

Advances in Group Theory and Applications © 2019 AGTA - www.advgrouptheory.com/journal 8 (2019), pp. 39–47 ISSN: 2499-1287 DOI: 10.32037/agta-2019-010

Some Theorems of Fitting Type *

Alessio Russo

(Received Oct. 9, 2018; Accepted Nov. 22, 2019 — Communicated by F. de Giovanni)

Abstract

Let \mathfrak{W} be the class consisting of all groups G such that, if N is a normal subgroup of the term $G^{(\alpha)}$ of the derived series of G, for some ordinal α , then N is normal in G. Clearly, \mathfrak{W} contains the class T of groups in which normality is a transitive relation studied by many authors. In this article we will prove, among other results, that a group which is the product of finitely many normal (generalized) soluble \mathfrak{W} -subgroups is locally supersoluble.

Mathematics Subject Classification (2010): 20F16, 20F19

Keywords: locally supersoluble group; hypoabelian group; supersoluble group; T-group

1 Introduction

A fundamental theorem proved by H. Fitting in the first part of his Habilitationsschrift [4] states that if H and K are normal nilpotent subgroups of a group G, then their product HK is a normal nilpotent subgroup of G. On the other hand, it is well known that a similar result is not true for supersoluble groups. The first example of nonsupersoluble group which is the product of two normal supersoluble subgroups was constructed by B. Huppert [6] (see also Example 1, p.186 of [1]). Recall that a group G is said to be *supersoluble* if

 $^{^{\}ast}$ The author is a member of GNSAGA (INdAM), and works within the $A_{\rm D}V-A{\rm GTA}$ project

it has a finite normal series containing the subgroups {1} and G all of whose factors are cyclic. It can be proved that the commutator subgroup of a supersoluble group is nilpotent (Wendt's Theorem) and that all finitely generated nilpotent groups are supersoluble.

Let \mathfrak{W} be the class consisting of all groups G such that, if N is a normal subgroup of the term $G^{(\alpha)}$ of the derived series of G, for some ordinal α , then N is normal in G. Examples of \mathfrak{W} -groups are all simple groups and all symmetric groups S_n for $n \ge 5$. Finite soluble groups with this property were introduced and investigated by I. Weidig [11], while the infinite case was considered by the author [10]. Clearly, a soluble \mathfrak{W} -group is *hypercyclic* (i.e., it has an ascending normal series with cyclic factors), and hence locally supersoluble. Moreover, since every group of power automorphisms is abelian, it follows that soluble \mathfrak{W} -groups have nilpotent commutator subgroup (recall that an automorphism of a group G is called a *power automorphism* if it maps every subgroup of G onto itself).

Note also that \mathfrak{W} contains the class T of groups in which the normality is a transitive relation (i.e., the groups in which every subnormal subgroup is normal). The structure of finite soluble T-groups has been described by W. Gaschütz [5], while D.J.S. Robinson [7] investigated infinite soluble groups with the property T. In particular, it turns out that soluble T-groups are metabelian and that any finitely generated soluble T-group either is finite or abelian (see Theorem 2.3.1 and Theorem 3.3.1 of [7], respectively).

The main result of this article states that the product of a normal finitely generated (generalized) soluble \mathfrak{W} -subgroup and a subnormal supersoluble subgroup of a group is supersoluble. As a consequence, it will be proved that a group which is the product of finitely many normal (generalized) soluble \mathfrak{W} -subgroups is locally supersoluble. This result generalizes that one obtained by J. Cossey [3] for finite groups which are the product of normal soluble T-subgroups.

Most of our notation is standard and can be found in [9].

2 Statements and proofs

The class \mathfrak{W} is obviously closed with respect to homomorphic images; on the other hand, \mathfrak{W} is not subgroup-closed, since each finite group of order n can be embedded in the symmetric group S_n .

Our first result shows that if G is a \mathfrak{W} -group, then $G^{(3)} = G^{(4)}$. In particular, soluble \mathfrak{W} -groups have derived length at most 3. Recall that a group G is said to be *hypoabelian* if it has a descending series with abelian factors, or equivalently if G does not contain perfect non-trivial subgroups.

Proposition 2.1 Let G be an hypoabelian \mathfrak{W} -group. Then the commutator subgroup G' of G is nilpotent with class at most 2. In particular, if G is a T-group, then it is metabelian.

PROOF — Let α be any ordinal number. Then G acts as a group of power automorphisms on $G^{(\alpha)}/G^{(\alpha+1)}$, and so G' is contained in the centralizer $C_G(G^{(\alpha)}/G^{(\alpha+1)})$. Since the group G is hypoabelian, it follows that G' is hypocentral and $\gamma_i(G') = G^{(i)}$ for each non-negative integer i. In particular, we have

$$\gamma_3(\mathsf{G}') = \mathsf{G}^{(3)} = (\gamma_2(\mathsf{G}'))' \leqslant \gamma_4(\mathsf{G}'),$$

so that $\gamma_3(G') = \{1\}$ and G' is nilpotent with class at most 2.

Finally, suppose that G is a T-group. As G' is nilpotent, then G acts on it as a group of power automorphisms. Therefore $G/C_G(G')$ is abelian and hence G is metabelian.

Let p be an odd prime, and let

$$P = \langle a, b, c | a^{p} = b^{p} = c^{p} = [a, c] = 1, [b, c] = a \rangle$$

be an extraspecial group of order p^3 and exponent p. If x is the automorphism of P defined by the positions

$$a^{x} = a, b^{x} = b^{-1}, c^{x} = c^{-1},$$

the semidirect product $G = \langle x \rangle \ltimes P$ is a soluble \mathfrak{W} -group with derived length 3. Clearly the direct product of G and an infinite cyclic group is a finitely generated \mathfrak{W} -group which is neither abelian nor finite.

Moreover, it is worth noting that a finitely generated \mathfrak{W} -group with non-periodic commutator subgroup is metabelian (see [10, Theorem 7]).

In the following we will use a result of Beidleman and Smith (see Proposition 7 of [2]) stating the supersolublity of a group which is the product of a normal finitely generated nilpotent subgroup and subnormal supersoluble subgroup.

Theorem 2.2 Let G be any group. If H is a normal finitely generated hypoabelian \mathfrak{W} -subgroup of G and K is a subnormal supersoluble subgroup of G, then the product HK is supersoluble.

PROOF — Clearly, we may suppose that G = HK. By Proposition 2.1 the commutator subgroup H' of H is nilpotent with class at most 2, so that it enough to prove the statement for the factor group $G/H^{(2)}$ (see [8]). Therefore we may suppose that H is metabelian.

We argue by induction on defect d of K in G. First let K be normal in G. Since K is supersoluble, it contains a finite normal series

$$\{1\} = K_0 \leqslant K_1 \leqslant \ldots \leqslant K_n = K$$

all of whose factors are cyclic. From this series we may construct the following series of $H' \cap K$:

$$\Sigma_1: \{1\} = H' \cap K_0 \leqslant H' \cap K_1 \leqslant \ldots \leqslant H' \cap K_n = H' \cap K.$$

Clearly, every term of Σ_1 is normal in K and all its factors are cyclic. Moreover, as H is a \mathfrak{W} -group, we have that $H' \cap K_i$ is H-invariant (and hence G-invariant) for all i = 0, 1, ..., n. Since $H'/H' \cap K$ is a finitely generated abelian group and H is a \mathfrak{W} -group, then there is an H-invariant series

$$\Sigma_2: \mathrm{H}' \cap \mathrm{K} = \mathrm{X}_0 \leqslant \mathrm{X}_1 \leqslant \ldots \leqslant \mathrm{X}_m = \mathrm{H}'$$

whose factors are cyclic. But $[X_i, K] \leq [H', K] \leq H' \cap K \leq X_i$, and hence we have also that every term of Σ_2 is G-invariant. The above considerations show that $\Sigma_1 \cup \Sigma_2$ is a G-invariant series of H' whose factor are cyclic. On the other hand, G/H' is supersoluble by the quoted result of Beidleman and Smith and hence so does G.

Finally, let d > 1. As $K^G = (H \cap K^G)K$ is the product of a normal finitely generated \mathfrak{W} -subgroup and a subnormal supersoluble subgroup of defect d - 1, the inductive hypothesis yields that K^G is supersoluble. Therefore $G = HK^G$ is supersoluble by the first part of the proof.

Note that the latter result generally is not true if H is a subnor-

mal subgroup with defect 2. To prove this we consider the group quoted in our introduction and constructed by R. Baer in [1, Example 1, p.186]). Let $A = \langle a \rangle \times \langle b \rangle$ be a non-cyclic group of order 9. Denote by x and y the automorphisms of A defined by the positions

$$a^{x} = b^{-1}, b^{x} = a; a^{y} = b, b^{y} = a.$$

Clearly, |x| = 4, |y| = 2 and $y^{-1}xy = x^{-1}$, so that $X = \langle x, y \rangle$ is isomorphic to the dihedral group D₈ of order 8. Put

$$G = X \ltimes A.$$

Since X acts irreducibly over A, it follows that G is not supersoluble. Let $L = \{1, x^2, y, x^2y\}$ and $M = \{1, x^2, yx, yx^3\}$ be the non-cyclic subgroups of order 4 of X. Clearly,

$$|G:AL| = 2 = |G:AM|$$
 and $G = (AL)(AM)$.

Moreover, it is easy to show that AL and AM are supersoluble.

Put $H = \langle y \rangle \ltimes \langle a^{-1}b \rangle$ and K = AM. Since

$$(a^{-1}b)^{y} = (a^{-1}b)^{-1} = (a^{-1}b)^{x^{2}},$$

then $H \triangleleft AL$ and hence it is subnormal in G of defect 2. On the other hand, it is clear that G = HK.

Corollary 2.3 Let G be a group which is the product of finitely many normal finitely generated hypoabelian \mathfrak{W} -subgroups. Then G is supersoluble.

PROOF — The statement follows immediately from Theorem 2.2. \Box

Let \mathfrak{X} and \mathfrak{Y} be classes of groups such that $\mathfrak{X} \leq \mathfrak{Y}$. We say that \mathfrak{Y} is N₀-closed with respect to \mathfrak{X} if for every normal subgroups H and K of a group G such that H is an \mathfrak{X} -group and K is an \mathfrak{Y} -group, the product HK is an \mathfrak{Y} -group. In particular, if $\mathfrak{X}=\mathfrak{Y}$, we have that the class \mathfrak{X} is N₀-closed (see [9, Chapter 1]). Let \mathfrak{X} be a subgroup-closed class of groups. Recall that the class L \mathfrak{X} of *locally* \mathfrak{X} -groups consists of all groups whose finitely generated subgroups are \mathfrak{X} -groups.

Lemma 2.4 Let \mathfrak{X} and \mathfrak{Y} be subgroup-closed classes of groups such that $\mathfrak{X} \leq \mathfrak{Y}$ and every \mathfrak{Y} -group is finitely generated. If \mathfrak{Y} is N₀-closed with respect to \mathfrak{X} , then the class L \mathfrak{Y} is N₀-closed with respect to L \mathfrak{X}

PROOF — The statement follows arguing as in the proof of Hirsch-Plotkin-Baer theorem (see [9, Theorem 2.31]). □ **Theorem 2.5** Let G be any group. If H is a normal hypoabelian \mathfrak{W} -subgroup of G and K is a subnormal locally supersoluble subgroup of G, then the product HK is locally supersoluble.

PROOF — Clearly, we may suppose that G = HK. By Proposition 2.1 the commutator subgroup H' of H is nilpotent with class at most 2. Since the factor group $G/H^{(2)}$ satisfies the same hypotheses of G, we may suppose that H is metabelian (see [8]). Denote by \mathfrak{W}_1 the class of finitely generated metabelian \mathfrak{W} -groups. Clearly, \mathfrak{W}_1 is subgroup-closed and by Theorem 2.2 the class of supersoluble groups is N₀-closed with respect to \mathfrak{W}_1 . Now the statement follows from Lemma 2.4 arguing by induction on the defect of K in G.

Corollary 2.6 Let G be a group which is the product of finitely many normal hypoabelian \mathfrak{W} -subgroups. Then G is locally supersoluble.

PROOF — The statement follows immediately from Theorem 2.5. \Box

The Corollary 2.6 shows in particular that a group is locally supersoluble if it is the product of finitely many normal soluble T-subgroups. This result was proved by Cossey [3] for finite groups.

Indeed the groups which are product of finitely many normal soluble T-subgroups satisfy other interesting properties too. Firstly we need a preliminary lemma. Recall that a group G is said to be a *Baer group* if all its cyclic subgroups are subnormal. It is well known that a Baer group is locally nilpotent.

Lemma 2.7 Let G be a Baer group. If $G = H_1 \dots H_n$ is the product of finitely many normal T-subgroups, then G is nilpotent with class at most n + 1.

PROOF — Clearly H_i is a Dedekind group for all i = 1, ..., n. It follows that G is nilpotent by Fitting's theorem. Moreover, as H'_i is a normal subgroup of G of order at most 2, it is central and hence

$$H'_1 \dots H'_n \leq Z(G).$$

On the other hand, it is clear that the factor group $G/H'_1 \dots H'_n$ is nilpotent with class at most n. Therefore the nilpotent class of G is at most n + 1.

Note that the latter result is not true for locally nilpotent groups as the consideration of locally dihedral 2-group $D_{2^{\infty}}$ shows.

Theorem 2.8 Let

$$G=H_1\ldots H_n$$

be a group which is the product of finitely many normal hypoabelian T*-subgroups. Then* G *is hypercyclic and* G' *is contained in*

$$\langle F_i \cap F_j \mid i, j = 1, \ldots, n \rangle$$

where each F_i is the Fitting subgroup of H_i . In particular, G' is nilpotent with class at most n.

PROOF — By Proposition 2.1 we have that H_i is metabelian for all i = 1, ..., n. It follows that

$$H'_1 \cap \ldots \cap H'_n$$

has a G-invariant ascending series all of whose factors are cyclic. Moreover, as the factor group

$$H_1 \cap \ldots \cap H_n / H'_1 \cap \ldots \cap H'_n$$

is abelian, there is an ascending G-invariant series with cyclic factors containing the subgroups $H'_1 \cap \ldots \cap H'_n$ and $H_1 \cap \ldots \cap H_n$. It follows that $H_1 \cap \ldots \cap H_n$ is hypercyclically embedded in G. Finally, recalling that a soluble T-group is hypercyclic, we have that the direct product

$$G/H_1 \times \ldots \times G/H_n$$

is hypercyclic. It follows that $G/H_1 \cap \ldots \cap H_n$ is hypercyclic, and so does G by the first part of the proof.

Now let x and y be elements in H_i and H_j, respectively. We will prove that $[x, y] \in F_i \cap F_j$. Clearly, $[x, y] = x^{-1}x^y = (y^{-1})^x y \in H_i \cap H_j$ and the elements y and y^x act as power automorphisms over the abelian group H'_j. Let $z \in H'_j$. Then $z^y = z^n$, for some integer n. On the other hand,

$$(y^{x})^{-1}zy^{x} = x^{-1}y^{-1}(xzx^{-1})yx.$$

Since a power automorphism of an abelian group is *homogeneous* (see Lemma 4.1.2 of [7]) and $\overline{z} = xzx^{-1} \in H'_j$, we have that $\overline{z}^y = \overline{z}^n$. Therefore

$$x^{-1}\overline{z}^n x = x^{-1}(xzx^{-1})^n x = z^n.$$

Thus

$$z^{\mathbf{y}} = z^{\mathbf{n}} = z^{\mathbf{y}^{\mathbf{x}}}$$

and so $z^{(y^{-1})^x y} = z$. It follows that $[x, y] \in C_{H_j}(H'_j) = F_j$ (see Lemma 2.2.2 of [7]). Arguing in the same way, it can be proved that

$$[\mathbf{x},\mathbf{y}] \in C_{\mathbf{H}_{\mathbf{i}}}(\mathbf{H}_{\mathbf{i}}') = \mathbf{F}_{\mathbf{i}}.$$

Thus $[x,y]\in F_i\cap F_j$ and hence $G'\leqslant \langle F_i\cap F_j\mid i,j=1,\ldots,n\rangle$ as required.

Finally, G' is nilpotent by Fitting's theorem and Lemma 2.7 yields that its nilpotent class is at most n. $\hfill \Box$

REFERENCES

- R. BAER: "Classes of finite groups and their properties", *Illinois J. Math.* 1 (1957), 115–187.
- [2] J. C. BEIDLEMAN H. SMITH: "On supersolubility in some groups with finitely generated Fitting radical", *Proc. Amer. Math. Soc.* (2) 114 (1992), 319–324.
- [3] J. Cossey: "Finite groups generated by subnormal T-groups", *Glasgow Math. J.* 37 (1995), 363–371.
- [4] H. FITTING: "Die Determinantenideale eines Moduls", Jahresber. Deutschen Math.-Ver. 46 (1936), 195–228.
- [5] W. GASCHÜTZ: "Gruppen in denen das Normalteilersein transitiv ist", J. Reine Angew. Math. 198 (1957), 87–92.
- [6] B. HUPPERT: "Monomiale Darstellung endlicher Gruppen", Nagoya Math. J. 6 (1953), 93–94.
- [7] D. J. S. ROBINSON: "Groups in which normality is a transitive relation", *Proc. Cambridge Philos. Soc.* 60 (1964), 21–38.
- [8] D. J. S. ROBINSON: "A property of the lower central series of a group", Math. Z. 107 (1968), 225–231.
- [9] D. J. S. ROBINSON: "Finiteness Conditions and Generalized Soluble Groups", *Springer*, Berlin (1972).
- [10] A. Russo: "On the derived length of parasoluble group", Boll. Un. Mat. Ital. 6-B (2003), 237–244.

[11] I. WEIDIG: "Gruppen mit abgeschwächter Normalteilertransitivität", *Rend. Sem. Mat. Univ. Padova* 36 (1966), 185–215.

Alessio Russo Dipartimento di Matematica e Fisica Università della Campania Luigi Vanvitelli Viale A. Lincoln 5, I-81100 Caserta (Italy) e-mail: alessio.russo@unicampania.it