theorem 2.1 to see that $\exp \left(\Omega_{1}(B)^{G}\right)=p$.

We use Lemma 2.4 and Corollary 2.5 to prove the following more general result.

Theorem 2.6 Let p an odd prime and let $\mathrm{G}=\mathrm{AB}$ be a finite p -group for subgroups $A$ and $B$ such that $A$ is cyclic, $c(B)<\frac{p}{2}$ and $\exp (B)=p^{k}$ (where $k \geqslant 1$ ). If $A \cap B=1$ then, for $1 \leqslant t \leqslant k$, we have:
(i) $A \Omega_{\mathfrak{t}}(B) \leqslant G$;
(ii) $\Omega_{\mathfrak{t}}(\mathrm{B})^{G} \leqslant \Omega_{\mathfrak{t}}(\mathrm{A}) \Omega_{\mathfrak{t}}(\mathrm{B}) \leqslant \mathrm{G}$;
(iii) $\exp \left(\Omega_{\mathfrak{t}}\left(B^{G}\right)\right)=p^{t}$.

Proof - The result holds for $\mathrm{t}=1$ by Lemma 2.4 and Corollary 2.5 . Suppose that we have already shown that the result holds for some $t$ with $1 \leqslant t<k$. Since $\Omega_{\mathfrak{t}}(B)^{G} \leqslant \Omega_{\mathfrak{t}}(\mathcal{A}) \Omega_{\mathfrak{t}}(B) \leqslant G$, we have

$$
\Omega_{t}(\mathrm{~B})^{\mathrm{G}}=\Omega_{s}(\mathrm{~A}) \Omega_{\mathfrak{t}}(\mathrm{B}),
$$

for some $s \leqslant t$. We let $W=\Omega_{t}(B)^{G}$ and note that $\exp (W)=p^{t}$. Hence if $g \in B$ is such that $g^{p} \in W$, then $g^{p^{t+1}}=1$, so $g \in \Omega_{t+1}(B)$. Thus $\Omega_{1}(B W / W)=\Omega_{t+1}(B) W / W$.

Now

$$
\begin{aligned}
A W / W \cap B W / W & =(A \cap B W) W / W=\left(A \cap \Omega_{s}(A) \Omega_{\mathfrak{t}}(B) B\right) W / W \\
= & \Omega_{s}(A)(A \cap B) W / W=1_{G} / W
\end{aligned}
$$

We can then apply Lemma 2.4 to see that

$$
(A W / W) \Omega_{1}(B W / W) \leqslant G / W .
$$

Hence

$$
(A W / W) \Omega_{t+1}(B) W / W \leqslant G / W,
$$

so

$$
A \Omega_{t+1}(B) W \leqslant G .
$$

But

$$
W=\Omega_{\mathfrak{s}}(A) \Omega_{\mathfrak{t}}(B) \subseteq A \Omega_{\mathfrak{t}+1}(B),
$$

so

$$
A \Omega_{t+1}(B) \leqslant G .
$$

Since $A$ is cyclic, we then have $\Omega_{r}(\mathcal{A}) \Omega_{t+1}(B) \leqslant G$ for all $r$. By Corollary 2.5 , we further have

$$
\Omega_{1}(B W / W)^{G / W} \leqslant \Omega_{1}(A W / W) \Omega_{1}(B W / W) .
$$

Now

$$
\begin{gathered}
A \cap W=A \cap \Omega_{s}(A) \Omega_{t}(B)=\Omega_{s}(A)\left(A \cap \Omega_{\mathfrak{t}}(B)\right) \\
=\Omega_{s}(A) \leqslant \Omega_{\mathfrak{t}}(A) .
\end{gathered}
$$

Hence

$$
\Omega_{1}(A W / W)=\Omega_{s+1}(A) W / W \leqslant \Omega_{t+1}(A) W / W .
$$

We then have

$$
\begin{aligned}
& \Omega_{t+1}(B)^{G} W / W=\Omega_{1}(B W / W)^{G / W} \\
& \leqslant\left(\Omega_{t+1}(A) W / W\right)\left(\Omega_{t+1}(B) W / W\right) .
\end{aligned}
$$

It follows that

$$
\Omega_{t+1}(B)^{G} \leqslant \Omega_{t+1}(A) \Omega_{t+1}(B) W=\Omega_{t+1}(A) \Omega_{t+1}(B) \leqslant G .
$$

We finally note that $\exp (W)=p^{t}$ by assumption. Moreover, by Corollary 2.5 , we see that

$$
\exp \left(\Omega_{t+1}(B)^{G} W / W\right)=\exp \left(\Omega_{1}(B W / W)^{G / W}\right)=p
$$

But $t+1 \leqslant k$, so $\exp \left(\Omega_{t+1}(B)\right)=p^{t+1}$. We thus conclude that $\exp \left(\Omega_{t+1}(B)^{G}\right)=p^{t+1}$.

Remark 2.7 We note that a result of Huppert (see [2], Satz 3, or [1], Corollary 3.1.9) shows that if the $p$-group $G=A B$ is the product of the cyclic subgroups $A$ and $B$, then $G$ is the totally permutable product of $A$ and $B$, that is $A_{1} B_{1} \leqslant G$ for each $A_{1} \leqslant A$ and $B_{1} \leqslant B$. Since $A$ and $B$ are cyclic $p$-groups, this can be restated as $\Omega_{s}(A) \Omega_{t}(B) \leqslant G$ for all values of $s$ and $t$. In general, we cannot expect that $G$ will be a totally permutable product if $A$ and $B$ are non-cyclic subgroups. However, if $p$ is odd, then in the case where $A$ is cyclic, $c(B)<\frac{p}{2}$ and $A \cap B=1$, it is a straightforward consequence of Theorem 2.6 (i) that $\Omega_{s}(A) \Omega_{t}(B) \leqslant G$, for all values of $s$ and $t$. This can be viewed as a partial analogue to Huppert's result for products of cyclic subgroups.

The question now arises as to whether the results of Theorem 2.6 and Remark 2.7 also hold when $A \cap B \neq 1$. The following example shows that this is not always the case.

Example 2.8 We let $p$ be a prime and let $A=\langle x\rangle \simeq C_{p^{n}}$, where $n \geqslant 3$. We further let $\left\langle y_{1}, \ldots, y_{p}\right\rangle$ be an elementary abelian $p$-group of rank $p$. Now let $\langle x\rangle$ act on $\left\langle y_{1}, \ldots, y_{p}\right\rangle$ as follows: $y_{i}^{x}=y_{i+1}$, $\mathfrak{i}=1, \ldots, p-1$ and $y_{p}^{x}=y_{1}$. We see that this action defines an automorphism of order $p$ on $\left\langle y_{1}, \ldots, y_{p}\right\rangle$. We let $G$ be the semi-direct product of $\left\langle y_{1}, \ldots, y_{p}\right\rangle$ by $\langle x\rangle$. Thus $G$ can be expressed as follows:

$$
G=\left\langle\begin{array}{c|c}
y_{1}, \ldots, y_{p} & \begin{array}{l}
y_{1}^{p}=\ldots=y_{p}^{p}=1=x^{p^{n}} ; \\
\\
\\
\\
\left.y_{i}, y_{j}\right]=1,1 \leqslant i<j \leqslant p \\
y_{i}^{x}=y_{i+1}, i=1, \ldots, p-1 ; y_{p}^{x}=y_{1}
\end{array}
\end{array}\right\rangle
$$

We note that $x^{p}$ centralises $\left\langle y_{1}, \ldots, y_{p}\right\rangle$ and that the group $G /\left\langle x^{p}\right\rangle$ is isomorphic to the wreath product $C_{p}$ wr $C_{p}$. We let $A=\langle x\rangle$ and let $B=\left\langle y_{2}, \ldots, y_{p}, x^{p} y_{1}\right\rangle$. In particular

$$
B=\left\langle y_{2}, \ldots, y_{p}\right\rangle \times\left\langle x^{p} y_{1}\right\rangle
$$

where $\left\langle y_{2}, \ldots, y_{p}\right\rangle$ is elementary abelian of $\operatorname{rank} p-1$ and $\left\langle x^{p} y_{1}\right\rangle \simeq$ $C_{p^{n-1}}$. Now

$$
A \cap B=\left\langle x^{p^{2}}\right\rangle \simeq C_{p^{n-2}}
$$

so

$$
|A B|=\frac{|A||B|}{|A \cap B|}=p^{n+p}=|G|
$$

Hence $G=A B$. But, for $1 \leqslant t \leqslant n-2$,

$$
\Omega_{t}(B)=\left\langle y_{2}, \ldots, y_{p}, x^{p^{n-t}}\right\rangle=\Omega_{t}(A) \Omega_{t}(B)
$$

whereas

$$
\Omega_{t}(B)^{G}=\left\langle y_{1}, y_{2}, \ldots, y_{p}, x^{p^{n-t}}\right\rangle
$$

Hence $\Omega_{t}(A) \Omega_{t}(B)$ is a proper subgroup of $\Omega_{t}(B)^{G}$. In particular,

$$
\Omega_{t}(B)^{G} \not \approx \Omega_{t}(A) \Omega_{t}(B)
$$

We further note that, for $1 \leqslant t \leqslant n-2,\left\langle A, \Omega_{t}(B)\right\rangle=G$, but that

$$
\left|A \Omega_{t}(B)\right|=p^{n+p-1}
$$

It follows that $A \Omega_{t}(B)$ is not a subgroup of $G$. Thus $G$ also provides an example where the results of Lemma 2.4 and Theorem 2.6 (i) and (ii) fail when $A \cap B \neq 1$.

Having explored the limitations of Theorem 2.6, we note that if we relax the assumption that $A \cap B=1$ in the statement of that theorem, then we have the following more general result which, in particular, generalises [6] Theorem 6.

Theorem 2.9 Let p be an odd prime and let $\mathrm{G}=\mathrm{AB}$ be a finite p -group for subgroups $A$ and $B$ such that $A$ is cyclic, $c(B)<\frac{p}{2}$ and $\exp (B)=p^{k}$ (where $k \geqslant 1$ ). Then, for $1 \leqslant t \leqslant k$, we have
(i) $\left|\Omega_{t}(B)^{G}: \Omega_{t}(B)\right| \leqslant p^{t}$;
(ii) $\exp \left(\Omega_{t}(B)^{G}\right)=p^{t}$.

In particular, we have $\mathrm{B}^{\mathrm{G}} \leqslant \Omega_{\mathrm{k}}(\mathrm{A}) \mathrm{B} \unlhd \mathrm{G}$.
Proof - We first show that the result holds for $t=1$. We let $s$ be such that

$$
A \cap B=\Omega_{s}(A)
$$

We can assume that

$$
\Omega_{s+1}(A) \notin B
$$

as otherwise $A=\Omega_{s}(A)$ and the result is trivial. In particular, we have

$$
\Omega_{s}(A) \simeq C_{p^{s}} \quad \text { and } \quad \Omega_{s+1}(A) \simeq C_{p^{s+1}}
$$

We let $W=\Omega_{s}(A)^{G}$. Then

$$
W=\Omega_{s}(A)^{A B}=\Omega_{s}(A)^{B} \leqslant B
$$

Since $c(B)<p / 2$, we see, by Theorem 2.1, that $\exp \left(\Omega_{s}(B)\right)=p^{s}$. In particular, we have $\exp (W)=p^{s}$. Now,

$$
\begin{gathered}
A W / W \cap B / W=(A W \cap B) / W \\
=(A \cap B) W / W=\Omega_{s}(A) W / W=1_{G} / W
\end{gathered}
$$

Hence, by Corollary 2.5, we have

$$
\Omega_{1}(B / W)^{G} / W \leqslant \Omega_{1}(A W / W) \Omega_{1}(B / W) \leqslant G / W
$$

Now $A \cap W=A \cap B=\Omega_{s}(A)$, so

$$
\Omega_{1}(A W / W)=\Omega_{s+1}(A) W / W .
$$

Since $\Omega_{1}(B / W) \leqslant B / W$, we then have

$$
\Omega_{1}(B)^{G} W / W \leqslant \Omega_{1}(B / W)^{G / W} \leqslant\left(\Omega_{s+1}(A) W / W\right)(B / W) .
$$

It follows that

$$
\Omega_{1}(B)^{G} \leqslant \Omega_{s+1}(A) W B=\Omega_{s+1}(A) B .
$$

Now $\left|\Omega_{s+1}(A) B: B\right|=p$, so $B \unlhd \Omega_{s+1}(A) B$. But $\Omega_{1}(B)$ is characteristic in $B$, so $\Omega_{1}(B) \unlhd \Omega_{s+1}(A) B$.

Since $\Omega_{1}(B)^{G} \leqslant \Omega_{s+1}(A) B$, we have $\Omega_{1}(B)^{G} \leqslant\left(\Omega_{s+1}(A) B\right)_{G}$. In addition,

$$
\begin{aligned}
& \left(\Omega_{s+1}(A) B\right)_{G}=\bigcap_{a \in A, b \in B}\left(\Omega_{s+1}(A) B\right)^{b a} \\
& =\bigcap_{a \in A}\left(\Omega_{s+1}(A) B\right)^{a}=\bigcap_{a \in A} \Omega_{s+1}(A) B^{a} .
\end{aligned}
$$

Hence

$$
\Omega_{s+1}(A) \leqslant\left(\Omega_{s+1}(A) B\right)_{G} .
$$

Letting

$$
\mathrm{B}_{1}=\left(\Omega_{\mathrm{s}+1}(\mathrm{~A}) \mathrm{B}\right)_{\mathrm{G}} \cap \mathrm{~B},
$$

we then have

$$
\left(\Omega_{s+1}(A) B\right)_{G}=\Omega_{s+1}(A)\left(\left(\Omega_{s+1}(A) B\right)_{G} \cap B\right)=\Omega_{s+1}(A) B_{1} \unlhd G .
$$

If $\Omega_{1}(B)^{G} \leqslant B_{1}$, then

$$
\Omega_{1}(\mathrm{~B})^{\mathrm{G}} \leqslant \Omega_{1}\left(\mathrm{~B}_{1}\right) \leqslant \Omega_{1}(\mathrm{~B}),
$$

so $\Omega_{1}(B) \unlhd G$. In this case our result holds trivially, so we assume that $\Omega_{1}(B)^{G} \notin B_{1}$. We have $\Omega_{s}(A)^{G} \leqslant B$, so $\Omega_{s}(A) \leqslant B_{G} \leqslant B_{1}$. Thus $\left|\Omega_{s+1}(A) B_{1}: B_{1}\right|=p$, so $B_{1} \unlhd \Omega_{s+1}(A) B_{1}$. Hence, letting $g \in G$ be such that $\Omega_{1}(B)^{9} \nless B_{1}$, we see, by comparison of orders, that

$$
\Omega_{s+1}(A) B_{1}=\Omega_{1}(B)^{9} B_{1} .
$$

Moreover,

$$
\Omega_{1}(\mathrm{~B}) \unlhd \Omega_{s+1}(\mathrm{~A}) \mathrm{B},
$$

so $\Omega_{s+1}(A) B_{1}$ is the product of the normal subgroups $\Omega_{1}(B)^{9}$ and $B_{1}$. Hence

$$
c\left(\Omega_{s+1}(A) B_{1}\right) \leqslant c\left(\Omega_{1}(B)^{g}\right)+c\left(B_{1}\right)<\frac{p}{2}+\frac{p}{2}=p .
$$

By Theorem 2.1, we then have $\exp \left(\Omega_{1}\left(\Omega_{s+1}(A) B_{1}\right)\right)=p$. It follows that

$$
\Omega_{1}\left(\Omega_{s+1}(A) B_{1}\right) \cap B_{1}=\Omega_{1}\left(B_{1}\right)=\Omega_{1}(B) .
$$

But $\left|\Omega_{s+1}(A) B_{1}: B_{1}\right|=p$, so

$$
\begin{gathered}
\left|\Omega_{1}\left(\Omega_{s+1}(A) B_{1}\right): \Omega_{1}(B)\right| \\
=\left|\Omega_{1}\left(\Omega_{s+1}(A) B_{1}\right): \Omega_{1}\left(\Omega_{s+1}(A) B_{1}\right) \cap B_{1}\right| \leqslant p .
\end{gathered}
$$

But $\Omega_{1}(B)^{9} \nless B_{1}$ so, by comparison of orders, we have

$$
\Omega_{1}(B)^{g} \Omega_{1}(B)=\Omega_{1}\left(\Omega_{s+1}(A) B_{1}\right) \unlhd G .
$$

Hence

$$
\Omega_{1}(B)^{G}=\Omega_{1}\left(\Omega_{s+1}(A) B_{1}\right) .
$$

In addition, we see that $\left|\Omega_{1}\left(\Omega_{s+1}(\mathcal{A}) B_{1}\right)\right|=p\left|\Omega_{1}(B)\right|$, so

$$
\left|\Omega_{1}(\mathrm{~B})^{\mathrm{G}}: \Omega_{1}(\mathrm{~B})\right|=\mathrm{p} .
$$

Since

$$
\exp \left(\Omega_{1}(B)^{G}\right)=\exp \left(\Omega_{1}\left(\Omega_{s+1}(A) B_{1}\right)\right)=p,
$$

our result is thus established for $t=1$. Now suppose that $k>1$ and that we have shown that the result holds for some $t$ with $1 \leqslant t<k$. We let $H=\Omega_{t}(B)^{G}$, and have $\exp (H)=p^{t}$. Thus $B \cap H=\Omega_{t}(B)$. Hence $\Omega_{1}(B H / H)=\Omega_{t+1}(B) H / H$ and we apply the result for $t=1$ to see that

$$
\left|\left(\Omega_{t+1}(B) H / H\right)^{G / H}: \Omega_{t+1}(B) H / H\right| \leqslant p
$$

and that $\exp \left(\left(\Omega_{t+1}(B) H / H\right)^{G / H}\right)=p$. Now

$$
\left(\Omega_{\mathbf{t}+1}(\mathrm{~B}) \mathrm{H} / \mathrm{H}\right)^{\mathrm{G} / \mathrm{H}}=\Omega_{\mathrm{t}+1}(\mathrm{~B})^{\mathrm{G}} \mathrm{H} / \mathrm{H}
$$

and $H=\Omega_{t}(B)^{G} \leqslant \Omega_{t+1}(B)^{G}$, so $\exp \left(\Omega_{t+1}(B)^{G} / \Omega_{t}(B)^{G}\right)=p$. But $\exp \left(\Omega_{t}(B)\right)^{G}=p^{t}$, so $\exp \left(\Omega_{t+1}(B)^{G}\right)=p^{t+1}$. We further have

$$
\left|\Omega_{t+1}(\mathrm{~B})^{\mathrm{G}} / \mathrm{H}: \Omega_{\mathrm{t}+1}(\mathrm{~B}) \mathrm{H} / \mathrm{H}\right| \leqslant \mathrm{p},
$$

so

$$
\left|\Omega_{\mathfrak{t}+1}(\mathrm{~B})^{\mathrm{G}}: \Omega_{\mathrm{t}+1}(\mathrm{~B}) \mathrm{H}\right| \leqslant \mathrm{p} .
$$

But $\Omega_{\mathfrak{t}}(\mathrm{B}) \leqslant \Omega_{\mathrm{t}+1}(\mathrm{~B})$ and $\left|\mathrm{H}: \Omega_{\mathfrak{t}}(\mathrm{B})\right| \leqslant \mathrm{p}^{\mathrm{t}}$. In addition we obtain $\Omega_{t}(B) \leqslant \Omega_{t+1}(B) \cap H$, so

$$
\begin{aligned}
& \left|\Omega_{\mathfrak{t}+1}(\mathrm{~B}) \mathrm{H}\right|=\frac{\left|\Omega_{\mathrm{t}+1}(\mathrm{~B})\right||\mathrm{H}|}{\left|\Omega_{\mathrm{t}+1}(\mathrm{~B}) \cap \mathrm{H}\right|} \leqslant \frac{\left|\Omega_{\mathrm{t}+1}(\mathrm{~B})\right||\mathrm{H}|}{\left|\Omega_{\mathrm{t}}(\mathrm{~B})\right|} \\
& \quad=\frac{|\mathrm{H}|}{\left|\Omega_{\mathfrak{t}}(\mathrm{B})\right|}\left|\Omega_{\mathrm{t}+1}(\mathrm{~B})\right| \leqslant \mathrm{p}^{\mathrm{t}}\left|\Omega_{\mathrm{t}+1}(\mathrm{~B})\right| .
\end{aligned}
$$

Thus

$$
\begin{gathered}
\left|\Omega_{t+1}(B)^{G}: \Omega_{t+1}(B)\right| \\
=\left|\Omega_{t+1}(B)^{G}: \Omega_{t+1}(B) H \| \Omega_{t+1}(B) H: \Omega_{t+1}(B)\right| \leqslant p \cdot p^{t}=p^{t+1} .
\end{gathered}
$$

We thus see that if the result holds for $1 \leqslant t<k$, then it also holds for $t+1$. Hence our result is established for all values of $t$ such that $1 \leqslant t \leqslant k$.

We finally note that $\Omega_{k}(B)=B$ so that, in particular, $\exp \left(B^{G}\right)=p^{k}$. But $B^{G}=\left(A \cap B^{G}\right) B$, so $\exp \left(A \cap B^{G}\right) \leqslant p^{k}$. Hence $A \cap B^{G} \leqslant \Omega_{k}(A)$, so $B^{G} \leqslant \Omega_{k}(A) B$. Since $G / B^{G}$ is cyclic, then $B^{G} \leqslant \Omega_{k}(A) B \unlhd G$.

We note that, for $p=3$, the restriction $c(B)<\frac{p}{2}$ in the statement of Theorem 2.9 requires the second "factor" B to be abelian. Theorem 2.11, the final result of this section, addresses the special case where $p=3, c(B)=2$ and $\exp (B)=3$. We present the result in a more general form, as the proof may be of independent interest. We first derive a generalisation of [4] Lemma 1.

Lemma 2.10 Let p be a prime and let $\mathrm{G}=\mathrm{N}_{1} \mathrm{~N}_{2}$ be a finite p -group for subgroups $\mathrm{N}_{1}$ and $\mathrm{N}_{2}$ such that $\left|\mathrm{G}: \mathrm{N}_{1}\right|=\left|\mathrm{G}: \mathrm{N}_{2}\right|=\mathrm{p}$. Let $\mathrm{c}=\max \left\{\mathrm{c}\left(\mathrm{N}_{1}\right), \mathrm{c}\left(\mathrm{N}_{2}\right)\right\}$. Then:
(i) $\left|G^{\prime}\right| \leqslant p\left|N_{1}^{\prime} N_{2}^{\prime}\right|$;
(ii) if $\mathrm{c} \geqslant 2$, then $\mathrm{d}(\mathrm{G}) \leqslant \mathrm{c}$.

Proof - We let $H=N_{1}^{\prime} N_{2}^{\prime}$ and let $W=N_{1} \cap N_{2}$. Since

$$
\left|\mathrm{G}: \mathrm{N}_{1}\right|=\left|\mathrm{G}: \mathrm{N}_{2}\right|=\mathrm{p},
$$

we have

$$
N_{i} \unlhd G \quad \text { and } \quad G / N_{i} \simeq C_{p} \quad(i=1,2) .
$$

Hence $G / W \simeq C_{p} \times C_{p}$, so $H \leqslant G^{\prime} \leqslant W$. Now $N_{1} / H$ and $N_{2} / H$ are abelian, so $W / H \leqslant Z(G / H)$. We let $x_{i} \in N_{i} \backslash W \quad(i=1,2)$. Then $\mathrm{G}=\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~W}\right\rangle$. Since

$$
W / H \leqslant Z(G / H) \quad \text { and } \quad G / W \simeq C_{p} \times C_{p},
$$

we see that

$$
\left\langle\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]\right\rangle \mathrm{H} / \mathrm{H} \leqslant \mathrm{Z}(\mathrm{G} / \mathrm{H})
$$

and that $\left[x_{1}, x_{2}\right]^{p} \in H$. It follows that $G^{\prime}=\left\langle\left[x_{1}, x_{2}\right]\right\rangle H$ and that

$$
\left|\mathrm{G}^{\prime}\right| \leqslant \mathrm{p}|\mathrm{H}|=\mathrm{p}\left|\mathrm{~N}_{1}^{\prime} \mathrm{N}_{2}^{\prime}\right| .
$$

Thus (i) is established.
For (ii), we let $Z=Z_{c-2}(W)$. We have

$$
N_{i}^{\prime} \leqslant Z_{c-1}\left(N_{i}\right) \cap W \leqslant Z_{c-1}(W) \quad(i=1,2)
$$

so $H \leqslant Z_{c-1}(W)$. In particular, we have

$$
\mathrm{HZ} / \mathrm{Z} \leqslant \mathrm{Z}(\mathrm{~W} / \mathrm{Z})
$$

But

$$
\mathrm{G}^{\prime} \mathrm{Z} / \mathrm{HZ}=\left\langle\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]\right\rangle \mathrm{HZ} / \mathrm{HZ},
$$

so $G^{\prime} Z / H Z$ is cyclic. Hence $G^{\prime} Z / Z$ is abelian, so $G^{(2)} \leqslant Z$. Since $c(Z) \leqslant c-2$, we then have

$$
\mathrm{G}^{(\mathrm{c})} \leqslant \mathrm{Z}^{(\mathrm{c}-2)}=1,
$$

as desired.

Theorem 2.11 Let p be an odd prime and let $\mathrm{G}=\mathrm{AB}$ be a finite p -group for subgroups $A$ and $B$ such that $A$ is cyclic, $c(B)=2$ and $\exp (B)=p$. Then $\Omega_{2}(A) \mathrm{B} \unlhd \mathrm{G}$.

Proof - We use induction on |G|. We can assume that

$$
\Omega_{2}(A) \neq \Omega_{3}(A),
$$

as otherwise $\Omega_{2}(A)=A$ and the result is trivial. In particular, we have $\Omega_{3}(A) \simeq C_{p^{3}}$. By [7] Lemma 1, either $A_{G} \neq 1$ or $B_{G} \neq 1$. Hence either $1 \neq Z(G) \cap A$ or $1 \neq Z(G) \cap B$. If $1 \neq Z(G) \cap B$, then we let

$$
1 \neq b \in Z(G) \cap B .
$$

Since $\exp (B)=p$, we have $\langle b\rangle \simeq C_{p}$. If $\langle b\rangle \notin A$ then, by induction, we have

$$
\Omega_{2}(\mathrm{~A}\langle\mathrm{~b}\rangle /\langle\mathrm{b}\rangle) \mathrm{B} /\langle\mathrm{b}\rangle=\left(\Omega_{2}(\mathrm{~A})\langle\mathrm{b}\rangle /\langle\mathrm{b}\rangle\right) \mathrm{B} /\langle\mathrm{b}\rangle \unlhd \mathrm{G} /\langle\mathrm{b}\rangle .
$$

It follows that $\Omega_{2}(A) B \unlhd G$, as desired. If $\langle b\rangle \leqslant A$, then $\langle b\rangle=\Omega_{1}(A)$. By induction, we have

$$
\Omega_{2}(\mathrm{~A}\langle\mathrm{~b}\rangle /\langle\mathrm{b}\rangle) \mathrm{B} /\langle\mathrm{b}\rangle=\left(\Omega_{3}(\mathrm{~A}) /\langle\mathrm{b}\rangle\right) \mathrm{B} /\langle\mathrm{b}\rangle \unlhd \mathrm{G} /\langle\mathrm{b}\rangle .
$$

Hence $\Omega_{3}(A) B \unlhd G$.
If $B^{G}$ is a proper subgroup of $\Omega_{3}(A) B$, then $B^{G} \leqslant \Omega_{2}(A) B$. Since $G / B^{G}$ is cyclic, we then have $\Omega_{2}(A) B \unlhd G$ and are done. We thus may assume that $B^{G}=\Omega_{3}(A) B$. If $B \unlhd B^{G}$, then

$$
B^{G} / B=\Omega_{3}(A) B / B \simeq \Omega_{3}(A) /\left(\Omega_{3}(A) \cap B\right)=\Omega_{3}(A) / \Omega_{1}(A) \simeq C_{p^{2}} .
$$

We let $\left\{B^{g_{1}}, \ldots, B^{g_{n}}\right\}$ be the set of conjugates of $B$ in $G$. Since each conjugate of $B$ is normal in $B^{G}$ and

$$
B^{G} / B_{G}=B^{G} / \bigcap_{i=1}^{n} B^{g_{i}},
$$

we see that $B^{G} / B_{G}$ is isomorphic to a subgroup of

$$
\mathrm{B}^{\mathrm{G}} / \mathrm{B}^{\mathrm{g}_{1}} \times \ldots \times \mathrm{B}^{\mathrm{G}} / \mathrm{B}^{\mathrm{g}_{n}}
$$

which, in turn, is isomorphic to $C_{p^{2}} \times \ldots \times C_{p^{2}}$. Hence $B^{G} / B_{G}$ is abelian. Moreover, since $B^{G} / B \simeq C_{p^{2}}$, we see that

$$
\exp \left(B^{G} / B_{G}\right)=p^{2}
$$

On the other hand, $B^{G} / B_{G}$ is abelian and is generated by conjugates of $B / B_{G}$. Since $\exp (B)=p$, it follows that $\exp \left(B^{G} / B_{G}\right)=p$, so a contradiction arises. We may thus assume that $B \notin B^{G}$.

Now

$$
\left|B^{\mathrm{G}}: \Omega_{2}(\mathrm{~A}) \mathrm{B}\right|=\left|\Omega_{3}(\mathrm{~A}): \Omega_{2}(\mathrm{~A})\right|=\mathrm{p},
$$

so $\Omega_{2}(A) B \unlhd B^{G}$. Let $\Omega_{3}(A)=\left\langle x_{1}\right\rangle$. Bearing in mind that $\Omega_{1}(A) \leqslant B$, we see, by comparison of orders, that $\Omega_{2}(A) B=B B^{x_{1}}$, where

$$
\left|\Omega_{2}(A) B: B\right|=\left|\Omega_{2}(A) B: B^{x_{1}}\right|=p .
$$

In addition, we have

$$
c(B)=c\left(B^{X_{1}}\right)=2 \quad \text { and } \quad \exp (B)=\exp \left(B^{x_{1}}\right)=p .
$$

We let $W=\Omega_{2}(A) B$. By Lemma 2.10, we see that $d(W)=2$, so $W^{\prime}$ is abelian. But $W / B \simeq C_{p}$, so $W^{\prime} \leqslant B$. Hence $\exp \left(W^{\prime}\right)=p$, so $W^{\prime}$ is elementary abelian. In addition, $W / W^{\prime}$ is the product of the elementary abelian subgroups $B W^{\prime} / W^{\prime}$ and $B^{x_{1}} W^{\prime} / W^{\prime}$, so $W / W^{\prime}$ is also elementary abelian. We note further that if $A$ normalises $W$, then

$$
B^{G}=\Omega_{3}(A) B \leqslant W=\Omega_{2}(A) B,
$$

which is ruled out. Letting $A=\langle x\rangle$, we can thus assume, by comparison of orders, that $B^{G}=\Omega_{3}(A) B=W W^{x}$. Now

$$
\left|\mathrm{B}^{\mathrm{G}}: \mathrm{W}\right|=\left|\mathrm{B}^{\mathrm{G}}: \mathrm{W}^{\mathrm{X}}\right|=\mathrm{p},
$$

so both $W$ and $W^{x}$ are normal in $B^{G}$. Hence both $W^{\prime}$ and $\left(W^{x}\right)^{\prime}$ are normal elementary abelian subgroups of $B^{G}$. Thus $c\left(W^{\prime}\left(W^{\prime}\right)^{g}\right) \leqslant 2$ and, by Lemma 2.1, $\exp \left(W^{\prime}\left(W^{\prime}\right)^{x}\right)=p$. In addition, $B^{G} / W^{\prime}\left(W^{\prime}\right)^{x}$ is the product of the normal elementary abelian subgroups $W / W^{\prime}\left(W^{\prime}\right)^{x}$ and $W^{x} / W^{\prime}\left(W^{\prime}\right)^{x}$, so we similarly see that

$$
\exp \left(B^{G} / W^{\prime}\left(W^{\prime}\right)^{x}\right)=p
$$

But then

$$
p^{3}=\exp \left(B^{G}\right) \leqslant \exp \left(B^{G} / W^{\prime}\left(W^{\prime}\right)^{x}\right) \times \exp \left(W^{\prime}\left(W^{\prime}\right)^{x}\right)=p^{2},
$$

so a contradiction arises. We thus conclude that if $1 \neq Z(G) \cap B$, then $\Omega_{2}(A) B \unlhd G$.

Finally, if $Z(G) \cap B=1$, then $1 \neq Z(G) \cap A$, so $\Omega_{1}(A) \leqslant Z(G)$. But then $\Omega_{1}(A) B=\Omega_{1}(A) \times B$ has class 2 and exponent $p$. We let

$$
\widehat{\mathrm{B}}=\Omega_{1}(\mathrm{~A}) \mathrm{B} .
$$

Then $G=A \widehat{B}$, where $1 \neq Z(G) \cap \widehat{B}$. Arguing as above, we can again show by induction that $\Omega_{2}(A) \widehat{B}=\Omega_{2}(A) B \unlhd G$.

## 3 An example

We present an example to show that there exist factorised 3-groups $G=A B$ where $A$ is a cyclic subgroup and $B$ is a subgroup of exponent 3 and class 2, but for which $\Omega_{1}(A) B \nsubseteq G$ and for which $\exp \left(B^{G}\right) \neq 3$. Our example shows, in particular, that the requirement that $c(B)<\frac{p}{2}$ in the statement of Theorem 2.9 is not always redundant.

Example 3.1 We let U be the direct product of a non-abelian group of order 27 and exponent 3 with a cyclic group of order 3, presented as follows:

$$
\mathrm{u}=\left\langle\begin{array}{c|c}
\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3} & \begin{array}{l}
\mathrm{b}_{1}^{3}=\mathrm{b}_{2}^{3}=\mathrm{b}_{3}^{3}=z^{3}=1 ;\left[\mathrm{b}_{1}, z\right]=\left[\mathrm{b}_{2}, z\right]=1 \\
\mathrm{~b}_{1}=\mathrm{b}_{1} z ;\left[\mathrm{b}_{1}, \mathrm{~b}_{3}\right]=\left[\mathrm{b}_{2}, \mathrm{~b}_{3}\right]=1
\end{array}
\end{array}\right\rangle .
$$

Thus $\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}, z\right\rangle=\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}\right\rangle$ is non-abelian of order 27 and exponent 3, while

$$
\left\langle b_{3}\right\rangle \simeq C_{3} \quad \text { and } \quad\left\langle b_{3}\right\rangle \leqslant Z(U) .
$$

We further have $u=\left\langle b_{1}, b_{2}\right\rangle \times\left\langle b_{3}\right\rangle$. We let $\langle a\rangle \simeq C_{27}$ and define an action of $\langle\mathrm{a}\rangle$ on U by

$$
b_{1}^{a}=b_{1} b_{2}, b_{2}^{a}=b_{2} b_{3}, b_{3}^{a}=b_{3}, z^{a}=z .
$$

We have

$$
\left(b_{1}^{a}\right)^{b_{2}^{a}}=\left(b_{1} b_{2}\right)^{b_{2} b_{3}}=b_{1}^{b_{2}} b_{2}=b_{1} z b_{2}=b_{1} b_{2} z=b_{1}^{a} z^{a} .
$$

Since the remaining relations are easily seen to be satisfied, we see that this action of a defines an automorphism of $U$.

We further note that

$$
b_{1}^{a^{2}}=\left(b_{1} b_{2}\right)^{a}=b_{1} b_{2} b_{2} b_{3}=b_{1} b_{2}^{2} b_{3} .
$$

Thus

$$
b_{1}^{a^{3}}=\left(b_{1} b_{2}^{2} b_{3}\right)^{a}=b_{1} b_{2} b_{2}^{2} b_{3}^{2} b_{3}=b_{1} .
$$

Since we also have $b_{2}^{a^{3}}=b_{2}$ and $b_{3}^{a^{3}}=b_{3}$, we see that $U$ is centralised by $a^{3}$. We form the semi-direct product of $U$ by $\langle a\rangle$ and denote this semi-direct product by $\mathrm{U}_{1}$. We then identify $\mathrm{a}^{9}$ with $z$ to form the group $W=\mathrm{U}_{1} /\left\langle z a^{-9}\right\rangle$. Thus W can be expressed as

$$
\left\langle\begin{array}{c|l}
\mathrm{b}_{1}, \mathrm{~b}_{2}, & \begin{array}{l}
\mathrm{b}_{1}^{3}=\mathrm{b}_{2}^{3}=\mathrm{b}_{3}^{3}=z^{3}=\mathrm{a}^{27}=1 ;\left[\mathrm{b}_{1}, z\right]=\left[b_{2}, z\right]=1 ; \\
b_{3},
\end{array} \\
\mathrm{~b}_{1}^{b_{2}}=\mathrm{b}_{1} z ;\left[\mathrm{b}_{1}, b_{3}\right]=\left[b_{2}, b_{3}\right]=1 ; \\
\mathrm{a}, z & \mathrm{~b}_{1}^{\mathrm{a}}=\mathrm{b}_{1} b_{2} ; b_{2}^{a}=b_{2} b_{3} ; b_{3}^{\mathrm{a}}=\mathrm{b}_{3} ; z^{\mathrm{a}}=z ; \mathrm{a}^{9}=z
\end{array}\right\rangle .
$$

We now let $\left\langle b_{4}\right\rangle \simeq C_{3}$ and let $b_{4}$ act on $W$ as follows:

$$
b_{1}^{b_{4}}=b_{1}, b_{2}^{b_{4}}=b_{2} z, b_{3}^{b_{4}}=b_{3} z, z^{b_{4}}=z, a^{b_{4}}=a b_{1}^{-1} a^{-3} .
$$

We show that the action of $b_{4}$ defines an automorphism, of order 3, of W . We note that

$$
\left(b_{1}^{b_{4}}\right)^{a^{b_{4}}}=b_{1}^{a b_{1}^{-1} a^{-3}}=\left(b_{1} b_{2}\right)^{b_{1}^{-1} a^{-3}}=b_{1} b_{2}^{b_{1}^{-1}} .
$$

Now $b_{1}^{b_{2}}=\mathrm{b}_{1} z$, so $\left[\mathrm{b}_{1}, \mathrm{~b}_{2}\right]=z$ and $\left[\mathrm{b}_{2}, \mathrm{~b}_{1}\right]=z^{-1}$. Hence $\mathrm{b}_{2}^{\mathrm{b}_{1}}=$ $\mathrm{b}_{2} z^{-1}$, so

$$
\mathrm{b}_{2}^{\mathrm{b}_{1}^{-1}}=\mathrm{b}_{2}^{\mathrm{b}_{1}^{2}}=\mathrm{b}_{2} z^{-2}=\mathrm{b}_{2} z .
$$

It follows that

$$
\left(b_{1}^{b_{4}}\right)^{b_{4}}=b_{1} b_{2} z=b_{1}^{b_{4}} b_{2}^{b_{4}} .
$$

We further have

$$
\begin{gathered}
\left(b_{2}^{b_{4}}\right)^{a^{b_{4}}}=\left(b_{2} z\right)^{a b_{1}^{-1} a^{-3}} \\
=\left(b_{2}^{a} z\right)^{b_{1}^{-1} a^{-3}}=\left(b_{2} b_{3} z\right)^{b_{1}^{-1} a^{-3}}=b_{2}^{b_{1}^{-1}} b_{3} z=b_{2} z b_{3} z .
\end{gathered}
$$

Hence

$$
\left(b_{2}^{b_{4}}\right)^{a^{b_{4}}}=b_{2} z b_{3} z=b_{2}^{b_{4}} b_{3}^{b_{4}} .
$$

Next, we check that $\left(a^{b_{4}}\right)^{27}=1$ and that $\left(a^{b_{4}}\right)^{9}=z^{b_{4}}=z$. We note first that

$$
\begin{gathered}
\left(a^{b_{4}}\right)^{3}=\left(a b_{1}^{-1} a^{-3}\right)^{3}=\left(a b_{1}^{-1}\right)^{3} a^{-9} \\
=a^{3}\left(b_{1}^{-1} a^{2}\left(b_{1}^{-1}\right)^{a} b_{1}^{-1} a^{-9}\right. \\
=a^{3}\left(b_{2}^{-1} b_{1}^{-1}\right)^{a} b_{2}^{-1} b_{1}^{-1} b_{1}^{-1} a^{-9} \\
=a^{3} b_{3}^{-1} b_{2}^{-1} b_{2}^{-1} b_{1}^{-1} b_{2}^{-1} b_{1}^{-1} b_{1}^{-1} a^{-9} \\
=a^{3} b_{3}^{-1} b_{2}^{-3}\left(b_{1}^{-1}\right)^{b_{2}^{-1}} b_{1}^{-2} a^{-9} \\
=a^{3} b_{3}^{-1} b_{1}^{-1} z b_{1}^{-2} a^{-9}=a^{3} b_{3}^{-1} z b_{1}^{-3} a^{-9} .
\end{gathered}
$$

Thus

$$
\left(a^{b_{4}}\right)^{3}=a^{3} b_{3}^{-1} z a^{-9} .
$$

But $\mathrm{a}^{9}=z$, so

$$
\left(a^{b_{4}}\right)^{3}=a^{3} b_{3}^{-1} .
$$

It follows that

$$
\left(a^{b_{4}}\right)^{9}=a^{9} b_{3}^{-3}=a^{9}=z=z^{b_{4}} .
$$

In addition, we have

$$
\left(a^{b_{4}}\right)^{27}=\left(\left(a^{b_{4}}\right)^{9}\right)^{3}=\left(a^{9}\right)^{3}=a^{27}=1 .
$$

Since the remaining relations are straightforward to verify, this confirms that $b_{4}$ defines an automorphism of $W$.

We finally check that $o\left(b_{4}\right)=3$ in $\operatorname{Aut}(W)$. It is evident that

$$
b_{1}^{\mathrm{b}_{4}^{3}}=\mathrm{b}_{1}, \quad \mathrm{~b}_{2}^{\mathrm{b}_{4}^{3}}=\mathrm{b}_{2}, \quad \mathrm{~b}_{3}^{\mathrm{b}_{4}^{3}}=\mathrm{b}_{3} \quad \text { and } \quad z^{\mathrm{b}_{4}^{3}}=z .
$$

Thus we need only confirm that $a^{b_{4}^{3}}=a$. Now $a^{3} \in Z(W)$ and, from above, $\left(a^{3}\right)^{b_{4}}=\left(a^{b_{4}}\right)^{3}=a^{3} b_{3}^{-1}$, so $\left(a^{-3}\right)^{b_{4}}=a^{-3} b_{3}$. Hence

$$
a^{b_{4}^{2}}=\left(a b_{1}^{-1} a^{-3}\right)^{b_{4}}=a b_{1}^{-1} a^{-3} b_{1}^{-1} a^{-3} b_{3}=a b_{1}^{-2}\left(a^{-3}\right)^{2} b_{3} .
$$

It follows that

$$
\begin{gathered}
a^{b_{4}^{3}}=a^{b_{4}}\left(b_{1}^{-2}\right)^{b_{4}}\left(\left(a^{-3}\right)^{b_{4}}\right)^{2} b_{3}^{b_{4}}=a b_{1}^{-1} a^{-3} b_{1}^{-2}\left(a^{-3} b_{3}\right)^{2} b_{3} z \\
=a b_{1}^{-3} a^{-3} a^{-6} b_{3}^{2} b_{3} z=a a^{-9} b_{3}^{3} z=a a^{-9} z
\end{gathered}
$$

But $z=a^{9}$, so $a^{b_{4}^{3}}=a$. We conclude that $o\left(b_{4}\right)=3$ in $\operatorname{Aut}(W)$.
We let $G$ be the semi-direct product of $W$ by $\left\langle b_{3}\right\rangle$. Then $G$ can be expressed as

$$
\left(\begin{array}{c|l}
b_{1}, b_{2}, & a^{27}=z^{3}=b_{i}^{3}=1, i=1, \ldots, 4 ;\left[b_{i}, z\right]=1, i=1, \ldots, 4 \\
b_{3}, b_{4}, & {\left[b_{1}, b_{2}\right]=\left[b_{2}, b_{4}\right]=\left[b_{3}, b_{4}\right]=z ;\left[b_{1}, b_{3}\right]=\left[b_{2}, b_{3}\right]=\left[b_{1}, b_{4}\right]=1} \\
a, z & b_{1}^{a}=b_{1} b_{2} ; b_{2}^{a}=b_{2} b_{3} ; b_{3}^{a}=b_{3} ; z^{a}=z ; a^{9}=z ; a^{b_{4}}=a b_{1}^{-1} a^{-3}
\end{array}\right) .
$$

We have $G=A B$, where $A=\langle a\rangle \simeq C_{27}$ and $B=\left\langle b_{1}, b_{2}, b_{3}, b_{4}, z\right\rangle$. We note that $\Omega_{1}(A)=\left\langle a^{9}\right\rangle=\langle z\rangle \leqslant B$. We further see that $B^{\prime}=\langle z\rangle$ and that $B$ has class 2 and exponent 3 . We note that $\left[a, b_{4}\right]=b_{1}^{-1} a^{-3}$. Hence $a^{-3} \in B^{G} \backslash B$. Thus

$$
\Omega_{1}(A) B=B \nsubseteq G .
$$

In fact we have $B^{G}=\Omega_{2}(A) B$, in accordance with Theorem 2.11. In particular, we see that $\exp \left(B^{G}\right)=9$.

We note that $b_{2}^{b_{1} b_{4}}=\left(b_{2} z^{-1}\right)^{b_{4}}=b_{2} z z^{-1}=b_{2}$. Thus

$$
\left[\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}\right\rangle,\left\langle\mathrm{b}_{3}, \mathrm{~b}_{1} \mathrm{~b}_{4}\right\rangle\right]=1
$$

In addition, we have $b_{3}^{b_{1} b_{4}}=b_{3}^{b_{4}}=b_{3} z$. Hence $B=\left\langle b_{1}, b_{2}\right\rangle\left\langle b_{3}, b_{1} b_{4}\right\rangle$ is the central product of $\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}\right\rangle$ and $\left\langle\mathrm{b}_{3}, \mathrm{~b}_{1} \mathrm{~b}_{4}\right\rangle$, both of which are non-abelian subgroups of order 27 and exponent 3. In particular, we see that $B$ is an extraspecial 3-group of order $3^{5}$ and exponent 3 .

## 4 Bounds for derived length

We first establish a bound for the derived length of $p$-groups of the type treated in Theorem 2.9.

Theorem 4.1 Let p be an odd prime and let $\mathrm{G}=\mathrm{AB}$ be a finite p -group for subgroups $A$ and $B$ such that $A$ is cyclic, $c(B)<p / 2$ and $\exp (B)=p^{k}$ $(k \geqslant 1)$. Then $d(G) \leqslant 1+k+d(B)$.

Proof - By Theorem 2.9, we have $\Omega_{k}(A) B \unlhd G$. In addition, the group $G / \Omega_{k}(A) B$ is isomorphic to a factor group of $A$, so that $G^{\prime} \leqslant \Omega_{k}(A) B$. Now, for $i=1, \ldots, k$, we have

$$
\left|\Omega_{\mathfrak{i}}(A) B: \Omega_{\mathfrak{i}-1}(A) B\right| \leqslant\left|\Omega_{\mathfrak{i}}(A): \Omega_{\mathfrak{i}-1}(A)\right| \leqslant p
$$

so

$$
\Omega_{\mathfrak{i}-1}(\mathrm{~A}) \mathrm{B} \unlhd \Omega_{\mathfrak{i}}(\mathrm{A}) \mathrm{B}
$$

and $\Omega_{\mathfrak{i}}(A) B / \Omega_{\mathfrak{i}-1}(A) B$ is isomorphic to a factor group of the cyclic $\operatorname{group} \Omega_{\mathfrak{i}}(A) / \Omega_{\mathfrak{i}-1}(A)$. Hence

$$
\left(\Omega_{\mathfrak{i}}(A) B\right)^{\prime} \leqslant \Omega_{\mathfrak{i}-1}(A) B
$$

for $i=1, \ldots, k$, so $G^{(1+k)} \leqslant B$. It follows that $G^{(1+k+d(B))}=1$.
An alternative bound for derived length can be established in the case where $B$ has exponent $p$.

Theorem 4.2 Let $p$ be a prime such that $p \geqslant 5$ and let $G=A B$ be a finite $p$-group for subgroups $A$ and $B$ such that $A$ is cyclic, $2 \leqslant c(B)<\frac{p}{2}$ and $\exp (B)=p$. Then $d(G) \leqslant 1+c(B)$.

Proof - We let $c=c(B)$. By Theorem 2.9, we have

$$
B^{\mathrm{G}} \leqslant \Omega_{1}(\mathrm{~A}) \mathrm{B} \unlhd \mathrm{G} .
$$

Now $\left|\Omega_{1}(A) B: B\right| \leqslant p$, so either $B \unlhd G$ or $B \nsubseteq G$ and $B^{G}=\Omega_{1}(A) B$. In the first case $G / B$ is abelian, so $G^{(1+c)}=1$. In the second case we let $g \in G \backslash N_{G}(B)$. By comparison of orders we have

$$
B^{G}=\Omega_{1}(A) B=B B^{g} .
$$

We further see that

$$
\left|\Omega_{1}(A) B: B\right|=\left|\Omega_{1}(A) B: B^{g}\right|=p,
$$

so both $B$ and $B^{9}$ are normal subgroups of index $p$ in $\Omega_{1}(A) B$. We can then apply Lemma 2.10 to see that $\left(\Omega_{1}(A) B\right)^{(c)}=1$. Since $G / \Omega_{1}(A) B$ is abelian, it follows that $\mathrm{G}^{(1+\mathrm{c})}=1$.

The particular case of Theorem 4.2 in which B has class 2 and exponent $p$ yields the following corollary.

Corollary 4.3 Let $p$ be a prime such that $p \geqslant 5$ and let $G=A B$ be a finite $p$-group for subgroups $A$ and $B$ such that $A$ is cyclic, $c(B)=2$ and $\exp (B)=p$. Then $G^{(3)}=1$.

The following generalisation of [4] Theorem 5 will enable us to extend Corollary $4 \cdot 3$ to the case where $p=3$. For $p \geqslant 5$, it will further
allow us to extend Corollary 4.3 to the case where $c(B)=2$ and $\exp (B)=p^{2}$. The proof is based on that of [4] Theorem 5. However, it is somewhat simpler than the original and differs significantly in detail.

Theorem 4.4 Let $\mathrm{G}=\mathrm{AB}$ be a finite p -group for subgroups A and B such that $A$ is abelian and $B^{\prime} \leqslant Z(B)$. If $\left|\mathrm{B}^{\mathrm{G}}: \mathrm{B}\right|=\mathrm{p}^{2}$ then either $\left(\mathrm{B}^{\prime}\right)^{\mathrm{G}}$ is abelian; or there exists a subgroup $\mathrm{B}_{1} \leqslant G$ such that $\mathrm{B}_{1}^{\prime} \leqslant \mathrm{Z}\left(\mathrm{B}_{1}\right)$, $\left|\mathrm{B}_{1}^{\mathrm{G}}: \mathrm{B}_{1}\right|=\mathrm{p}$ and $\mathrm{G} / \mathrm{B}_{1}^{\mathrm{G}}$ is abelian.

Proof - We assume that $\left(B^{\prime}\right)^{G}$ is non-abelian. Thus $B$ is nonabelian and $c(B)=2$. By say $[4]$ Lemma $4, B$ has defect at least three in G. But $G$ is a finite $p$-group and $\left|B^{G}: B\right|=p^{2}$, so the defect of $B$ is exactly three. Letting $W=B^{G}$, we have $W=(A \cap W) B$ and see that there exist $w, x \in A \cap W$ such that

$$
N_{W}(B)=\langle w\rangle B \quad \text { and } \quad W=\langle w, x\rangle B .
$$

In addition, we can assume that

$$
|W:\langle w\rangle \mathrm{B}|=|\langle w\rangle \mathrm{B}: \mathrm{B}|=\mathrm{p},
$$

so

$$
\mathrm{B} \unlhd\langle w\rangle \mathrm{B} \unlhd\langle w, x\rangle \mathrm{B}=\mathrm{W}=\mathrm{B}^{\mathrm{G}} \unlhd \mathrm{G} .
$$

Now

$$
B^{\prime} \leqslant W^{\prime} \unlhd G \quad \text { and } \quad W /\langle w\rangle B \simeq C_{p},
$$

so $W^{\prime} \leqslant\langle w\rangle$. Hence $\left(B^{\prime}\right)^{G} \leqslant\langle w\rangle$. Now $c(B)=2$, so $B \leqslant C_{w}\left(B^{\prime}\right)$. If $B \neq C_{W}\left(B^{\prime}\right)$, then $B$ is a proper subgroup of

$$
N_{C_{W}\left(B^{\prime}\right)}(B)=C_{W}\left(B^{\prime}\right) \cap N_{W}(B) .
$$

By comparison of orders, it follows that

$$
\langle w\rangle \mathrm{B} \leqslant \mathrm{~N}_{\mathrm{C}_{W}\left(\mathrm{~B}^{\prime}\right)}(\mathrm{B}) \leqslant \mathrm{C}_{W}\left(\mathrm{~B}^{\prime}\right),
$$

so $B^{\prime}$ is centralised by $\langle w\rangle$. But $\left(B^{\prime}\right)^{G} \leqslant\langle w\rangle B$, so

$$
B^{\prime} \leqslant\left(B^{\prime}\right)^{G} \cap Z(\langle w\rangle B) \leqslant Z\left(\left(B^{\prime}\right)^{G}\right) \unlhd G .
$$

Hence $\left(B^{\prime}\right)^{G}$ is abelian, in contradiction to our assumption. We con-
clude that $B=C_{W}\left(B^{\prime}\right)$. In particular, for $g \in G$ we then have

$$
B^{g}=C_{W g}\left(\left(B^{\prime}\right)^{g}\right)=C_{W}\left(\left(B^{\prime}\right)^{g}\right)
$$

If $\left(B^{\prime}\right)^{G} \leqslant B$, then

$$
B^{\prime} \leqslant Z(B) \cap\left(B^{\prime}\right)^{G} \leqslant Z\left(\left(B^{\prime}\right)^{G}\right)
$$

so again $\left(B^{\prime}\right)^{G}$ is abelian, which is excluded. Hence $\left(B^{\prime}\right)^{G} \nless B$. Now the conjugates of $B^{\prime}$ are

$$
\left\{\left(B^{\prime}\right)^{b a} \mid a \in A, b \in B\right\}=\left\{\left(B^{\prime}\right)^{a} \mid a \in A\right\}
$$

In addition, for $a \in N_{A}(\langle w\rangle B)$, we have

$$
\left(\mathrm{B}^{\prime}\right)^{\mathrm{a}} \leqslant\left((\langle w\rangle \mathrm{B})^{\prime}\right)^{\mathrm{a}}=(\langle w\rangle \mathrm{B})^{\prime} \leqslant \mathrm{B}
$$

Hence, if $\left(B^{\prime}\right)^{\widetilde{a}} \leqslant B$ for all $\widetilde{a} \in A \backslash N_{A}(\langle w\rangle B)$, then

$$
\left(B^{\prime}\right)^{G}=\left\langle\left(B^{\prime}\right)^{a} \mid a \in A\right\rangle \leqslant B
$$

But this is ruled out, so there exists $y \in A \backslash N_{A}(\langle w\rangle B)$ such that

$$
\left(B^{\prime}\right)^{y} \nless B .
$$

Thus

$$
(\langle w\rangle \mathrm{B})^{\mathrm{y}}=\langle w\rangle \mathrm{B}^{\mathrm{y}} \neq\langle w\rangle \mathrm{B} .
$$

In particular, $B^{y} \notin\langle w\rangle B$, as otherwise $\langle w\rangle B^{y}=\langle w\rangle B$. Since

$$
|\langle w\rangle \mathrm{B}: \mathrm{B}|=|\langle w, x\rangle \mathrm{B}:\langle w\rangle \mathrm{B}|=\mathrm{p}
$$

and $x \notin \mathrm{~N}_{\mathrm{W}}(\mathrm{B})$, we see, by comparison of orders, that

$$
\langle w\rangle \mathrm{B}=\mathrm{BB}^{x}=\mathrm{B}\left(\mathrm{~B}^{\prime}\right)^{\mathrm{y}} .
$$

In addition, we have

$$
\mathrm{W}=\langle w, x\rangle \mathrm{B}=\langle w\rangle \mathrm{BB}^{y}=\mathrm{B}\left(\mathrm{~B}^{\prime}\right)^{\mathrm{y}} \mathrm{~B}^{\mathrm{y}}=\mathrm{BB}^{y} .
$$

Hence

$$
p^{2}|B|=|W|=\frac{|B|\left|B^{y}\right|}{\left|B \cap B^{y}\right|}=\frac{|B|}{\left|B \cap B^{y}\right|}\left|B^{y}\right|,
$$

So

$$
\left|B: B \cap B^{y}\right|=p^{2} .
$$

Now

$$
\left|\left(\mathrm{B}^{\prime}\right)^{y}:\left(\mathrm{B}^{\prime}\right)^{\mathrm{y}} \cap \mathrm{~B}\right|=\left|\mathrm{B}\left(\mathrm{~B}^{\prime}\right)^{\mathrm{y}}: \mathrm{B}\right|=|\langle w\rangle \mathrm{B}: \mathrm{B}|=\mathrm{p} .
$$

Therefore, since $B=C_{W}\left(B^{\prime}\right)$, we have

$$
\begin{gathered}
\left|\left(B^{\prime}\right)^{y}: C_{\left(B^{\prime}\right) y}\left(B^{\prime}\right)\right|=\left|\left(B^{\prime}\right)^{y}:\left(B^{\prime}\right)^{y} \cap C_{W}\left(B^{\prime}\right)\right| \\
=\left|\left(B^{\prime}\right)^{y}:\left(B^{\prime}\right)^{y} \cap B\right|=p .
\end{gathered}
$$

In particular, we see that $B^{\prime}$ and $\left(B^{\prime}\right)^{y}$ do not centralise each other. Thus, since $C_{W}\left(\left(B^{\prime}\right)^{y}\right)=B^{y}$, we have $B^{\prime} \not *^{y}$. Hence, by comparison of orders, we have $\langle w\rangle B^{y}=B^{y} B^{\prime}$. We can then argue as above to see that

$$
\left|B^{\prime}: B^{\prime} \cap B^{y}\right|=p .
$$

Moreover, since $\left(B^{\prime}\right)^{G} \leqslant\langle w\rangle B=N_{W}(B)$, we have $B^{\prime} \unlhd\left(B^{\prime}\right)^{G}$. Thus we also have $\left(B^{\prime}\right)^{y} \unlhd\left(B^{\prime}\right)^{G}$, so $B^{\prime}$ and $\left(B^{\prime}\right)^{y}$ normalise each other. We note that

$$
\left(B^{\prime}\right)^{y} \cap B=\left(B^{\prime}\right)^{y} \cap B \cap B^{y} \leqslant\left(B^{\prime}\right)^{y} \cap B^{\prime}\left(B \cap B^{y}\right) \leqslant\left(B^{\prime}\right)^{y} \cap B,
$$

and so

$$
\left(B^{\prime}\right)^{y} \cap B^{\prime}\left(B \cap B^{y}\right)=\left(B^{\prime}\right)^{y} \cap B
$$

We define the subgroup $H \leqslant W$ by

$$
H=\left\langle B^{\prime},\left(B^{\prime}\right)^{y}, B \cap B^{y}\right\rangle
$$

Since $B^{\prime}$ and $\left(B^{\prime}\right)^{y}$ normalise each other and since both subgroups are centralised by $B \cap B^{y}$, we see that

$$
H=\left(B^{\prime}\right)^{y} B^{\prime}\left(B \cap B^{y}\right)
$$

Thus

$$
\begin{aligned}
& |H|=\frac{\left|\left(B^{\prime}\right)^{y}\right|\left|B^{\prime}\left(B \cap B^{y}\right)\right|}{\left|\left(B^{\prime}\right)^{y} \cap B^{\prime}\left(B \cap B^{y}\right)\right|}=\frac{\left|\left(B^{\prime}\right)^{y}\right|\left|B^{\prime}\left(B \cap B^{y}\right)\right|}{\left|\left(B^{\prime}\right)^{y} \cap B\right|} \\
& \quad=p\left|B^{\prime}\left(B \cap B^{y}\right)\right|=p \frac{\left|B^{\prime}\right|\left|B \cap B^{y}\right|}{\left|B^{\prime} \cap B \cap B^{y}\right|} \\
& \quad=p \frac{\left|B^{\prime}\right|}{\left|B^{\prime} \cap B^{y}\right|}\left|B \cap B^{y}\right|=p^{2}\left|B \cap B^{y}\right| .
\end{aligned}
$$

But $\left|B: B \cap B^{y}\right|=p^{2}$, so it follows that $|H|=|B|$.
Since $B^{\prime}$ and $\left(B^{\prime}\right)^{y}$ normalise each other, we have

$$
\left[B^{\prime},\left(B^{\prime}\right)^{y}\right] \leqslant B^{\prime} \cap\left(B^{\prime}\right)^{y} \leqslant Z(B) \cap Z\left(B^{y}\right) \leqslant Z\left(B B^{y}\right)=Z(W)
$$

In addition,

$$
\left(B \cap B^{y}\right)^{\prime} \leqslant B^{\prime} \cap\left(B^{\prime}\right)^{y} \leqslant Z(W) .
$$

Hence, bearing in mind that $B \cap B^{y}$ centralises both $B^{\prime}$ and $\left(B^{\prime}\right)^{y}$, we have

$$
H^{\prime}=\left[B^{\prime},\left(B^{\prime}\right)^{y}\right]\left(B \cap B^{y}\right)^{\prime} \leqslant Z(W) \cap B^{\prime} \cap\left(B^{\prime}\right)^{y} \leqslant Z(H)
$$

It follows that $c(H) \leqslant 2$. Moreover $H^{\prime} \leqslant Z(W) \cap B^{\prime}$, so $H^{\prime} \leqslant B^{\prime}$.
Now

$$
H=B^{\prime}\left(B \cap B^{y}\right)\left(B^{\prime}\right)^{y} \leqslant B\left(B^{\prime}\right)^{y}=\langle w\rangle B .
$$

But $\left(B^{\prime}\right)^{y} \notin B$ so, by comparison of orders, we have $\langle w\rangle B=B H$. In addition,

$$
|\langle w\rangle \mathrm{B}: \mathrm{H}|=|\langle w\rangle \mathrm{B}: \mathrm{B}|=\mathrm{p},
$$

so $\mathrm{H} \unlhd\langle w\rangle$. By Lemma 2.10, we then see that $\left|(\langle w\rangle \mathrm{B})^{\prime}\right| \leqslant p\left|\mathrm{H}^{\prime} \mathrm{B}^{\prime}\right|$. But $H^{\prime} \leqslant B^{\prime}$, so $\left|(\langle w\rangle B)^{\prime}\right| \leqslant p\left|B^{\prime}\right|$.

For $x$ as above with

$$
W=\langle w, x\rangle B
$$

we see that, if $\left(B^{\prime}\right)^{x}=B^{\prime}$, then $x \in N_{W}\left(B^{\prime}\right)$. But then $x$ normalises $C_{W}\left(B^{\prime}\right)=B$, which is ruled out. Hence $B^{\prime}$ is a proper subgroup of $B^{\prime}\left(B^{\prime}\right)^{x}$. We have

$$
\mathrm{B}^{\prime}\left(\mathrm{B}^{\prime}\right)^{\mathrm{x}} \leqslant(\langle w\rangle \mathrm{B})^{\prime}
$$

and, from above, $\left|(\langle w\rangle B)^{\prime}\right| \leqslant p\left|B^{\prime}\right|$. Thus, by comparison of orders, we have

$$
(\langle w\rangle \mathrm{B})^{\prime}=\mathrm{B}^{\prime}\left(\mathrm{B}^{\prime}\right)^{\mathrm{x}} .
$$

It follows that

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{W}}\left((\langle w\rangle \mathrm{B})^{\prime}\right)=\mathrm{C}_{W}\left(\mathrm{~B}^{\prime}\left(\mathrm{B}^{\prime}\right)^{\mathrm{x}}\right) \\
= & \mathrm{C}_{\mathrm{W}}\left(\mathrm{~B}^{\prime}\right) \cap \mathrm{C}_{W}\left(\left(\mathrm{~B}^{\prime}\right)^{x}\right)=\mathrm{B} \cap \mathrm{~B}^{x} .
\end{aligned}
$$

Since $\langle w\rangle \mathrm{B} \unlhd W$, we have

$$
\mathrm{C}_{\mathrm{W}}\left((\langle w\rangle \mathrm{B})^{\prime}\right) \unlhd \mathrm{W},
$$

so $B \cap B^{x} \unlhd W$. Now

$$
|\langle w\rangle \mathrm{B}: \mathrm{B}|=\left|\langle w\rangle \mathrm{B}: \mathrm{B}^{\mathrm{x}}\right|=\mathrm{p},
$$

so $B^{\prime} \leqslant B \cap B^{x}$. Thus, if $y$ normalises $B \cap B^{x}$, we have

$$
\left(B^{\prime}\right)^{y} \leqslant B \cap B^{x} \leqslant B,
$$

which is ruled out. Hence $B \cap B^{x} \nsubseteq W\langle y\rangle$.
Now $B^{y} \leqslant W$ and $B \cap B^{x} \unlhd W$. In addition, $\left(B^{\prime}\right)^{y} \notin B$, so that $\left(B^{\prime}\right)^{y} \nless B \cap B^{x}$. Thus

$$
B^{y}\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)
$$

is a non-abelian group. Since

$$
\left|\mathrm{B}: \mathrm{B} \cap \mathrm{~B}^{\mathrm{x}}\right|=\left|\mathrm{BB} \mathrm{~B}^{\mathrm{x}}: \mathrm{B}\right|=|\langle w\rangle \mathrm{B}: \mathrm{B}|=\mathrm{p},
$$

we have

$$
\left|W: B \cap B^{x}\right|=|W: B|\left|B: B \cap B^{x}\right|=p^{2} p=p^{3} .
$$

But

$$
B^{y}\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)
$$

is non-abelian so, by comparison of orders, we have

$$
B^{y}\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)=W /\left(B \cap B^{x}\right) .
$$

In particular, $W=B^{y}\left(B \cap B^{x}\right)$.
We see from above that $(\langle w\rangle B)^{\prime}=B^{\prime}[\langle w\rangle, B]=B^{\prime}\left(B^{\prime}\right)^{x}$. Therefore, if $B \leqslant C_{G}([\langle w\rangle, B])$, then $B$ centralises $(\langle w\rangle B)^{\prime}$. In particular $B$ centralises $\left(B^{\prime}\right)^{x}$, so $B \leqslant C_{W}\left(\left(B^{\prime}\right)^{x}\right)=B^{x}$. But this is ruled out, so $B \notin C_{G}([\langle w\rangle, B])$. Now,

$$
[\langle w\rangle, \mathrm{B}]=[\langle w\rangle, \mathrm{AB}]=[\langle w\rangle, \mathrm{G}] \unlhd \mathrm{G} .
$$

In addition, $\mathrm{B} \cap \mathrm{B}^{x}=\mathrm{C}_{W}\left((\langle w\rangle \mathrm{B})^{\prime}\right) \leqslant \mathrm{C}_{\mathrm{G}}([\langle w\rangle, \mathrm{B}])$ so, by normality,

$$
\left(B \cap B^{x}\right)^{G} \leqslant C_{G}([\langle w\rangle, B]) .
$$

Thus, in particular, we have $B \notin\left(B \cap B^{x}\right)^{G}$.

We now let $T=\left(B \cap B^{x}\right)^{G}$. Then $T \leqslant W$ but, since $B \nless T$, we have $\mathrm{T} \neq \mathrm{W}$. From above,

$$
W /\left(B \cap B^{x}\right)=B^{y}\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)
$$

is a non-abelian group of order $p^{3}$, so $Z\left(W /\left(B \cap B^{x}\right)\right) \simeq C_{p}$. We have

$$
|W|=p^{2}|B|=|(A \cap W) B|=\frac{|A \cap W||B|}{|A \cap W \cap B|}=\frac{|A \cap W||B|}{|A \cap B|} .
$$

Thus $|A \cap W: A \cap B|=p^{2}$. In addition, we have

$$
A \cap B=(A \cap B)^{x}=A \cap B^{x},
$$

so

$$
A \cap B=A \cap B \cap B^{x}=A \cap W \cap B \cap B^{x} .
$$

Hence

$$
\left|(A \cap W)\left(B \cap B^{x}\right)\right|=\frac{|A \cap W|\left|B \cap B^{x}\right|}{\left|A \cap W \cap B \cap B^{x}\right|}=\frac{|A \cap W|\left|B \cap B^{x}\right|}{|A \cap B|}=p^{2}\left|B \cap B^{x}\right| .
$$

In addition, we have

$$
\left|\langle w\rangle \mathrm{B}: \mathrm{B} \cap \mathrm{~B}^{\mathrm{x}}\right|=|\langle w\rangle \mathrm{B}: \mathrm{B}| \mathrm{B}: \mathrm{B} \cap \mathrm{~B}^{\mathrm{x}} \mid=\mathrm{p}^{2} .
$$

Hence

$$
\left|\langle w\rangle B /\left(B \cap B^{x}\right)\right|=\left|(A \cap W)\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)\right|=p^{2} .
$$

Now $A \cap W \notin\langle w\rangle B$, since otherwise $W=(A \cap W) B \leqslant\langle w\rangle B$. Thus, by comparison of orders, we have

$$
\begin{gathered}
Z\left(W /\left(B \cap B^{x}\right)\right)=\langle w\rangle B /\left(B \cap B^{x}\right) \cap(A \cap W)\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right) \\
=(\langle w\rangle B \cap(A \cap W))\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right) \\
=(\langle w\rangle(A \cap W \cap B))\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right) \\
=\langle w\rangle(A \cap B)\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right) .
\end{gathered}
$$

But

$$
A \cap B=A \cap B^{x} \leqslant B \cap B^{x},
$$

so

$$
Z\left(W /\left(B \cap B^{x}\right)\right)=\langle w\rangle\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right) \quad\left(\simeq C_{p}\right)
$$

Now $B \cap B^{x} \nsubseteq W\langle y\rangle$, so $B \cap B^{x}$ is a proper subgroup of $T$. By normality, we then have

$$
1 \neq T /\left(B \cap B^{x}\right) \cap Z\left(W /\left(B \cap B^{x}\right)\right),
$$

so

$$
\langle w\rangle\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right) \leqslant T /\left(B \cap B^{x}\right) .
$$

Since $B \notin T$ and $\left|B: B \cap B^{x}\right|=p$, we have $B \cap T=B \cap B^{x}$. Hence

$$
B T / T \simeq B /(B \cap T)=B /\left(B \cap B^{x}\right) \simeq C_{p} .
$$

Thus, by conjugation,

$$
(B T / T)^{y T}=B^{y} T / T \simeq C_{p} .
$$

Therefore, if

$$
T /\left(B \cap B^{x}\right)=\langle w\rangle\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right),
$$

then

$$
\left|\mathrm{B}^{\mathrm{y}} \mathrm{~T}: \mathrm{B} \cap \mathrm{~B}^{\mathrm{X}}\right|=\left|\mathrm{B}^{\mathrm{y}} \mathrm{~T}: \mathrm{T}\right|\left|\mathrm{T}: \mathrm{B} \cap \mathrm{~B}^{\mathrm{X}}\right|=\mathrm{p}^{2},
$$

so $B^{y} T$ is a proper subgroup of $W$. But we have already shown that $W=B^{y}\left(B \cap B^{x}\right)$, so $W=B^{y} T$ and a contradiction arises. Hence $\langle w\rangle\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right)$ is a proper subgroup of $T /\left(B \cap B^{x}\right)$. Since $T \neq W$, we then see, by comparison of orders, that $|W: T|=p$. Now $G=A W$, so

$$
G / T=(A T / T)(W / T) .
$$

We have $W / T \simeq C_{p}$ and $W / T \unlhd G / T$, so $W / T \leqslant Z(G / T)$. But $A T / T$ is abelian, so $G / T$ is the product of an abelian subgroup and a central subgroup. Hence G/T is abelian.

Now

$$
\langle w\rangle\left(B \cap B^{x}\right) \leqslant T=\left(B \cap B^{x}\right)^{G} \leqslant C_{G}([\langle w\rangle, B]) \leqslant C_{G}\left(\left[\langle w\rangle, B \cap B^{x}\right]\right) .
$$

In addition,

$$
\left(B \cap B^{x}\right)^{\prime} \leqslant B^{\prime} \cap\left(B^{\prime}\right)^{x},
$$

which is centralised by $\mathrm{BB}^{x}=\langle w\rangle \mathrm{B}$. Thus, in particular, $\langle w\rangle\left(\mathrm{B} \cap \mathrm{B}^{x}\right)$
centralises $\left(B \cap B^{x}\right)^{\prime}$. Now,

$$
\left(\langle w\rangle\left(\mathrm{B} \cap \mathrm{~B}^{\mathrm{x}}\right)\right)^{\prime}=\left(\mathrm{B} \cap \mathrm{~B}^{\mathrm{x}}\right)^{\prime}\left[\langle w\rangle, \mathrm{B} \cap \mathrm{~B}^{\mathrm{x}}\right],
$$

and both $\left(B \cap B^{x}\right)^{\prime}$ and $\left[\langle w\rangle, B \cap B^{x}\right]$ are centralised by $\langle w\rangle\left(B \cap B^{x}\right)$, so

$$
\left(\langle w\rangle\left(\mathrm{B} \cap \mathrm{~B}^{\mathrm{x}}\right)\right)^{\prime} \leqslant \mathrm{Z}\left(\langle w\rangle\left(\mathrm{B} \cap \mathrm{~B}^{\mathrm{x}}\right)\right) .
$$

Since

$$
\langle w\rangle\left(B \cap B^{x}\right) /\left(B \cap B^{x}\right) \simeq C_{p} \quad \text { and } \quad\left|T /\left(B \cap B^{x}\right)\right|=p^{2},
$$

we have $\left|T:\langle w\rangle\left(B \cap B^{x}\right)\right|=p$. We finally let $B_{1}=\langle w\rangle\left(B \cap B^{x}\right)$. Then

$$
\mathrm{B}_{1}^{\prime} \leqslant \mathrm{Z}\left(\mathrm{~B}_{1}\right) \quad \text { and } \quad \mathrm{B}_{1} \leqslant \mathrm{~T}=\left(\mathrm{B} \cap \mathrm{~B}^{\mathrm{x}}\right)^{\mathrm{G}},
$$

so that $B_{1}^{G}=T$. Hence $\left|B_{1}^{G}: B_{1}\right|=p$ and we see from above that $G / B_{1}^{G}=G / T$ is abelian, as desired.

Corollary 4.5 Let $\mathrm{G}=\mathrm{AB}$ be a finite p -group for subgroups A and B such that A is abelian and $\mathrm{B}^{\prime} \leqslant \mathrm{Z}(\mathrm{B})$. If $\left|\mathrm{B}^{\mathrm{G}}: \mathrm{B}\right| \leqslant \mathrm{p}^{2}$, then $\mathrm{G}^{(3)}=1$.

Proof - If $\left|B^{G}: B\right| \leqslant p$, then $B$ has subnormal defect at most two, and the result follows from [4] Lemma 4. If $\left|B^{G}: B\right|=p^{2}$ then, by Theorem 4.4, either $\left(B^{\prime}\right)^{G}$ is abelian and the result follows from [4] Lemma 3; or $G$ has a subgroup $B_{1}$, of class at most two, such that $\left|B_{1}^{G}: B_{1}\right|=p$ and such that $G / B_{1}^{G}$ is abelian. In the latter case $B_{1} \unlhd B_{1}^{G}$ and, letting $g \in G \backslash N_{G}\left(B_{1}\right)$, we see that $B_{1}^{G}=B_{1} B_{1}^{g}$ is the normal product of two subgroups of class at most two and index $p$. If $B_{1}$ is abelian, then it is clear that $\left(B_{1}^{G}\right)^{(2)}=1$. If $c\left(B_{1}\right)=2$, then we can apply Lemma 2.10 to see that $\left(B_{1}^{G}\right)^{(2)}=1$. Since $G / B_{1}^{G}$ is abelian, we then conclude that $\mathrm{G}^{(3)}=1$.

We use Corollary 4.5 to extend the result of Corollary 4.3.
Theorem 4.6 Let p be an odd prime and let $\mathrm{G}=\mathrm{AB}$ be a finite p -group for subgroups $A$ and $B$ such that $A$ is cyclic and $c(B)=2$. If $\exp (B)=p$ or if $\mathrm{p} \geqslant 5$ and $\exp (\mathrm{B})=\mathrm{p}^{2}$, then $\mathrm{G}^{(3)}=1$.

Proof - We apply Theorems 2.9 and 2.11 to see that in each case

$$
\mathrm{B} \leqslant \Omega_{2}(\mathrm{~A}) \mathrm{B} \unlhd \mathrm{G} .
$$

Hence $\left|B^{G}: B\right| \leqslant\left|\Omega_{2}(A) B: B\right| \leqslant p^{2}$. The result then follows from Corollary 4.5

## 5 Conclusion

Taken together with [5] and [6], this paper provides some initial steps in the direction of a theory of the structure of factorised finite p-groups $G=A B$, where $A$ is a cyclic subgroup and $B$ is a non-cyclic subgroup. A key feature of such groups is that each subgroup of $A$ is permutable with $B$, that is, if $A_{1} \leqslant A$ then $A_{1} B \leqslant G$. However, this need not be the case if $A$ is non-cyclic. It remains an open question as to the extent to which the above results can be generalised to factorised groups where neither "factor" is cyclic.

## REFERENCES

[1] A. Ballester-Bolinches - R. Esteban-Romero - M. Asaad: "Products of Finite Groups", de Gruyter, Berlin (2010).
[2] B. Huppert: "Über das Produkt von paarweise vertauschbaren zyklischen Gruppen", Math. Z. 58 (1953), 243-264.
[3] B. Huppert: "Endliche Gruppen I", Springer, Berlin (1967).
[4] B. McCann: "On finite p-groups that are the product of a subgroup of class two and an abelian subgroup of order $\mathrm{p}^{3 \prime \prime}$, Rend. Sem. Mat. Univ. Padova 136 (2016), 1-10.
[5] B. McCann: "On products of cyclic and elementary abelian p-groups", Publ. Math. Debrecen 91 (2017), 185-216.
[6] B. McCann: "On products of cyclic and abelian finite p-groups (p odd)", Proc. Japan Acad. Ser. A 94 (2018), 77-80.
[7] M. Morigi: "A note on factorized (finite) p-groups", Rend. Sem. Mat. Univ. Padova 98 (1997), 101-105.

Brendan McCann<br>Department of Mathematics and Computing<br>Waterford Institute of Technology<br>Cork Road, Waterford (Ireland)<br>e-mail: bmccann@wit.ie

