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Abstract

For an odd prime p we present some results concerning the structure of factorised
finite p-groups of the form G = AB, where A is a cyclic subgroup and B is a non-
abelian subgroup whose class does not exceed p

2
in most cases. Bounds for the

derived length of such groups are also presented.
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1 Introduction

The present paper explores the structure of factorised finite p-groups
of the form G = AB, where p is an odd prime and A and B are sub-
groups of G such that A is cyclic. It has been shown in [6] Theorem 6
that if B is abelian of exponent at most pk, then ⌦k(A)BEG, where
the characteristic subgroup ⌦k(W) of the finite p-group W is given
by ⌦k(W) = hw 2 W | wp

k

= 1i. Here we generalise this theorem in
certain cases where B is non-abelian. To this end, we present in Sec-
tion 2 a series of results leading to Theorem 2.9, which shows that
if B has class less than p

2
and exponent at most pk, then ⌦k(A)BEG.

The example of Section 3 shows that the result of Theorem 2.9 does
not always hold when the class of B exceeds p

2
. As an application
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of Theorem 2.9, it is shown in Corollary 4.3 that if p > 5 and B has
class two and exponent p, then G has derived length at most three.
Section 4 further provides a generalisation of [4] Theorem 5. This is
used in Theorem 4.6 to show that the derived length of G can also be
at most three if p = 3 and B has class two and exponent 3. The latter
bound is further shown to apply in the case where p > 5 and B has
class two and exponent p2.

We denote the nth term of the derived series of a group G by G(n).
Thus G(0)

= G, G(1)
= G 0 and G(n+1)

= [G(n),G(n)
] for n > 1.

The derived length of a soluble group G is denoted by d(G). The ith
term of the lower (or descending) central series of G will be denoted
by Ki(G). Hence

K1(G) = G, K2(G) = G 0 and Ki+1(G) = [Ki(G),G]

for i > 2. We denote the jth term of the upper (or ascending) central
series of G by Zj(G). Thus Z0(G) = 1, Z1(G) = Z(G) and

Zj+1(G)/Zj(G) = Z(G/Zj(G))

for j > 1. If G is nilpotent then c(G) will denote the class of G. UG

denotes the core of the subgroup U of a group G. Thus

UG =

\

g2G

Ug.

The normal closure of U in G is denoted by UG, so that

UG
= hUg

| g 2 Gi.

We finally denote the cyclic group of order pn by Cpn .

2 Structural results

In this section we make extensive use of the following theorem
which is a consequence of two fundamental results concerning
regular p-groups (see [3], III 10.2 Satz and 10.5 Hauptsatz).

Theorem 2.1 Let G be a finite p-group such that c(G) < p. Then, for
all k, ⌦k(G) = {g 2 G | gp

k

= 1}.
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Our first four results deal with special cases that will find applica-
tion in the proofs of Theorems 2.6 and 2.9.

Lemma 2.2 Let p be an odd prime and let G = AB be a finite p-group
for subgroups A and B such that A is cyclic, c(B) < p

2
and exp(B) = p.

Then ⌦1(A)BEG.

Proof — We use induction on |G|. We may assume that G is non-cy-
clic and that

G 6= ⌦1(A)B.

In particular, we may assume that ⌦2(A) ' C
p2 .

If BG 6= 1, then there exists

1 6= z 2 BG \Z(G)

such that o(z) = p. By induction, we have ⌦1(Ahzi/hzi)B/hziEG/hzi.
If A\ hzi = 1, then

⌦1(Ahzi/hzi) = ⌦1(A)hzi/hzi,

so ⌦1(A)hziB = ⌦1(A)BEG. We thus assume that A\ hzi 6= 1. Then

hzi = ⌦1(A),

so
⌦1(Ahzi/hzi) = ⌦1(A/⌦1(A)) = ⌦2(A)/⌦1(A).

Hence ⌦2(A)BEG.
If BEG then, since A is cyclic, we trivially have ⌦1(A)BEG. Now

⌦1(A) 6 B and exp(B) = p,

so |⌦2(A)B : B| = p. Hence if B 6E G, then for g 2 G\NG(B), we see,
by comparison of orders, that ⌦2(A)B = BgB. In addition, Bg and B
are normal in ⌦2(A)B and c(Bg

) = c(B) < p

2
. Thus

c(⌦2(A)B) 6 c(Bg
) + c(B) <

p

2
+

p

2
= p.

Moreover, ⌦2(A)B is the product of two subgroups of exponent p
and is thus generated by elements of order p. It follows by Theo-
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rem 2.1 that

⌦2(A)B = ⌦1(⌦2(A)B) = {g 2 ⌦2(A)B | gp = 1}.

But then
exp(⌦2(A)B) = p,

which is a contradiction since ⌦2(A) ' C
p2 . We thus conclude that

B = ⌦1(A)BEG.

If BG = 1, then by a result of Morigi ([7], Lemma 1, or [1], Lem-
ma 3.3.8), we have AG 6= 1, so

1 6= Z(G)\A 6 A.

By minimality, we then have ⌦1(A) 6 Z(G). We let bB = ⌦1(A)B and
have exp(bB) = p and c(bB) < p

2
. Since 1 6= ⌦1(A) 6 bBG, we can apply

the above argument to see that ⌦1(A)B = ⌦1(A)bBEG. ut

Lemma 2.3 Let p be an odd prime and let G be a finite p-group such
that c(G) < p and exp(G) = p2. Suppose, in addition, that there
exists z 2 Z(G) with o(z) = p and such that exp(G/hzi) = p. Then
|G : ⌦1(G)| = p.

Proof — We use induction on |G|. Since exp(G) = p2, there ex-
ists x 2 G such that o(x) = p2. In addition, since exp(G/hzi) = p, we
have 1 6= xp 2 hzi, so hzi = hxpi. We can thus assume that xp = z.
If G = hxi, then G ' C

p2 and ⌦1(G) ' Cp, so |G : ⌦1(G)| = p. We
may therefore assume that hxi 6= G. We let U be a maximal proper
subgroup of G such that x 2 U. Then |G : U| = p and exp(U) = p2. In
addition, z = xp 2 U. Thus U/hzi is a non-trivial subgroup of G/hzi,
so exp(U/hzi) = p. Hence, by induction, we have

|U : ⌦1(U)| = p.

Now ⌦1(U) is characteristic in U, so ⌦1(U)EG. Since o(z) = p, we
have z 2 ⌦1(U), so exp(G/⌦1(U)) = p. In addition,

|G/⌦1(U)| = p2.
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Hence G/⌦1(U) is elementary abelian of rank 2. In particular,

�(G) 6 ⌦1(U).

We let y 2 G\U and have

|hyi⌦1(U)| = p|⌦1(U)| = |U|.

Since c(G) < p, we see by Theorem 2.1 that ⌦1(G) = {g 2 G | gp = 1}.
Since o(x) = p2 we have G 6= ⌦1(G), so |G : ⌦1(G)| > p. Now
if o(y) = p, then we have hyi⌦1(U) 6 ⌦1(G) and see, by comparison
of orders, that ⌦1(G) = hyi⌦1(U) and hence |G : ⌦1(G)| = p.

If o(y) = p2, then hypi = hzi, and we may assume that yp = z-1.
Applying the Hall-Petrescu Identity ([3], III 9.4 Satz), we see that
there exist c2, . . . , cp with c2 2 K2(G), . . . , cp-1 2 Kp-1(G) and
cp 2 Kp(G) such that

xpyp = (xy)pc
(
p

2
)

2
. . . c

(
p

p-1
)

p-1
cp.

Now, c(G) < p, so cp = 1. In addition, p is a divisor of each
of

�
p

2

�
, . . . ,

�
p

p-1

�
. Moreover, hc2, . . . , cp-1i 6 G 0 6 �(G) 6 ⌦1(G),

so cp
2

= . . . = cp
p-1

= 1. It follows that 1 = zz-1
= xpyp = (xy)p.

But xy /2 U, as otherwise U = G. Hence o(xy) = p. We can now argue
as above to see that

⌦1(G) = hxyi⌦1(U),

and that |G : ⌦1(G)| = |G : hxyi⌦1(U)| = p. ut

We note that the wreath product G = Cp wrCp is a finite p-group
that satisfies Z(G) ' Cp, exp(G) = p2 and exp(G/Z(G)) = p. How-
ever, in this case we have c(G) = p and G = ⌦1(G). This shows that
the condition c(G) < p in the statement of Lemma 2.3 is not redun-
dant.

Lemma 2.4 Let p be an odd prime and let G = AB be a finite p-group
for subgroups A and B such that A is cyclic and c(B) < p

2
. If A \ B = 1,

then A⌦1(B) 6 G.

Proof — We may assume that A and B are both non-trivial sub-
groups of G and use induction on |G|. We also assume that B 6= ⌦1(B),
as otherwise the result is trivial. By [7] Lemma 1, either BG 6= 1
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or AG 6= 1. If BG = 1 then we see, in particular, that

1 6= ⌦1(A) 6 Z(G)\AG.

Then

A/⌦1(A)\B⌦1(A)/⌦1(A) = (A\B)⌦1(A)/⌦1(A) = 1G/⌦1(A).

By induction we have

A/⌦1(A)⌦1(B⌦1(A)/⌦1(A)) 6 G/⌦1(A).

Since A\B = 1, we see that

⌦1(B⌦1(A)/⌦1(A)) = ⌦1(B)⌦1(A)/⌦1(A).

It follows that

A/⌦1(A)⌦1(B⌦1(A)/⌦1(A)) = A/⌦1(A)(⌦1(B)⌦1(A)/⌦1(A)),

and so we have A⌦1(B)⌦1(A) = A⌦1(B) 6 G.

We now assume that BG 6= 1. Then BG \ Z(G) 6= 1, so there exists
z 2 BG \Z(G) such that o(z) = p. Now

Ahzi/hzi \B/hzi = (A\B)hzi/hzi = 1G/hzi

so, by induction, we have

Ahzi/hzi⌦1(B/hzi) 6 G/hzi.

We let eB/hzi = ⌦1(B/hzi). Then ⌦1(B) 6 eB 6 B. In particular, we
have ⌦1(B) = ⌦1(

eB). Now

Ahzi/hzi⌦1(B/hzi) = Ahzi/hzi(eB/hzi),

so
AhzieB = AeB 6 G.

Hence, if eB is a proper subgroup of B, then

|AeB| < |AB| = |G|
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so, by induction, we have

A⌦1(B) = A⌦1(
eB) 6 AeB 6 G,

and are done. We thus assume that eB = B, so ⌦1(B/hzi) = B/hzi.
Since

c(B/hzi) 6 c(B) <
p

2

and B 6= hzi (as otherwise the result is trivial), we see by Theorem 2.1
that exp(B/hzi) = p. By Lemma 2.2, we then have

⌦1(Ahzi/hzi)(B/hzi)EG/hzi.

Since A\B = 1, we further have

⌦1(Ahzi/hzi) = ⌦1(A)hzi/hzi,

so
⌦1(Ahzi/hzi)(B/hzi) = ⌦1(A)hzi/hzi(B/hzi).

It follows that ⌦1(A)B E G. If B E G, then ⌦1(B) E G and so
A⌦1(B) 6 G. If B 6E G, then we let g 2 G\NG(B) and see, by compar-
ison of orders, that ⌦1(A)B = BBg. But

|⌦1(A)B : B| = |⌦1(A)B : Bg
| = p,

so B and Bg are both normal in ⌦1(A)B. In addition, we have

c(Bg
) = c(B) <

p

2
,

so
c(⌦1(A)B) <

p

2
+

p

2
= p.

Again by Theorem 2.1, we see that

⌦1(⌦1(A)B) = {x 2 ⌦1(A)B | xp = 1}.

Now if exp(B) = p, then B = ⌦1(B) and we are done. We thus assume
that exp(B) 6= p. Since exp(B/hzi) = p, we then have exp(B) = p2. In
particular, we have ⌦1(⌦1(A)B) 6= ⌦1(A)B, so

|⌦1(A)B : ⌦1(⌦1(A)B)| > p.
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On the other hand, since c(B) < p/2, we can apply Lemma 2.3 to
see that |B : ⌦1(B)| = p. In addition,

⌦1(A) 6 ⌦1(⌦1(A)B) and ⌦1(A)\⌦1(B) 6 A\B = 1.

Since ⌦1(A) normalises B, and hence normalises ⌦1(B), we have

⌦1(A)⌦1(B) 6 G and |⌦1(A)B : ⌦1(A)⌦1(B)| = p.

But
⌦1(A)⌦1(B) 6 ⌦1(⌦1(A)B),

so we conclude, by comparison of orders, that

⌦1(A)⌦1(B) = ⌦1(⌦1(A)B)EG.

It then follows that A⌦1(B) = A⌦1(A)⌦1(B) 6 G. ut
Corollary 2.5 Let p be an odd prime and let G = AB be a finite p-group
for non-trivial subgroups A and B such that A is cyclic and c(B) < p

2
.

If A\B = 1, then

(i) ⌦1(B)
G 6 ⌦1(A)⌦1(B) 6 G;

(ii) exp(⌦1(B)
G
) = p.

Proof — By Lemma 2.4, we have A⌦1(B) 6 G. Noting that
c(B) < p/2, we see, by Theorem 2.1, that exp(⌦1(B)) = p. Hence,
by Lemma 2.2, we have

⌦1(A)⌦1(B)EA⌦1(B).

In particular, ⌦1(A)⌦1(B) is a subgroup of G. But ⌦1(B)EB, so

⌦1(B)
G

= ⌦1(B)
BA⌦1(B)

= ⌦1(B)
A⌦1(B) 6 ⌦1(A)⌦1(B).

If ⌦1(B)EG, then exp(⌦1(B)
G
) = exp(⌦1(B)) = p. If ⌦1(B) 6E G,

then, by comparison of orders, we have ⌦1(B)
G

= ⌦1(A)⌦1(B).
Hence |⌦1(B)

G
: ⌦1(B)| = |⌦1(A)| = p, so ⌦1(B)E⌦1(B)

G. In ad-
dition, letting g 2 G\NG(⌦1(B)), we see, by comparison of orders,
that

⌦1(B)
G

= ⌦1(B)⌦1(B)
g.

Thus ⌦1(B)
G is the product of two normal subgroups both of class

less than p

2
. It follows that c(⌦1(B)

G
) < p. Since ⌦1(B)

G is gener-
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ated by elements of order p, we again apply Theorem 2.1 to see that
exp(⌦1(B)

G
) = p. ut

We use Lemma 2.4 and Corollary 2.5 to prove the following more
general result.

Theorem 2.6 Let p an odd prime and let G = AB be a finite p-group
for subgroups A and B such that A is cyclic, c(B) < p

2
and exp(B) = pk

(where k > 1). If A\B = 1 then, for 1 6 t 6 k, we have:

(i) A⌦t(B) 6 G;

(ii) ⌦t(B)
G 6 ⌦t(A)⌦t(B) 6 G;

(iii) exp(⌦t(B
G
)) = pt.

Proof — The result holds for t = 1 by Lemma 2.4 and Corollary 2.5.
Suppose that we have already shown that the result holds for some t
with 1 6 t < k. Since ⌦t(B)

G 6 ⌦t(A)⌦t(B) 6 G, we have

⌦t(B)
G

= ⌦s(A)⌦t(B),

for some s 6 t. We let W = ⌦t(B)
G and note that exp(W) = pt.

Hence if g 2 B is such that gp 2 W, then gp
t+1

= 1, so g 2 ⌦t+1(B).
Thus ⌦1(BW/W) = ⌦t+1(B)W/W.

Now

AW/W \BW/W = (A\BW)W/W = (A\⌦s(A)⌦t(B)B)W/W

= ⌦s(A)(A\B)W/W = 1G/W .

We can then apply Lemma 2.4 to see that

(AW/W)⌦1(BW/W) 6 G/W.

Hence
(AW/W)⌦t+1(B)W/W 6 G/W,

so
A⌦t+1(B)W 6 G.

But
W = ⌦s(A)⌦t(B) ✓ A⌦t+1(B),

so
A⌦t+1(B) 6 G.
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Since A is cyclic, we then have ⌦r(A)⌦t+1(B) 6 G for all r. By Corol-
lary 2.5, we further have

⌦1(BW/W)
G/W 6 ⌦1(AW/W)⌦1(BW/W).

Now
A\W = A\⌦s(A)⌦t(B) = ⌦s(A)(A\⌦t(B))

= ⌦s(A) 6 ⌦t(A).

Hence

⌦1(AW/W) = ⌦s+1(A)W/W 6 ⌦t+1(A)W/W.

We then have

⌦t+1(B)
GW/W = ⌦1(BW/W)

G/W

6 (⌦t+1(A)W/W)(⌦t+1(B)W/W).

It follows that

⌦t+1(B)
G 6 ⌦t+1(A)⌦t+1(B)W = ⌦t+1(A)⌦t+1(B) 6 G.

We finally note that exp(W) = pt by assumption. Moreover, by Co-
rollary 2.5, we see that

exp(⌦t+1(B)
GW/W) = exp(⌦1(BW/W)

G/W
) = p.

But t + 1 6 k, so exp(⌦t+1(B)) = pt+1. We thus conclude that
exp(⌦t+1(B)

G
) = pt+1. ut

Remark 2.7 We note that a result of Huppert (see [2], Satz 3, or [1],
Corollary 3.1.9) shows that if the p-group G = AB is the product of
the cyclic subgroups A and B, then G is the totally permutable product
of A and B, that is A1B1 6 G for each A1 6 A and B1 6 B. Since A
and B are cyclic p-groups, this can be restated as ⌦s(A)⌦t(B) 6 G
for all values of s and t. In general, we cannot expect that G will be
a totally permutable product if A and B are non-cyclic subgroups.
However, if p is odd, then in the case where A is cyclic, c(B) < p

2

and A\B = 1, it is a straightforward consequence of Theorem 2.6 (i)
that ⌦s(A)⌦t(B) 6 G, for all values of s and t. This can be viewed
as a partial analogue to Huppert’s result for products of cyclic sub-
groups.
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The question now arises as to whether the results of Theorem 2.6
and Remark 2.7 also hold when A \ B 6= 1. The following example
shows that this is not always the case.

Example 2.8 We let p be a prime and let A = hxi ' Cpn , where
n > 3. We further let hy1, . . . ,ypi be an elementary abelian p-group
of rank p. Now let hxi act on hy1, . . . ,ypi as follows: yx

i
= yi+1,

i = 1, . . . ,p- 1 and yxp = y1. We see that this action defines an au-
tomorphism of order p on hy1, . . . ,ypi. We let G be the semi-direct
product of hy1, . . . ,ypi by hxi. Thus G can be expressed as follows:

G =

*
y1, . . . ,yp

x

����
yp
1
= . . . = ypp = 1 = xp

n ;
[yi,yj] = 1, 1 6 i < j 6 p
yx
i
= yi+1, i = 1, . . . ,p- 1; yxp = y1

+

.

We note that xp centralises hy1, . . . ,ypi and that the group G/hxpi is
isomorphic to the wreath product Cp wrCp. We let A = hxi and let
B = hy2, . . . ,yp, xpy1i. In particular

B = hy2, . . . ,ypi ⇥ hxpy1i,

where hy2, . . . ,ypi is elementary abelian of rank p- 1 and hxpy1i '
C
pn-1 . Now

A\B = hxp
2

i ' C
pn-2 ,

so
|AB| =

|A||B|

|A\B|
= pn+p

= |G|.

Hence G = AB. But, for 1 6 t 6 n- 2,

⌦t(B) = hy2, . . . ,yp, xp
n-t

i = ⌦t(A)⌦t(B),

whereas
⌦t(B)

G
= hy1,y2, . . . ,yp, xp

n-t

i.

Hence ⌦t(A)⌦t(B) is a proper subgroup of ⌦t(B)
G. In particular,

⌦t(B)
G 66 ⌦t(A)⌦t(B).

We further note that, for 1 6 t 6 n- 2, hA,⌦t(B)i = G, but that

|A⌦t(B)| = pn+p-1.
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It follows that A⌦t(B) is not a subgroup of G. Thus G also provides
an example where the results of Lemma 2.4 and Theorem 2.6 (i) and
(ii) fail when A\B 6= 1.

Having explored the limitations of Theorem 2.6, we note that if we
relax the assumption that A\B = 1 in the statement of that theorem,
then we have the following more general result which, in particular,
generalises [6] Theorem 6.

Theorem 2.9 Let p be an odd prime and let G = AB be a finite p-group
for subgroups A and B such that A is cyclic, c(B) < p

2
and exp(B) = pk

(where k > 1). Then, for 1 6 t 6 k, we have

(i) |⌦t(B)
G

: ⌦t(B)| 6 pt;

(ii) exp(⌦t(B)
G
) = pt.

In particular, we have BG 6 ⌦k(A)BEG.

Proof — We first show that the result holds for t = 1. We let s be
such that

A\B = ⌦s(A).

We can assume that
⌦s+1(A) 66 B,

as otherwise A = ⌦s(A) and the result is trivial. In particular, we
have

⌦s(A) ' Cps and ⌦s+1(A) ' C
ps+1 .

We let W = ⌦s(A)
G. Then

W = ⌦s(A)
AB

= ⌦s(A)
B 6 B.

Since c(B) < p/2, we see, by Theorem 2.1, that exp(⌦s(B)) = ps. In
particular, we have exp(W) = ps. Now,

AW/W \B/W = (AW \B)/W

= (A\B)W/W = ⌦s(A)W/W = 1G/W .

Hence, by Corollary 2.5, we have

⌦1(B/W)
G/W 6 ⌦1(AW/W)⌦1(B/W) 6 G/W.
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Now A\W = A\B = ⌦s(A), so

⌦1(AW/W) = ⌦s+1(A)W/W.

Since ⌦1(B/W) 6 B/W, we then have

⌦1(B)
GW/W 6 ⌦1(B/W)

G/W 6 (⌦s+1(A)W/W)(B/W).

It follows that

⌦1(B)
G 6 ⌦s+1(A)WB = ⌦s+1(A)B.

Now |⌦s+1(A)B : B| = p, so BE⌦s+1(A)B. But ⌦1(B) is characteris-
tic in B, so ⌦1(B)E⌦s+1(A)B.

Since ⌦1(B)
G 6 ⌦s+1(A)B, we have ⌦1(B)

G 6 (⌦s+1(A)B)G. In
addition,

(⌦s+1(A)B)G =

\

a2A,b2B

(⌦s+1(A)B)ba

=

\

a2A

(⌦s+1(A)B)a=

\

a2A

⌦s+1(A)Ba.

Hence
⌦s+1(A) 6 (⌦s+1(A)B)G.

Letting
B1 = (⌦s+1(A)B)G \B,

we then have

(⌦s+1(A)B)G = ⌦s+1(A)((⌦s+1(A)B)G \B) = ⌦s+1(A)B1 EG.

If ⌦1(B)
G 6 B1, then

⌦1(B)
G 6 ⌦1(B1) 6 ⌦1(B),

so ⌦1(B)E G. In this case our result holds trivially, so we assume
that ⌦1(B)

G 66 B1. We have ⌦s(A)
G 6 B, so ⌦s(A) 6 BG 6 B1. Thus

|⌦s+1(A)B1 : B1| = p, so B1 E⌦s+1(A)B1. Hence, letting g 2 G be
such that ⌦1(B)

g 66 B1, we see, by comparison of orders, that

⌦s+1(A)B1 = ⌦1(B)
gB1.
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Moreover,
⌦1(B)E⌦s+1(A)B,

so ⌦s+1(A)B1 is the product of the normal subgroups ⌦1(B)
g and B1.

Hence

c(⌦s+1(A)B1) 6 c(⌦1(B)
g
) + c(B1) <

p

2
+

p

2
= p.

By Theorem 2.1, we then have exp(⌦1(⌦s+1(A)B1)) = p. It follows
that

⌦1(⌦s+1(A)B1)\B1 = ⌦1(B1) = ⌦1(B).

But |⌦s+1(A)B1 : B1| = p, so

|⌦1(⌦s+1(A)B1) : ⌦1(B)|

= |⌦1(⌦s+1(A)B1) : ⌦1(⌦s+1(A)B1)\B1| 6 p.

But ⌦1(B)
g 66 B1 so, by comparison of orders, we have

⌦1(B)
g⌦1(B) = ⌦1(⌦s+1(A)B1)EG.

Hence
⌦1(B)

G
= ⌦1(⌦s+1(A)B1).

In addition, we see that |⌦1(⌦s+1(A)B1)| = p|⌦1(B)|, so

|⌦1(B)
G

: ⌦1(B)| = p.

Since
exp(⌦1(B)

G
) = exp(⌦1(⌦s+1(A)B1)) = p,

our result is thus established for t = 1. Now suppose that k > 1 and
that we have shown that the result holds for some t with 1 6 t < k.
We let H = ⌦t(B)

G, and have exp(H) = pt. Thus B \ H = ⌦t(B).
Hence ⌦1(BH/H) = ⌦t+1(B)H/H and we apply the result for t = 1
to see that

|(⌦t+1(B)H/H)
G/H

: ⌦t+1(B)H/H| 6 p

and that exp((⌦t+1(B)H/H)
G/H

) = p. Now

(⌦t+1(B)H/H)
G/H

= ⌦t+1(B)
GH/H
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and H = ⌦t(B)
G 6 ⌦t+1(B)

G, so exp(⌦t+1(B)
G/⌦t(B)

G
) = p. But

exp(⌦t(B))
G

= pt, so exp(⌦t+1(B)
G
) = pt+1. We further have

|⌦t+1(B)
G/H : ⌦t+1(B)H/H| 6 p,

so
|⌦t+1(B)

G
: ⌦t+1(B)H| 6 p.

But ⌦t(B) 6 ⌦t+1(B) and |H : ⌦t(B)| 6 pt. In addition we obtain
⌦t(B) 6 ⌦t+1(B)\H, so

|⌦t+1(B)H| =
|⌦t+1(B)||H|

|⌦t+1(B)\H|
6 |⌦t+1(B)||H|

|⌦t(B)|

=
|H|

|⌦t(B)|
|⌦t+1(B)| 6 pt|⌦t+1(B)|.

Thus

|⌦t+1(B)
G

: ⌦t+1(B)|

= |⌦t+1(B)
G

: ⌦t+1(B)H||⌦t+1(B)H : ⌦t+1(B)| 6 p · pt = pt+1.

We thus see that if the result holds for 1 6 t < k, then it also holds
for t + 1. Hence our result is established for all values of t such
that 1 6 t 6 k.

We finally note that ⌦k(B) = B so that, in particular, exp(BG
) = pk.

But BG
= (A \ BG

)B, so exp(A \ BG
) 6 pk. Hence A \ BG 6 ⌦k(A),

so BG 6 ⌦k(A)B. Since G/BG is cyclic, then BG 6 ⌦k(A)BEG. ut

We note that, for p = 3, the restriction c(B) < p

2
in the statement

of Theorem 2.9 requires the second “factor” B to be abelian. Theo-
rem 2.11, the final result of this section, addresses the special case
where p = 3, c(B) = 2 and exp(B) = 3. We present the result in a
more general form, as the proof may be of independent interest. We
first derive a generalisation of [4] Lemma 1.

Lemma 2.10 Let p be a prime and let G = N1N2 be a finite p-group
for subgroups N1 and N2 such that |G : N1| = |G : N2| = p. Let
c = max{c(N1), c(N2)}. Then:

(i) |G 0
| 6 p|N 0

1
N 0

2
|;

(ii) if c > 2, then d(G) 6 c.
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Proof — We let H = N 0
1
N 0

2
and let W = N1 \N2. Since

|G : N1| = |G : N2| = p,

we have
Ni EG and G/Ni ' Cp (i = 1, 2).

Hence G/W ' Cp ⇥ Cp, so H 6 G 0 6 W. Now N1/H and N2/H
are abelian, so W/H 6 Z(G/H). We let xi 2 Ni \W (i = 1, 2). Then
G = hx1, x2,Wi. Since

W/H 6 Z(G/H) and G/W ' Cp ⇥Cp,

we see that
h[x1, x2]iH/H 6 Z(G/H)

and that [x1, x2]p 2 H. It follows that G 0
= h[x1, x2]iH and that

|G 0
| 6 p|H| = p|N 0

1
N 0

2
|.

Thus (i) is established.

For (ii), we let Z = Zc-2(W). We have

N 0
i
6 Zc-1(Ni)\W 6 Zc-1(W) (i = 1, 2),

so H 6 Zc-1(W). In particular, we have

HZ/Z 6 Z(W/Z).

But
G 0Z/HZ = h[x1, x2]iHZ/HZ,

so G 0Z/HZ is cyclic. Hence G 0Z/Z is abelian, so G(2) 6 Z. Since
c(Z) 6 c- 2, we then have

G(c) 6 Z(c-2)
= 1,

as desired. ut

Theorem 2.11 Let p be an odd prime and let G = AB be a finite p-group
for subgroups A and B such that A is cyclic, c(B) = 2 and exp(B) = p.
Then ⌦2(A)BEG.
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Proof — We use induction on |G|. We can assume that

⌦2(A) 6= ⌦3(A),

as otherwise ⌦2(A) = A and the result is trivial. In particular, we
have ⌦3(A) ' C

p3 . By [7] Lemma 1, either AG 6= 1 or BG 6= 1. Hence
either 1 6= Z(G)\A or 1 6= Z(G)\B. If 1 6= Z(G)\B, then we let

1 6= b 2 Z(G)\B.

Since exp(B) = p, we have hbi ' Cp. If hbi 66 A then, by induction,
we have

⌦2(Ahbi/hbi)B/hbi = (⌦2(A)hbi/hbi)B/hbiEG/hbi.

It follows that ⌦2(A)BEG, as desired. If hbi 6 A, then hbi = ⌦1(A).
By induction, we have

⌦2(Ahbi/hbi)B/hbi = (⌦3(A)/hbi)B/hbiEG/hbi.

Hence ⌦3(A)BEG.
If BG is a proper subgroup of ⌦3(A)B, then BG 6 ⌦2(A)B. Since

G/BG is cyclic, we then have ⌦2(A)BEG and are done. We thus may
assume that BG

= ⌦3(A)B. If BEBG, then

BG/B = ⌦3(A)B/B ' ⌦3(A)/(⌦3(A)\B) = ⌦3(A)/⌦1(A) ' C
p2 .

We let {Bg1 , . . . ,Bgn} be the set of conjugates of B in G. Since each
conjugate of B is normal in BG and

BG/BG = BG/
n\

i=1

Bgi ,

we see that BG/BG is isomorphic to a subgroup of

BG/Bg1 ⇥ . . .⇥BG/Bgn

which, in turn, is isomorphic to C
p2 ⇥ . . . ⇥ C

p2 . Hence BG/BG is
abelian. Moreover, since BG/B ' C

p2 , we see that

exp(BG/BG) = p2.
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On the other hand, BG/BG is abelian and is generated by conjugates
of B/BG. Since exp(B) = p, it follows that exp(BG/BG) = p, so a
contradiction arises. We may thus assume that B 6E BG.

Now
|BG

: ⌦2(A)B| = |⌦3(A) : ⌦2(A)| = p,

so ⌦2(A)BE BG. Let ⌦3(A)= hx1i. Bearing in mind that ⌦1(A) 6 B,
we see, by comparison of orders, that ⌦2(A)B = BBx1 , where

|⌦2(A)B : B| = |⌦2(A)B : Bx1 | = p.

In addition, we have

c(B) = c(Bx1) = 2 and exp(B) = exp(Bx1) = p.

We let W = ⌦2(A)B. By Lemma 2.10, we see that d(W) = 2, so W 0

is abelian. But W/B ' Cp, so W 0 6 B. Hence exp(W 0
) = p, so W 0 is

elementary abelian. In addition, W/W 0 is the product of the elemen-
tary abelian subgroups BW 0/W 0 and Bx1W 0/W 0, so W/W 0 is also
elementary abelian. We note further that if A normalises W, then

BG
= ⌦3(A)B 6 W = ⌦2(A)B,

which is ruled out. Letting A = hxi, we can thus assume, by compar-
ison of orders, that BG

= ⌦3(A)B = WWx. Now

|BG
: W| = |BG

: Wx
| = p,

so both W and Wx are normal in BG. Hence both W 0 and (Wx
)
0 are

normal elementary abelian subgroups of BG. Thus c(W 0
(W 0

)
g
) 6 2

and, by Lemma 2.1, exp(W 0
(W 0

)
x
) = p. In addition, BG/W 0

(W 0
)
x is

the product of the normal elementary abelian subgroups W/W 0
(W 0

)
x

and Wx/W 0
(W 0

)
x, so we similarly see that

exp(BG/W 0
(W 0

)
x
) = p.

But then

p3 = exp(BG
) 6 exp(BG/W 0

(W 0
)
x
)⇥ exp(W 0

(W 0
)
x
) = p2,

so a contradiction arises. We thus conclude that if 1 6= Z(G)\B, then
⌦2(A)BEG.
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Finally, if Z(G) \ B = 1, then 1 6= Z(G) \A, so ⌦1(A) 6 Z(G). But
then ⌦1(A)B = ⌦1(A)⇥B has class 2 and exponent p. We let

bB = ⌦1(A)B.

Then G = AbB, where 1 6= Z(G) \ bB. Arguing as above, we can again
show by induction that ⌦2(A)bB = ⌦2(A)BEG. ut

3 An example

We present an example to show that there exist factorised 3-groups
G = AB where A is a cyclic subgroup and B is a subgroup of ex-
ponent 3 and class 2, but for which ⌦1(A)B 6E G and for which
exp(BG

) 6= 3. Our example shows, in particular, that the require-
ment that c(B) < p

2
in the statement of Theorem 2.9 is not always

redundant.

Example 3.1 We let U be the direct product of a non-abelian group
of order 27 and exponent 3 with a cyclic group of order 3, presented
as follows:

U =

⌧
b1, b2 ,b3

z

����
b3
1
= b3

2
= b3

3
= z3 = 1; [b1, z] = [b2, z] = 1

bb2

1
= b1z; [b1,b3] = [b2,b3] = 1

�
.

Thus hb1,b2, zi = hb1,b2i is non-abelian of order 27 and exponent 3,
while

hb3i ' C3 and hb3i 6 Z(U).

We further have U = hb1,b2i ⇥ hb3i. We let hai ' C27 and define an
action of hai on U by

ba
1
= b1b2, ba

2
= b2b3, ba

3
= b3, za = z.

We have

(ba
1
)
b
a

2 = (b1b2)
b2b3 = bb2

1
b2 = b1zb2 = b1b2z = ba

1
za.

Since the remaining relations are easily seen to be satisfied, we see
that this action of a defines an automorphism of U.
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We further note that

ba
2

1
= (b1b2)

a
= b1b2b2b3 = b1b

2

2
b3.

Thus
ba

3

1
= (b1b

2

2
b3)

a
= b1b2b

2

2
b2
3
b3 = b1.

Since we also have ba
3

2
= b2 and ba

3

3
= b3, we see that U is cen-

tralised by a3. We form the semi-direct product of U by hai and
denote this semi-direct product by U1. We then identify a9 with z to
form the group W = U1/hza-9i. Thus W can be expressed as
*

b1, b2,
b3,
a, z

������

b3
1
= b3

2
= b3

3
= z3 = a27

= 1; [b1, z] = [b2, z] = 1;
bb2

1
= b1z; [b1,b3] = [b2,b3] = 1;

ba
1
= b1b2; ba

2
= b2b3; ba

3
= b3; za = z; a9

= z

+

.

We now let hb4i ' C3 and let b4 act on W as follows:

bb4

1
= b1, bb4

2
= b2z, bb4

3
= b3z, zb4 = z, ab4 = ab-1

1
a-3.

We show that the action of b4 defines an automorphism, of order 3,
of W. We note that

(bb4

1
)
a
b
4
= b

ab
-1

1
a
-3

1
= (b1b2)

b
-1

1
a
-3

= b1b
b
-1

1

2
.

Now bb2

1
= b1z, so [b1,b2] = z and [b2,b1] = z-1. Hence bb1

2
=

b2z
-1, so

b
b
-1

1

2
= b

b
2

1

2
= b2z

-2
= b2z.

It follows that
(bb4

1
)
a
b
4
= b1b2z = bb4

1
bb4

2
.

We further have

(bb4

2
)
a
b
4
= (b2z)

ab
-1

1
a
-3

= (ba
2
z)b

-1

1
a
-3

= (b2b3z)
b
-1

1
a
-3

= b
b
-1

1

2
b3z = b2zb3z.

Hence
(bb4

2
)
a
b
4
= b2zb3z = bb4

2
bb4

3
.
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Next, we check that (ab4)
27

= 1 and that (ab4)
9
= zb4 = z. We note

first that
(ab4)

3
= (ab-1

1
a-3

)
3
= (ab-1

1
)
3a-9

= a3
(b-1

1
)
a
2

(b-1

1
)
ab-1

1
a-9

= a3
(b-1

2
b-1

1
)
ab-1

2
b-1

1
b-1

1
a-9

= a3b-1

3
b-1

2
b-1

2
b-1

1
b-1

2
b-1

1
b-1

1
a-9

= a3b-1

3
b-3

2
(b-1

1
)
b
-1

2 b-2

1
a-9

= a3b-1

3
b-1

1
zb-2

1
a-9

= a3b-1

3
zb-3

1
a-9.

Thus
(ab4)

3
= a3b-1

3
za-9.

But a9
= z, so

(ab4)
3
= a3b-1

3
.

It follows that

(ab4)
9
= a9b-3

3
= a9

= z = zb4 .

In addition, we have

(ab4)
27

= ((ab4)
9
)
3
= (a9

)
3
= a27

= 1.

Since the remaining relations are straightforward to verify, this con-
firms that b4 defines an automorphism of W.

We finally check that o(b4) = 3 in Aut(W). It is evident that

b
b
3

4

1
= b1, b

b
3

4

2
= b2, b

b
3

4

3
= b3 and zb

3

4 = z.

Thus we need only confirm that ab
3

4 = a. Now a3 2 Z(W) and, from
above, (a3

)
b4 = (ab4)

3
= a3b-1

3
, so (a-3

)
b4 = a-3b3. Hence

ab
2

4 = (ab-1

1
a-3

)
b4 = ab-1

1
a-3b-1

1
a-3b3 = ab-2

1
(a-3

)
2b3.

It follows that

ab
3

4 = ab4(b-2

1
)
b4((a-3

)
b4)

2bb4

3
= ab-1

1
a-3b-2

1
(a-3b3)

2b3z

= ab-3

1
a-3a-6b2

3
b3z = aa-9b3

3
z = aa-9z.
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But z = a9, so ab
3

4 = a. We conclude that o(b4) = 3 in Aut(W).
We let G be the semi-direct product of W by hb3i. Then G can be

expressed as
*

b1,b2,
b3,b4,
a, z

������

a27
= z3 = b3

i
= 1, i = 1, . . . , 4; [bi, z] = 1, i = 1, . . . , 4

[b1,b2] = [b2,b4] = [b3,b4] = z; [b1,b3] = [b2,b3] = [b1,b4] = 1

ba
1
= b1b2; ba

2
= b2b3; ba

3
= b3; za = z; a9

= z;ab4 = ab-1

1
a-3

+

.

We have G = AB, where A = hai ' C27 and B = hb1,b2,b3,b4, zi.
We note that ⌦1(A) = ha9i = hzi 6 B. We further see that B 0

= hzi
and that B has class 2 and exponent 3. We note that [a,b4] = b-1

1
a-3.

Hence a-3 2 BG
\B. Thus

⌦1(A)B = B 6E G.

In fact we have BG
= ⌦2(A)B, in accordance with Theorem 2.11. In

particular, we see that exp(BG
) = 9.

We note that bb1b4

2
= (b2z

-1
)
b4 = b2zz

-1
= b2. Thus

[hb1,b2i, hb3,b1b4i] = 1.

In addition, we have bb1b4

3
= bb4

3
= b3z . Hence B = hb1,b2ihb3,b1b4i

is the central product of hb1,b2i and hb3,b1b4i, both of which are
non-abelian subgroups of order 27 and exponent 3. In particular, we
see that B is an extraspecial 3-group of order 35 and exponent 3.

4 Bounds for derived length

We first establish a bound for the derived length of p-groups of the
type treated in Theorem 2.9.

Theorem 4.1 Let p be an odd prime and let G = AB be a finite p-group
for subgroups A and B such that A is cyclic, c(B) < p/2 and exp(B) = pk

(k > 1). Then d(G) 6 1+ k+ d(B).

Proof — By Theorem 2.9, we have ⌦k(A)BE G. In addition, the
group G/⌦k(A)B is isomorphic to a factor group of A, so that
G 0 6 ⌦k(A)B. Now, for i = 1, . . . , k, we have

|⌦i(A)B : ⌦i-1(A)B| 6 |⌦i(A) : ⌦i-1(A)| 6 p,
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so
⌦i-1(A)BE⌦i(A)B

and ⌦i(A)B/⌦i-1(A)B is isomorphic to a factor group of the cyclic
group ⌦i(A)/⌦i-1(A). Hence

(⌦i(A)B) 0 6 ⌦i-1(A)B

for i = 1, . . . , k, so G(1+k) 6 B. It follows that G(1+k+d(B))
= 1. ut

An alternative bound for derived length can be established in the
case where B has exponent p.

Theorem 4.2 Let p be a prime such that p > 5 and let G = AB be a
finite p-group for subgroups A and B such that A is cyclic, 2 6 c(B) < p

2

and exp(B) = p. Then d(G) 6 1+ c(B).

Proof — We let c = c(B). By Theorem 2.9, we have

BG 6 ⌦1(A)BEG.

Now |⌦1(A)B : B| 6 p, so either BEG or B 6E G and BG
= ⌦1(A)B.

In the first case G/B is abelian, so G(1+c)
= 1. In the second case we

let g 2 G\NG(B). By comparison of orders we have

BG
= ⌦1(A)B = BBg.

We further see that

|⌦1(A)B : B| = |⌦1(A)B : Bg
| = p,

so both B and Bg are normal subgroups of index p in ⌦1(A)B. We can
then apply Lemma 2.10 to see that (⌦1(A)B)(c) = 1. Since G/⌦1(A)B

is abelian, it follows that G(1+c)
= 1. ut

The particular case of Theorem 4.2 in which B has class 2 and
exponent p yields the following corollary.

Corollary 4.3 Let p be a prime such that p > 5 and let G = AB be a
finite p-group for subgroups A and B such that A is cyclic, c(B) = 2 and
exp(B) = p. Then G(3)

= 1.

The following generalisation of [4] Theorem 5 will enable us to
extend Corollary 4.3 to the case where p = 3. For p > 5, it will further
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allow us to extend Corollary 4.3 to the case where c(B) = 2 and
exp(B) = p2. The proof is based on that of [4] Theorem 5. However,
it is somewhat simpler than the original and differs significantly in
detail.

Theorem 4.4 Let G = AB be a finite p-group for subgroups A and B
such that A is abelian and B 0 6 Z(B). If |BG

: B| = p2 then either (B 0
)
G

is abelian; or there exists a subgroup B1 6 G such that B 0
1

6 Z(B1),
|BG

1
: B1| = p and G/BG

1
is abelian.

Proof — We assume that (B 0
)
G is non-abelian. Thus B is non-

abelian and c(B) = 2. By say [4] Lemma 4, B has defect at least three
in G. But G is a finite p-group and |BG

: B| = p2, so the defect of B is
exactly three. Letting W = BG, we have W = (A \W)B and see that
there exist w, x 2 A\W such that

NW(B) = hwiB and W = hw, xiB.

In addition, we can assume that

|W : hwiB| = |hwiB : B| = p,

so
BE hwiBE hw, xiB = W = BG EG.

Now
B 0 6 W 0 EG and W/hwiB ' Cp,

so W 0 6 hwiB. Hence (B 0
)
G 6 hwiB. Now c(B) = 2, so B 6 CW(B 0

).
If B 6= CW(B 0

), then B is a proper subgroup of

NCW(B 0)(B) = CW(B 0
)\NW(B).

By comparison of orders, it follows that

hwiB 6 NCW(B 0)(B) 6 CW(B 0
),

so B 0 is centralised by hwiB. But (B 0
)
G 6 hwiB, so

B 0 6 (B 0
)
G \Z(hwiB) 6 Z((B 0

)
G
)EG.

Hence (B 0
)
G is abelian, in contradiction to our assumption. We con-
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clude that B = CW(B 0
). In particular, for g 2 G we then have

Bg
= CWg((B 0

)
g
) = CW((B 0

)
g
).

If (B 0
)
G 6 B, then

B 0 6 Z(B)\ (B 0
)
G 6 Z((B 0

)
G
),

so again (B 0
)
G is abelian, which is excluded. Hence (B 0

)
G 66 B. Now

the conjugates of B 0 are

{(B 0
)
ba

| a 2 A,b 2 B} = {(B 0
)
a
| a 2 A}.

In addition, for a 2 NA(hwiB), we have

(B
0
)
a 6 ((hwiB) 0)a = (hwiB) 0 6 B.

Hence, if (B 0
)
ea 6 B for all ea 2 A\NA(hwiB), then

(B 0
)
G

= h(B 0
)
a
| a 2 Ai 6 B.

But this is ruled out, so there exists y 2 A\NA(hwiB) such that

(B 0
)
y 66 B.

Thus
(hwiB)y = hwiBy 6= hwiB.

In particular, By 66 hwiB, as otherwise hwiBy
= hwiB. Since

|hwiB : B| = |hw, xiB : hwiB| = p

and x /2 NW(B), we see, by comparison of orders, that

hwiB = BBx
= B(B 0

)
y.

In addition, we have

W = hw, xiB = hwiBBy
= B(B 0

)
yBy

= BBy.

Hence
p2|B| = |W| =

|B||By
|

|B\By|
=

|B|

|B\By|
|By

|,
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so
|B : B\By

| = p2.

Now
|(B 0

)
y
: (B 0

)
y \B| = |B(B 0

)
y
: B| = |hwiB : B| = p.

Therefore, since B = CW(B 0
), we have

|(B 0
)
y
: C(B 0)y(B

0
)| = |(B 0

)
y
: (B 0

)
y \CW(B 0

)|

= |(B 0
)
y
: (B 0

)
y \B| = p.

In particular, we see that B 0 and (B 0
)
y do not centralise each other.

Thus, since CW((B 0
)
y
) = By, we have B 0 66 By. Hence, by compari-

son of orders, we have hwiBy
= ByB 0. We can then argue as above to

see that
|B 0

: B 0 \By
| = p.

Moreover, since (B 0
)
G 6 hwiB = NW(B), we have B 0 E (B 0

)
G. Thus

we also have (B 0
)
yE (B 0

)
G, so B 0 and (B 0

)
y normalise each other. We

note that

(B 0
)
y \B = (B 0

)
y \B\By 6 (B 0

)
y \B 0

(B\By
) 6 (B 0

)
y \B,

and so
(B 0

)
y \B 0

(B\By
) = (B 0

)
y \B.

We define the subgroup H 6 W by

H = hB 0, (B 0
)
y,B\Byi.

Since B 0 and (B 0
)
y normalise each other and since both subgroups

are centralised by B\By, we see that

H = (B 0
)
yB 0

(B\By
).

Thus
|H| =

|(B 0
)
y
||B 0

(B\By
)|

|(B 0)y \B 0(B\By)|
=

|(B 0
)
y
||B 0

(B\By
)|

|(B 0)y \B|

= p|B 0
(B\By

)| = p
|B 0

||B\By
|

|B 0 \B\By|

= p
|B 0

|

|B 0 \By|
|B\By

| = p2|B\By
|.
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But |B : B\By
| = p2, so it follows that |H| = |B|.

Since B 0 and (B 0
)
y normalise each other, we have

[B 0, (B 0
)
y
] 6 B 0 \ (B 0

)
y 6 Z(B)\Z(By

) 6 Z(BBy
) = Z(W).

In addition,
(B\By

)
0 6 B 0 \ (B 0

)
y 6 Z(W).

Hence, bearing in mind that B\By centralises both B 0 and (B 0
)
y, we

have

H 0
= [B 0, (B 0

)
y
](B\By

)
0 6 Z(W)\B 0 \ (B 0

)
y 6 Z(H).

It follows that c(H) 6 2. Moreover H 0 6 Z(W)\B 0, so H 0 6 B 0.

Now
H = B 0

(B\By
)(B 0

)
y 6 B(B 0

)
y
= hwiB.

But (B 0
)
y 66 B so, by comparison of orders, we have hwiB = BH. In

addition,
|hwiB : H| = |hwiB : B| = p,

so HE hwiB. By Lemma 2.10, we then see that |(hwiB) 0| 6 p|H 0B 0
|.

But H 0 6 B 0, so |(hwiB) 0| 6 p|B 0
|.

For x as above with
W = hw, xiB,

we see that, if (B 0
)
x

= B 0, then x 2 NW(B 0
). But then x normali-

ses CW(B 0
) = B, which is ruled out. Hence B 0 is a proper subgroup

of B 0
(B 0

)
x. We have

B 0
(B 0

)
x 6 (hwiB) 0

and, from above, |(hwiB) 0| 6 p|B 0
|. Thus, by comparison of orders, we

have
(hwiB) 0 = B 0

(B 0
)
x.

It follows that
CW((hwiB) 0) = CW(B 0

(B 0
)
x
)

= CW(B 0
)\CW((B 0

)
x
) = B\Bx.

Since hwiBEW, we have

CW((hwiB) 0)EW,
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so B\Bx EW. Now

|hwiB : B| = |hwiB : Bx
| = p,

so B 0 6 B\Bx. Thus, if y normalises B\Bx, we have

(B 0
)
y 6 B\Bx 6 B,

which is ruled out. Hence B\Bx 6E Whyi.
Now By 6 W and B \ Bx EW. In addition, (B 0

)
y 66 B, so that

(B 0
)
y 66 B\Bx. Thus

By
(B\Bx

)/(B\Bx
)

is a non-abelian group. Since

|B : B\Bx
| = |BBx

: B| = |hwiB : B| = p,

we have

|W : B\Bx
| = |W : B||B : B\Bx

| = p2p = p3.

But
By

(B\Bx
)/(B\Bx

)

is non-abelian so, by comparison of orders, we have

By
(B\Bx

)/(B\Bx
) = W/(B\Bx

).

In particular, W = By
(B\Bx

).

We see from above that (hwiB) 0 = B 0
[hwi,B] = B 0

(B 0
)
x. Therefore,

if B 6 CG([hwi,B]), then B centralises (hwiB) 0. In particular B cen-
tralises (B 0

)
x, so B 6 CW((B 0

)
x
) = Bx. But this is ruled out, so

B 66 CG([hwi,B]). Now,

[hwi,B] = [hwi,AB] = [hwi,G]EG.

In addition, B\Bx
= CW((hwiB) 0) 6 CG([hwi,B]) so, by normality,

(B\Bx
)
G 6 CG([hwi,B]).

Thus, in particular, we have B 66 (B\Bx
)
G.
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We now let T = (B \ Bx
)
G . Then T 6 W but, since B 66 T , we

have T 6= W. From above,

W/(B\Bx
) = By

(B\Bx
)/(B\Bx

)

is a non-abelian group of order p3, so Z(W/(B\Bx
)) ' Cp. We have

|W| = p2|B| = |(A\W)B| =
|A\W||B|

|A\W \B|
=

|A\W||B|

|A\B|
.

Thus |A\W : A\B| = p2. In addition, we have

A\B = (A\B)x = A\Bx,

so
A\B = A\B\Bx

= A\W \B\Bx.

Hence

|(A\W)(B\Bx
)| =

|A\W||B\Bx
|

|A\W \B\Bx|
=

|A\W||B\Bx
|

|A\B|
= p2|B\Bx

|.

In addition, we have

|hwiB : B\Bx
| = |hwiB : B||B : B\Bx

| = p2.

Hence

|hwiB/(B\Bx
)| = |(A\W)(B\Bx

)/(B\Bx
)| = p2.

Now A \W 66 hwiB, since otherwise W = (A \W)B 6 hwiB. Thus,
by comparison of orders, we have

Z(W/(B\Bx
)) = hwiB/(B\Bx

)\ (A\W)(B\Bx
)/(B\Bx

)

= (hwiB\ (A\W))(B\Bx
)/(B\Bx

)

= (hwi(A\W \B))(B\Bx
)/(B\Bx

)

= hwi(A\B)(B\Bx
)/(B\Bx

).

But
A\B = A\Bx 6 B\Bx,
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so
Z(W/(B\Bx

)) = hwi(B\Bx
)/(B\Bx

) (' Cp).

Now B\Bx 6E Whyi, so B\Bx is a proper subgroup of T . By normal-
ity, we then have

1 6= T/(B\Bx
)\Z(W/(B\Bx

)),

so
hwi(B\Bx

)/(B\Bx
) 6 T/(B\Bx

).

Since B 66 T and |B : B\Bx
| = p, we have B\ T = B\Bx. Hence

BT/T ' B/(B\ T) = B/(B\Bx
) ' Cp.

Thus, by conjugation,

(BT/T)yT = ByT/T ' Cp.

Therefore, if
T/(B\Bx

) = hwi(B\Bx
)/(B\Bx

),

then
|ByT : B\Bx

| = |ByT : T ||T : B\Bx
| = p2,

so ByT is a proper subgroup of W. But we have already shown
that W = By

(B\ Bx
), so W = ByT and a contradiction arises. Hence

hwi(B\Bx
)/(B\Bx

) is a proper subgroup of T/(B\Bx
). Since T 6= W,

we then see, by comparison of orders, that |W : T | = p. Now G = AW,
so

G/T = (AT/T)(W/T).

We have W/T ' Cp and W/T EG/T , so W/T 6 Z(G/T). But AT/T is
abelian, so G/T is the product of an abelian subgroup and a central
subgroup. Hence G/T is abelian.

Now

hwi(B\Bx
) 6 T = (B\Bx

)
G 6 CG([hwi,B]) 6 CG([hwi,B\Bx

]).

In addition,
(B\Bx

)
0 6 B 0 \ (B 0

)
x,

which is centralised by BBx
= hwiB. Thus, in particular, hwi(B\ Bx

)



On products of cyclic and non-abelian finite p-groups 35

centralises (B\Bx
)
0. Now,

(hwi(B\Bx
))

0
= (B\Bx

)
0
[hwi,B\Bx

],

and both (B \ Bx
)
0 and [hwi,B \ Bx

] are centralised by hwi(B \ Bx
),

so
(hwi(B\Bx

))
0 6 Z(hwi(B\Bx

)).

Since

hwi(B\Bx
)/(B\Bx

) ' Cp and |T/(B\Bx
)| = p2,

we have |T : hwi(B\Bx
)| = p. We finally let B1 = hwi(B\Bx

). Then

B 0
1
6 Z(B1) and B1 6 T = (B\Bx

)
G,

so that BG

1
= T . Hence |BG

1
: B1| = p and we see from above that

G/BG

1
= G/T is abelian, as desired. ut

Corollary 4.5 Let G = AB be a finite p-group for subgroups A and B

such that A is abelian and B 0 6 Z(B). If |BG
: B| 6 p2, then G(3)

= 1.

Proof — If |BG
: B| 6 p, then B has subnormal defect at most two,

and the result follows from [4] Lemma 4. If |BG
: B| = p2 then, by

Theorem 4.4, either (B 0
)
G is abelian and the result follows from [4]

Lemma 3; or G has a subgroup B1, of class at most two, such that
|BG

1
: B1| = p and such that G/BG

1
is abelian. In the latter case B1EBG

1

and, letting g 2 G\NG(B1), we see that BG

1
= B1B

g

1
is the normal

product of two subgroups of class at most two and index p. If B1 is
abelian, then it is clear that (BG

1
)
(2)

= 1. If c(B1) = 2, then we can
apply Lemma 2.10 to see that (BG

1
)
(2)

= 1. Since G/BG

1
is abelian, we

then conclude that G(3)
= 1. ut

We use Corollary 4.5 to extend the result of Corollary 4.3.

Theorem 4.6 Let p be an odd prime and let G = AB be a finite p-group
for subgroups A and B such that A is cyclic and c(B) = 2. If exp(B) = p

or if p > 5 and exp(B) = p2, then G(3)
= 1.

Proof — We apply Theorems 2.9 and 2.11 to see that in each case

B 6 ⌦2(A)BEG.
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Hence |BG
: B| 6 |⌦2(A)B : B| 6 p2. The result then follows from Co-

rollary 4.5 ut

5 Conclusion

Taken together with [5] and [6], this paper provides some initial
steps in the direction of a theory of the structure of factorised fi-
nite p-groups G = AB, where A is a cyclic subgroup and B is a
non-cyclic subgroup. A key feature of such groups is that each sub-
group of A is permutable with B, that is, if A1 6 A then A1B 6 G.
However, this need not be the case if A is non-cyclic. It remains an
open question as to the extent to which the above results can be gen-
eralised to factorised groups where neither “factor” is cyclic.
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