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Abstract
In the 1940’s Graham Higman initiated the study of finite subgroups of the unit
group of an integral group ring. Since then many fascinating aspects of this struc-
ture have been discovered. Major questions such as the Isomorphism Problem and
the Zassenhaus Conjectures have been settled, leading to many new challenging
problems. In this survey we review classical and recent results, sketch methods and
list questions relevant for the state of the art.
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1 Introduction

Group rings first come up as a natural object in the study of repre-
sentations of groups as matrices over fields or more generally as en-
domorphisms of modules. They also appear in topology, knot theory
and other areas in pure and applied mathematics. For example, many
error correcting codes can be realized as ideals in group algebras and
this algebraic structure has applications on decoding algorithms.

The aim of this survey is to revise the history and state of the art on
the study of the finite subgroups of units in group rings with special
emphasis on integral group rings of finite groups. For an introduc-
tion including proofs of some first results the interested reader might
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want to consult [136, 120]. Other surveys touching on the topics con-
sidered here include [137, 85].

Let G be a group, R a ring and denote by U(R) the unit group
of R and by RG the group ring of G with coefficients in R. The main
problem can be stated as follows.

Main Problem Describe the finite subgroups of U(RG)
and, in particular, its torsion elements.

This problem, especially in the case of integral group rings of fi-
nite groups, has produced a lot of beautiful results which combine
group theory, ring theory, number theory, ordinary and modular rep-
resentation theory and other fields of mathematics. Several answers
to the Main Problem have been proposed. The strongest ones, such as
the Isomorphism and Normalizer Problems and the Zassenhaus Con-
jectures, introduced below, are true for large classes of groups, but
today we know that they do not hold in general. Other possible an-
swers, as the Kimmerle or Spectrum Problems are still open. We hope
that this survey will stimulate research on these and other fascinat-
ing questions on group rings. For this purpose we include several
open problems and revise the status of some problems given before
in [136] in our final remark.

One of the main motivations for studying finite subgroups of RG
in the case where G is finite is the so called Isomorphism Problem
which asks whether the ring structure of RG determines the group G
up to isomorphism.

The Isomorphism Problem Does the group rings RG
and RH being isomorphic imply that so are the groups G
and H?

(ISO) is the Isomorphism Problem for R = Z and G finite.

Observe that the Isomorphism Problem is equivalent to the prob-
lem of whether all the group bases of RG are isomorphic. A group
basis is a group of units in RG which is a basis of RG over R. It is
easy to find negative solutions to the Isomorphism Problem if the
coefficient ring is big, for example, if G and H are finite then CG
and CH are isomorphic if and only if G and H have the same list of
character degrees, with multiplicities. In particular, if G is finite and
abelian then CG and CH are isomorphic if and only if G and H have
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the same order. As (ISO) was considered a conjecture for a long time
it is customary to speak of counterexamples to (ISO).

The “smaller” the coefficient ring is, the harder it is to find a neg-
ative solution for the Isomorphism Problem. This is the moral of the
following remark.

Remark 1.1 If there is a ring homomorphism R→ S then SG ' S⊗R RG.
Thus a negative answer to the Isomorphism Problem for R is also a negative
answer for S. In particular, a counterexample for (ISO) is a negative solu-
tion for the Isomorphism Problem for all the rings.

In the same spirit, at least in characteristic zero, the “smaller” the
ring R is the harder it is to construct finite subgroups of RG besides
those inside the group U(R)G of trivial units. For example, if G is a
finite abelian group then all the torsion elements of U(ZG) are triv-
ial, i.e. contained in ±G. This implies that (ISO) has a positive solu-
tion for finite abelian groups. This is a seminal result from the thesis
of Graham Higman [71], where the Isomorphism Problem appeared
for the first time and which raised the interest in the study of units
of integral group rings. More than 20 years later Albert Whitcomb
proved (ISO) for metabelian groups [144].

The map ε : RG → R associating each element of RG to the sum of
its coefficients is a ring homomorphism. This is called the augmenta-
tion map. It restricts to a group homomorphism U(RG)→ U(R) whose
kernel is denoted V(RG) and its elements are called normalized units.
Clearly U(RG) = U(R)× V(RG), in particular U(ZG) = ±V(ZG). It
can be easily shown that if RG and RH are isomorphic there is a
normalized isomorphism α : RG → RH, i.e. ε(α(x)) = ε(x) for eve-
ry x ∈ RG.

Higman’s result on torsion units of integral group rings of abelian
groups cannot be generalized to non-abelian groups because conju-
gates of trivial units are torsion units which in general are not trivial.
A natural guess is that all torsion units in the integral group ring
of a finite group are of this form, or equivalently every normalized
torsion unit is conjugate to an element of G. Higman already ob-
served that V(ZS3) contains torsion units which are not conjugate
in U(ZS3) to trivial units (Sn denotes the symmetric group on n
letters). Since Higman’s thesis was not that well known, this was re-
proven many years later by Ian Hughes and Kenneth Pearson. They
observed however that all the torsion elements of V(ZS3) are conju-
gate to elements of S3 in QS3 [73]. Motivated by this and Higman’s
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result, Hans Zassenhaus conjectured that this holds for all the inte-
gral group rings of finite groups [145]:

The First Zassenhaus Conjecture (ZC1) If G is a finite
group then every normalized torsion unit in ZG is conju-
gate in QG to an element of G.

Similar conjectures for group bases and, in general for finite sub-
groups of ZG, are attributed to Zassenhaus [135]:

The Second Zassenhaus Conjecture (ZC2) If G is a finite
group then every group basis of normalized units of ZG
is conjugate in QG to G.

The Third Zassenhaus Conjecture (ZC3) If G is a finite
group then every finite subgroup of normalized units
in ZG is conjugate in QG to a subgroup of G.

Some support for these conjectures came from the following results:
If H is a finite subgroup of V(ZG) then its order divides the order
of G [146] and its elements are linearly independent over Q [71]. The
exponents of G and V(ZG) coincide. The last fact is even true replac-
ing Z by any ring of algebraic integers [40].

The Second Zassenhaus Conjecture is of special relevance because
a positive solution for (ZC2) implies a positive solution for (ISO).
Actually

(ZC2) ⇔ (ISO) + (AUT)

where (AUT) is the following Problem:

The Automorphism Problem (AUT): Is every normalized
automorphisms of ZG the composition of the linear exten-
sion of an automorphism of G and the restriction to ZG
of an inner automorphism of QG?

In the late 1980s counterexamples to the conjectures started appear-
ing. The first one, by Klaus Wilhelm Roggenkamp and Leonard Lewy
Scott [133, 126, 134], was a metabelian negative solution to (AUT) and
hence a counterexample to (ZC2) and (ZC3). Observe that while (ZC2)
fails for finite metabelian groups, (ISO) holds for this class by Whit-
comb’s result mentioned above. So in the 1990s there was still some
hope that (ISO) may have a positive solution in general, as Higman
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had already stated in his thesis: “Whether it is possible for two non-
isomorphic groups to have isomorphic integral group rings I do not
know, but the results of Section 5 suggest that it is unlikely” [70].
However Martin Hertweck found in 1997 two non-isomorphic groups
with isomorphic integral group rings [55, 56]. We elaborate on these
questions in Section 3.

So the only of the above mentioned questions open at the end
of the 1990s was (ZC1). From the 1980s (ZC1) has been proven for
many groups including some important classes as nilpotent or meta-
cyclic groups. A lot of work was put in trying to prove it for metabe-
lian groups, but metabelian counterexamples were discovered by Flo-
rian Eisele and Leo Margolis in 2017 [47]. Details on (ZC1) are pro-
vided in Section 4.

Still both (ISO) and the Zassenhaus Conjectures have a positive
solution for many significant classes of finite groups and many in-
teresting questions on finite subgroups of U(ZG) are still open. In
the introduction we mention just a few of the most relevant. It is not
known whether (ISO) has a positive solution for finite groups of odd
order and Hertweck’s method can not work in this case. A classical
open problem is the following special case of the Isomorphism Pro-
blem.

Modular Isomorphism Problem (MIP) Let k be a field
of characteristic p and G and H finite p-groups. Does
kG ' kH imply G ' H?

Before we give more details on these questions in Section 3, we
revise in Section 2 some methods to attack the problems mentioned
above as well as known results on (ZC3), the strongest conjecture on
the finite subgroups of ZG.

The Zassenhaus Conjectures were possible answers to the Main
Problem and in particular (ZC1) was still standing as a possible an-
swer for torsion units until recently. Since all three Zassenhaus Con-
jectures have been disproved, maybe it is time to reformulate them
as the Zassenhaus Problems. Another type of answer was proposed
by Wolfgang Kimmerle [76].

Kimmerle Problem (KP) Let G be a finite group and u
a torsion element in V(ZG). Does there exist a group H
which contains G such that u is conjugate in QH to an
element of G?
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Observe that while (ZC1) asks if it is enough to enlarge the coef-
ficient ring of ZG to obtain that all torsion units are trivial up to
conjugation, (KP) allows to enlarge also the group basis.

Recall that the spectrum of a group is the set of orders of its torsion
elements. A weaker answer to the Main Problem could be provided
by solving the following problem.

The Spectrum Problem (SP) If G is a finite group do the
spectra of G and V(ZG) coincide?

See more about these problems in Section 5.
As V(ZG) and G have the same exponent, at least the orders of

the p-elements of V(ZG) and G coincide. So, it is natural to ask
whether the isomorphism classes of the finite p-subgroups of V(ZG)
and G are the same. It is even an open question whether every (cyclic)
finite p-subgroup of V(ZG) is conjugate in QG to a subgroup
of G. Section 6 deals with these and other questions on finite p-sub-
groups of V(ZG).

Techniques and results from modular representation theory have
been very useful in the study of the problems mentioned in this ar-
ticle. On the other hand, questions in modular representation theory
about the role of the defect group in a block are related to questions
on p-subgroups in units of group rings. Here rational conjugacy is
not as useful and p-adic conjugacy is in the focus, as in the F∗-Theo-
rem (Theorem 3.6) and in Theorem 4.2. There is some hope that this
kind of results might be applied e.g. to solve the following question
of Scott.

Scott’s Defect Group Question [133] Let Zp denote the
p-adic integers, let G be a finite group and let B be a block
of the group ring ZpG. Is the defect group of B unique up
to conjugation by a unit of B and suitable normalization?

It is not clear, and should be regarded as part of the problem, what
suitable normalization means if the block is not the principal block
of the group ring. This problem, and indeed Scott’s question in its
generality, has been solved by Markus Linckelmann in case the defect
group is cyclic [94].

Scott’s question is also of interest since, as has been shown by Ge-
offrey Robinson [124, 125], even a weak positive answer to it would
provide a proof of the Z∗p-Theorem avoiding the Classification of Fi-
nite Simple Groups. The first proof of the Z∗p-theorem using the CFSG
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is due to Orest Artemovich [3]. Here the Z∗p-Theorem means an odd
analogous of the famous Z∗-Theorem of George Glauberman.

We use standard notation for cyclic Cn and dihedral group Dn of
order n; symmetric Sn and alternating group An of degree n; and
linear groups SL(n,q), PSL(n,q), etc. For an element g in a group G
we denote by CG(g) the centralizer and by gG the conjugacy class
of g in G.

2 General finite subgroups

Though the group of units of group rings has been studied for about
eighty years there are very few classes of group rings for which
the group of units has been described explicitly. For the case of
integral group rings, the interested reader can consult the book
by Sudarshan Kumar Sehgal [136] and by Eric Jespers and Ángel
del Río [77, 78]. An overview of Higman’s thesis [70], the starting
point of the area, may be found in [132]. Actually constructing spe-
cific units is not that obvious, except for the trivial units of a group
ring RG, i.e. those in U(R)G. For example, there is a famous question,
studied at least since the 1960s, attributed to Irving Kaplansky [81],
though he refers to a question 1.135 by Dmitrij Smirnov and Adal-
bert Bovdi from the first edition of the Dniester notebook from 1969

(the first edition is entirely included in [49] and the English transla-
tion [50]).

Kaplansky’s Unit Conjecture If G is a torsion-free group
and R is a field then every unit of RG is trivial.

Kaplansky’s Unit Conjecture is still open and few progress has been
made on it besides the case of ordered groups for which it is easy
to verify (in fact the same proof works for unique product groups).
In contrast with this, the only finite groups for which all the units
of ZG are trivial are the abelian groups of exponent dividing 4 or 6
and the Hamiltonian 2-groups. Actually these are the only groups
for which U(ZG) is finite [70] (see also [77, Theorem 1.5.6]).

From now on R is a commutative ring, G is a finite group and we
focus on finite subgroups of U(RG). The commutativity of R allows
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to identify left and right RG-modules by setting

rgm = mrg−1

for r ∈ R, g ∈ G and m an element in a left or right RG-module.
Higman proved that if G is an abelian finite group then every tor-

sion unit of ZG is trivial. In the 1970s some authors computed U(ZG)
for some small non-abelian groups G. For example, Hughes and
Pearson computed U(ZS3) [73] and César Polcino Milies compu-
ted U(ZD8) [117]. As a consequence of these computations it follows
that (ZC3) has a positive solution for S3 and D8. These early results
were achieved by very explicit computations.

A notion to deal with more general classes of groups is the so
called double action module.

Definition 2.1 Let H be group and let α : H→ U(RG) be a group homo-
morphism. Let (RG)α be the R(G×H)-module whose underlying R-module
equals RG and the action by elements of G×H is given by:

(g,h) ·m = α(h)mg−1 (g ∈ G,h ∈ H,m ∈ (RG)α).

The connection between the Zassenhaus Conjectures and double
action modules relies on the following observations.

Proposition 2.2 Let α,β : H → U(RG) be group homomorphisms.
Then (RG)α and (RG)β are isomorphic as R(G×H)-modules if and only if
there is u ∈ U(RG) such that β(h) = u−1α(h)u for every h ∈ H.

Proposition 2.3 Let G and H be groups and letM be a left R(G×H)-mo-
dule. ThenM is isomorphic to a double action R(G×H)-module if and only
if its restriction to RG is isomorphic to the regular right RG-module.

For our applications R usually is the ring of integers or the field of
rationals, and occasionally the ring Zp of p-adic integers. More pre-
cisely, consider a finite subgroup H of V(ZG). Then the embedding

α : H ↪→ U(ZG)

defines a double action Z(G × H)-module but also a double ac-
tion Q(G×H)-module (QG)α. By Proposition 2.2, to prove that H is
conjugate in QG to a subgroup of G we need to prove that

(QG)α ' (QG)β
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for some group homomorphism β : H→ G. As two Q(G×H)-modu-
les are isomorphic if and only if they afford the same character, the
following formula is relevant:

χα(g,h) = |CG(g)| εg(α(h)) (g ∈ G,h ∈ H). (2.1)

Here χα denotes the character afforded by (RG)α for an arbitrary
homomorphism α : H→ U(RG) and

εg : RG→ R,
∑
x∈G

axx 7→
∑
x∈gG

ax.

The element εg(a) is called the partial augmentation of a at g. The
partial augmentation has an even more practical role in dealing with
the Zassenhaus Conjectures via the following:

Proposition 2.4 (see [103] and Lemma 41.4 of [136]) The following
are equivalent for a finite subgroup H of V(ZG):

1. H is conjugate in QG to a subgroup of G.

2. There is a group homomorphism

ϕ : H→ G

such that for every h ∈ H and g ∈ G one has εg(h) 6= 0 if and only
if gG = ϕ(h)G.

This theorem has been the cornerstone in the study of the Zassen-
haus Conjectures. It is the reason why a lot of research has been de-
ployed to study partial augmentations of torsion units of ZG. We
collect here some of the most important results in this direction.
The first one is also known as the Berman-Higman theorem, named
after Higman and Samuil Berman — probably the two earliest re-
searchers in the field.

Proposition 2.5 Let G be a finite group and let u be a torsion unit of
order n in V(ZG).

1. If n 6= 1 then ε1(u) = 0 (see [77, Proposition 1.5.1]).

2. If u lies in a group basis then there is an element g ∈ G such that
εx(u) 6= 0 if and only if x ∈ gG. This is an immediate consequence of
the class sum correspondence (see [128, IV.1 Theorem]).
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3. If εg(u) 6= 0 then the order of g divides n (see [60]).

4. If εg(u) 6= 0 and the p-part of u is conjugate to an element x of G
in ZpG then x is conjugate to the p-part of G (see [61]).

5. If G is solvable then εg(u) 6= 0 for some element g of order n in G
(see [62]).

Proposition 2.3 also motivated the introduction of an algorithmic
method to study finite subgroups H of V(ZG) using the characters
of G to obtain restrictions on the partial augmentations of the ele-
ments of H. Each ordinary character χ of G extends linearly to a map
defined on CG, its restriction toH is the character χH of a CH-module
and we have

χH(h) =
∑
gG

εg(h)χ(g), (h ∈ H)

where
∑
gG represents a sum running on representatives of the con-

jugacy classes of G. Therefore for each ordinary character ψ of H we
have

1

|H|

∑
h∈H

∑
gG

εg(h)χ(g)ψ(h) = 〈χH,ψ〉H ∈ Z>0. (2.2)

This can be used in combination with Propositions 2.3 and 2.4 to
prove or disprove the Zassenhaus Conjectures in some cases. The
information provided by this on partial augmentations is also infor-
mation about the characters of double action modules, by (2.1). This
sometimes helps to construct specific groups of units and eventually
counterexamples to the Zassenhaus Conjectures. See Section 4 for
more details.

In case the subgroup is p-regular similar formulas are available
for p-Brauer characters. More precisely, if H is a finite subgroup
of U(ZG) of order coprime with p, χ is a p-Brauer character of G
and ψ is an ordinary character of H then

1

|H|

∑
h∈H

p ′∑
gG

εg(h)χ(g)ψ(h) ∈ Z>0 (2.3)

where
∑p ′
gG

represents a sum running on representatives of the con-
jugacy classes of p-regular elements of G [60, 105]. Actually, these are
the only partial augmentations relevant for the application of Propo-
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sition 2.4, because if h ∈ H and g is p-singular then εg(h) = 0 (see
statement 3 of Proposition 2.5).

These formulas are the bulk of the method introduced by In-
dar Singh Luthar and Inder Bir Singh Passi who used it to prove (ZC1)
for A5 [97]. Later it was generalized by Hertweck and used to
prove (ZC1) for some small PSL(2,q) and to give a new short proof
for S5 [60]. It is nowadays known as the HeLP Method. It consists,
roughly speaking, in solving formulas (2.2) and (2.3) for all irre-
ducible χ and ψ viewing the εg(h) as unknowns and employing ad-
ditional properties of these integers such as those given in Propo-
sition 2.5. The method has been implemented for the GAP sy-
stem [51, 12] for the case where H is cyclic.

The strongest positive results on (ZC3) were achieved by Al Weiss.
The first one was proved before by Roggenkamp and Scott for the
special case of group bases.

Theorem 2.6 (see [142] and Appendix of [136]) Let R be a p-adic ring
i.e. the integral closure of Zp in a finite extension of the field of fractions
of Zp, and let G be a finite p-group. Then every finite subgroup of V(RG)
is conjugate in the units of RG to a subgroup of G.

This theorem is an application of a deep module-theoretic result
of Weiss [142] which strongly restricts the possible structure of dou-
ble action modules of p-adic group rings of p-groups. As a conse-
quence of Theorem 2.6, (ZC3) holds for p-groups. Actually Weiss
proved the following theorem.

Theorem 2.7 (see [143]) (ZC3) holds for nilpotent groups.

Next theorem collects some other results on (ZC3).

Theorem 2.8 (ZC3) holds for G in the following cases:

1. G = CoA with C cyclic, A abelian and gcd(|C|, |A|) = 1 (see [139]).

2. G is either S4, the binary octahedral group [43], A5, S5 or SL(2, 5)
(see [44]).

3. All the Sylow subgroups of G are cyclic (see [80]).

4. |G| = p2q with p and q primes (see [95]).

As it was mentioned in the introduction, the first counterexam-
ples to (ZC2) and (ZC3) were constructed by Roggenkamp and Scott
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as a negative solution to (AUT) [126, 134]. This counterexample was
metabelian and supersolvable. Using their methods Lee Klingler gave
an easier negative solution for such a group of order 2880 [93]. More
negative solutions were later constructed by Hertweck [57, 58], the
smallest of order 96 [59], using groups found by Peter Blanchard as
semilocal negative solutions [16].

We close this section with a very general problem posed by Kim-
merle at a conference [76] for which little is known:

The Subgroup Isomorphism Problem (SIP): What are the
finite groups H satisfying the following property for all fi-
nite groups G? If V(ZG) contains a subgroup isomorphic
to H then G contains a subgroup isomorphic to H.

Note that (SP) is the specification of (SIP) to cyclic groups. The only
groups for which a positive solution for (SIP) has been proven are
cyclic p-groups [40], Cp×Cp for p a prime [84, 64] and C4×C2 [105].
All the known negative solutions to (SIP) are based on Hertweck’s
counterexample to (ISO).

3 Group bases

As already mentioned in the introduction, a lot of research on the
units of group rings originally focused on the role of group bases in-
side the unit group. This is directly related to questions such as (ISO)
or (ZC2). Still it turned out to be very complicated to achieve results
for big classes of groups, apart from metabelian groups. Roggenkamp
and Scott [127] proved (ISO) for finite p-groups. In fact they proved
that inside the p-adic group ring of a finite p-group any two group
bases are conjugate and hence they are isomorphic. This of course im-
plies (ZC2) for this class of groups. The stronger results of Weiss [142],
quoted in Theorems 2.6 and 2.7, were obtained using different meth-
ods. After these relevant achievements other positive results for (ISO)
were obtained by some authors. Next theorem summarizes some of
the most important classes of solvable groups for which (ISO) has
been proved.

Theorem 3.1 (ISO) has a positive answer for the following classes of
groups:
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1. Abelian-by-nilpotent groups (see [127]),

2. Supersolvable groups (see [82]),

3. Frobenius groups and 2-Frobenius groups (see [82]),

4. nilpotent-by-abelian groups (a result of Kimmerle given in [128, Sec-
tion XII]).

Stronger (yet technical) versions of the first and last statements in
the previous theorem can be found in [129] and [54, 91], respectively.

Another problem about the natural group basis of an integral group
ring, which is deeply connected to the solution of (ISO), is the so-
called Normalizer Problem. Note that the group basis G is obviously
normalized by G itself and the central units of ZG. The Normali-
zer Problem asks if these two groups already fill out the normalizer
of G in U(ZG):

The Normalizer Problem (NP) Let G be a finite group. Is
it true that the normalizer of G in the units of ZG is the
group generated by G and the central units of ZG?

For many decades this was called the Normalizer Conjecture and
so it is reasonable to speak of counterexamples to (NP). In this survey
we concentrate on (NP) for finite soluble groups, see [140] for recent
results on other classes of groups. One first important contribution,
in a more general context, was given already in the 1960’s.

Theorem 3.2 (Coleman Lemma [41]) Let H be a p-subgroup of the
finite group G and let R be a ring in which p is not invertible. Then

NU(RG)(H) = NG(H) ·CU(RG)(H).

In particular, (NP) has a positive solution for p-groups.

A further important contribution by Stefan Jackowski and Zbig-
niew Marciniak is the following.

Theorem 3.3 (see [75]) Let G be a finite group with normal Sylow 2-sub-
group. Then (NP) has a positive solution for G. In particular, it has a posi-
tive solution for groups of odd order.

Finally Hertweck constructed in his thesis [55] counterexamples
to (NP) and (ISO).
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Theorem 3.4 (see Theorem A of [56]) There is a metabelian counterex-
ample to (NP) of order 225 · 972.

Theorem 3.5 (see Theorem B of [56]) There are counterexamples
to (ISO) of derived length 4 and order 221 · 9728.

It is not a coincidence that both counterexamples appeared at the
same time. Actually, to construct his counterexample for (ISO) Her-
tweck first constructed a counterexample G to (NP). This G is dif-
ferent from the group described in Theorem 3.4 and actually is not
metabelian. He explicitly constructed a unit t in ZG normalizing G
and not acting as an inner automorphism of G. He then defined an
action of an element c on G which is inverting t, i.e. tc = t−1, and
proceeded to show that X = Go 〈c〉 and Y = 〈G, tc〉 are two non-
isomorphic group bases of ZX. In view of this construction and The-
orem 3.3 it becomes clear that part (a) of the following problem is
wide open, since no counterexample to (NP) can serve as a starting
point for the construction of a counterexample as carried out by Her-
tweck.

Problem 1 Does (ISO) have a positive answer for the fol-
lowing classes of groups?

1. Groups of odd order.

2. Groups of derived length 3.

But even in the case where the order of the group is even (ISO) has
“almost” a positive answer. Namely, any group G can be extended
by an elementary abelian group N such that (ISO) has a positive
answer for NoG. This is a consequence of a strong result obtained
by Roggenkamp and Scott: the F∗-Theorem. See [66] for some history
of the theorem and also a complete proof of the most general case.

To state the F∗-Theorem let IR(G) denote the augmentation ideal
of a group ring RG, i.e. the kernel of its augmentation map.

Theorem 3.6 (F∗-Theorem) Let R be a p-adic ring and G a finite group
with a normal p-subgroup N containing the centralizer of N in G. Let α be
an automorphism of RG such that α stabilizes IR(G) and IR(N)G. Then G
and α(G) are conjugate inside the units of RG.

If one is only interested in the case of integral coefficients then this
can be used to answer (ZC2).
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Corollary 3.7 (see Theorem 1.1 of [68]) Let G be a finite group with
normal p-subgroup N such that the centralizer of N in G is contained in N.
Then (ZC2) holds for G.

Though most of the time the questions mentioned in this section
have been studied for special classes of solvable groups, also (almost)
simple groups were partly in the focus of attention. We mention some
results. The proof of the first theorem uses the Classification of Fi-
nite Simple Groups.

Theorem 3.8 (see [89]) If ZG ' ZH then G and H have isomorphic
chief series. In particular, (ISO) holds for finite simple groups.

Theorem 3.9 (see [116, 17, 20, 19, 18, 21]) (ZC2) holds for symmetric
groups, minimal simple groups, simple groups of Lie type of small rank, 18
sporadic simple groups and Coxeter groups.

In view of these results it might be surprising that all three Zassen-
haus Conjectures remain open for alternating groups, cf. [136, Prob-
lem 14].

We close this section by shortly considering the general Isomor-
phism Problem. Sam Perlis and Gordon Walker proved that the Iso-
morphism Problem for finite abelian groups and rational coefficients
has a positive solution [115]. Observe that this implies Higman’s an-
swer to (ISO) for abelian groups by Remark 1.1. Richard Brauer asked
in [37] the following strong version of the Isomorphism Problem:
can two non-isomorphic finite groups have isomorphic group alge-
bras over every field? Two metabelian finite groups satisfying this
were exhibited by Everett Dade [42]. This contrasts with the positive
result on (ISO) for metabelian groups mentioned above which was
already known at the time. Note that questions on degrees of irre-
ducible complex characters, as presented e.g. in [74, Section 12] or in
more recent work on local-global conjectures such as [102, 114], can
be regarded as questions on what determines the isomorphism type
of a complex group algebra. Recently a variation of the Isomorphism
Problem for twisted group rings has been introduced [112].

In contrast to the problems described before, (MIP) deals with
an object which is finite, but whose unit group fills up almost the
whole group algebra. Though extensively studied the problem is only
solved when G is either not too far from being abelian or when its
order is not too big. Major contributions were given by, among oth-
ers, Donald Steven Passman, Robert Sandling and Czesław Bagiński.
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We refer to [69, 15, 46] for an overview of known results and for a list
of invariants of any group basis determined by the modular group
algebra. To our knowledge it is not even clear if the choice of the base
field k might make a difference for (MIP).

4 Torsion units – (ZC1)

In Section 2 we have observed the relevance of partial augmenta-
tions for the study of finite subgroups of V(ZG). When studying
the First Zassenhaus Conjecture this has even a nicer form:

Theorem 4.1 ([103]) Let G be a finite group and let u be an element of
order n in V(ZG). Then u is conjugate in QG to an element of G if and
only if for every divisor d of n and every g ∈ G one has εg(ud) > 0.

Observe that the condition in the last theorem is equivalent to the
following: for every d | n there is a conjugacy class of G containing
all the elements at which ud has non-zero partial augmentation.

Most of the early papers on the First Zassenhaus Conjecture dealt
with special classes of metacyclic and cyclic-by-abelian groups. For
example, (ZC1) was proved for groups of the form C o A with C
and A cyclic of coprime order in [119, 118]. This was generalized
in [100] for the case where A is abelian (also of order coprime to
the order of C). The proof of the stronger statement in Theorem 2.8.1
uses these results. More positive answers to (ZC1) for special cases of
cyclic-by-abelian groups appeared in [113, 103, 99, 121]. Finally Hert-
weck proved (ZC1) for metacyclic groups in [63]. Actually he proved
it for groups of the form G = CA with C a cyclic normal subgroup
of G and A an abelian subgroup. This was generalized by Mauri-
cio Caicedo and the authors who proved (ZC1) for cyclic-by-abelian
groups [38]. This and Theorem 2.8.1 suggest to study the following:

Problem 2 Does (ZC3) hold for cyclic-by-abelian groups?

Meanwhile (ZC1) was proved for groups of order at most 144,
many groups of order less than 288 [72, 53, 5] and many other groups.
The following list includes the most relevant families of groups for
which (ZC1) has been proven:

• Metabelian:
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– Ao 〈b〉 where A is abelian and b is of prime order smaller
than any prime dividing |A| [103].

– Groups with a normal abelian subgroup of index 2 [98].

– Cyclic-by-abelian groups [38].

• Solvable non-metabelian:

– Nilpotent groups [143].

– Frobenius groups of order paqb for p and q primes [80].

– PoA with P a p-group and A an abelian p ′-group [61].

– A× F with A abelian and F a Frobenius group with com-
plement of odd order [8].

• Non-solvable:

– A5 [97], S5 [101], A6 [65], GL(2, 5) and the covering group
of S5 [25].

– PSL(2,q) for q 6 25 or q ∈ {31, 32} [141, 61, 60, 65, 52, 87,
11, 13].

– PSL(2,p) for p a Fermat or Mersenne prime [111].

– SL(2,p) or SL(2,p2) for p prime [122].

– Finite subgroups of division rings [43, 44, 7].

More positive results for (ZC1) can be found in [1, 96, 123, 138, 48,
23, 108, 110, 109].

As evident from the above, part (a) of the following problem has
seen little advances since being included in [136, Problems 10, 14].

Problem 3 Is (ZC1) true for the following groups?

1. Alternating and symmetric groups.

2. PSL(2,p) for p a prime.

As it was mentioned in the introduction a metabelian counterex-
ample to (ZC1) was discovered recently by Eisele and Margolis [47].
It is worth to give some explanations on how this counterexample
was discovered. Many of the groups for which (ZC1) was proved
contained a normal subgroupN such thatN and G/N have nice prop-
erties (cyclic, abelian or at least nilpotent). Often the proof separates
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the case where the torsion unit u maps to 1 by the natural homomor-
phism ωN : ZG→ Z(G/N). We write

V(ZG,N) = {u ∈ V(ZG) | ωN(u) = 1}.

The following particular case of (ZC1) was proposed in [136]

Sehgal’s 35th Problem If G is a finite group and N is
a normal nilpotent group of G, is every torsion element
of V(ZG,N) conjugate in QG to an element of G?

The following result of Hertweck, which appeared in [106], has
interest in itself but it is also important for its applications to Seh-
gal’s 35th Problem, due to statement 4 of Proposition 2.5.

Theorem 4.2 Let G be a finite group with normal p-subgroupN. Let u be
a torsion element in V(ZG,N). Then u is conjugate in ZpG to an element
of N.

Indeed, it implies that if u is a torsion unit in V(ZG,N), for N a
nilpotent normal subgroup of G, then N contains an element n such
that for every prime p the p-parts of u and n are conjugate in ZpG.
Moreover, by Proposition 2.5.4, if εg(u) 6= 0 for some g ∈ G then
the p-parts of n and g are conjugate in G.

One attempt to attack Sehgal’s 35th Problem, already present
in [103], is the matrix strategy which uses the structure of ZG as
free ZN-module to get a ring homomorphism

ρ : ZG→Mk(ZN),

with
k = [G : N].

Here Mk denotes the k× k-matrix ring. If u ∈ V(ZG,N) then ρ(u) is
mapped to the identity via the entrywise application of the augmen-
tation map. Using Theorem 4.1, Theorem 4.2 and a generalization
of (2.1) it can be proved that if ρ(u) is conjugate in Mk(QN) to a
diagonal matrix with entries in N then u is conjugate in QG to an
element of G, which would be the desired conclusion. However, Ge-
rald Cliff and Weiss proved that for N nilpotent this approach only
works if N has at most one non-cyclic Sylow subgroup [39].

Due to this negative result the matrix strategy was abandoned.
However the authors observed in [108] that some results in the pa-
per of Cliff and Weiss can be used to obtain inequalities involving
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the partial augmentations of torsion elements of V(ZG,N) which we
refer to as the Cliff-Weiss inequalities. In case N is abelian these in-
equalities take the following friendly form:

Proposition 4.3 (see Proposition 1.1 of [108]) Let N be an nilpotent
normal subgroup of G such that N has an abelian Hall p ′-subgroup A for
some prime p and let u be a torsion element of V(ZG,N). If K is a subgroup
of A such that A/K is cyclic and n ∈ N then∑

g∈nK
|CG(g)|εgG(u) > 0.

The Cliff-Weiss inequalities are actually properly stronger than the
inequalities (2.2) for units in V(ZG,N) [110]. Moreover in [109] the
authors presented an algorithm based on these inequalities and The-
orem 4.2 to search for minimal possible negative solutions to Seh-
gal’s 35th Problem and hence to (ZC1). More precisely the algorithm
starts with a nilpotent group N and computes a group G contain-
ing N as normal subgroup and a list of integers which satisfy
the Cliff-Weiss inequalities but not the conditions of Theorem 4.1,
i.e. they pass the test of the Cliff-Weiss inequalities to be the partial
augmentations of a negative solution to Sehgal’s 35th Problem.

Of course non-trivial solutions of the Cliff-Weiss inequalities do
not provide the counterexample yet, because one has to prove the
existence of a torsion unit realizing the partial augmentations pro-
vided by the algorithm. By the double action strategy this reduces
to a module theoretical problem, namely one has to prove that there
is a certain Z(G × Cn)-lattice which is isomorphic to a double ac-
tion module by Proposition 2.3, where n is the order of the hypo-
thetical unit which is determined by the partial augmentations (see
the paragraph after Theorem 4.2). A first step to obtain this lattice
consists in showing the existence of a Zp(G× Cn)-lattice with the
same character as the double action Q(G×Cn)-module, which exists
since the partial augmentations of the hypothetical unit satisfies the
constraints of the HeLP-method, for every prime p. By the results
of Cliff and Weiss, a unit satisfying also the Cliff-Weiss inequalities
corresponds to a Zp(G×Cn)-lattice which is free as ZpN-lattice. The
fundamental ingredient which allows the construction to work at this
point is that the p-Sylow subgroup Np of N is a direct factor in N.
Hence

ZpN = ZpNp ′ ⊗Zp ZpNp
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and the representation theory of the first factor is easy to control. It
turns out that assuming N is abelian and that a Zp(G× Cn)-lattice
which is free of rank 1 as ZpG-lattice (compare with Proposition 2.3),
assuming only that the action of G on N satisfies a certain, relatively
weak, condition [47, Section 5].

Once such a Zp(G × Cn)-lattice Mp is constructed for every
prime p, one obtains a Z(π)(G×Cn)-lattice with the same character
as each Mp, where Z(π) denotes the localization of Z at the set of
prime divisors of the order of G. So one obtains what is usually called
a semilocal counterexample. It remains to show how this lattice can
be “deformed” into a Z(G×Cn)-lattice with the same character. This
is done in [47, Section 6] in a rather general context which could be
applied also to non-cyclic groups and other coefficient rings. In the
situation of (ZC1) this boils down to checking that G does not map
surjectively onto certain groups (which is, in this case, equivalent to
the Eichler condition for ZG) and that D(u) has an eigenvalue 1 for
any irreducible Q-representation D of G.

With all this machinery set up, to find a counterexample to (ZC1)
remains a matter of calculations and it turns out that the candi-
dates constructed as minimal possible negative solutions to Seh-
gal’s 35th Problem in [109] are in fact negative solutions and as such
counterexamples to (ZC1).

The construction gives rise to the following problem.

Problem 4 Classify those nilpotent groupsN such that Se-
hgal’s 35th Problem has a positive solution for any groupG
containing N as normal subgroup.

By Theorem 4.2 and [39] the class of groups described in this prob-
lem contains those nilpotent groups which have at most one non-
cyclic Sylow subgroup, cf. [108] for details. More technical results
for the problem can be found in [108, 109, 110]. By the counterexam-
ples to (ZC1) there are infinitely many pairs of different primes p
and q such that the direct product of a cyclic group of order p · q
with itself is not contained in this class. This is particularly the case
for (p,q) = (7, 19), but not for (p,q) with p 6 5.

The evidence provided by positive solutions to (ZC1) and Pro-
blem 3 and by the counterexamples to (ZC1) suggests that the fol-
lowing problem might have a positive answer.

Problem 5 Is (ZC1) true for supersolvable groups? Is it
true at least for supersolvable metabelian groups?
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5 Torsion units – Alternatives to (ZC1)

Already when (ZC1) was still open several weaker forms of the con-
jecture were proposed, and all of these remain open, in a strong
sense. The first and strongest is the Kimmerle Problem mentioned
in the introduction. It was posed by Kimmerle at a conference in Pro-
blem 22 of Oberwolfach [76], partly motivated by an observation
of Hertweck on the group rings of PSL(2,q) and PGL(2,q) [60, Re-
mark 6.2]. As (ZC1) was regarded as the main problem, (KP) was
not studied much by itself. The authors observed in [110] that (KP)
is actually equivalent to Problem 44 from [136], a generalization of
a question posed by Bovdi (see [22, p. 26] or [2, Problem 1.5]). More
precisely we have the following proposition.

Proposition 5.1 LetG be a finite group and u a torsion element of V(ZG).
Consider G as a subgroup of the symmetric group SG in the standard way.
The following are equivalent:

1. u is conjugate to an element of G in the rational group algebra of
some group containing G.

2. u is conjugate to an element of G in the rational group algebra of SG.

3. For every positive integer m different from the order of u the coeffi-
cients of u corresponding to elements of G of order m sum up to 0.

We summarize some results on (KP). The first two follow from
results of Stanley Orlando Juriaans, Michael Dokuchaev and Sehgal
using Proposition 5.1.

Theorem 5.2 (KP) has a positive answer if one of the following holds.

1. G is metabelian (see [45]),

2. G is solvable, has only abelian Sylow subgroups and u is of prime
power order (see [79]),

3. u is of prime order (see [90]),

4. G has a Sylow tower (see [8]). In particular, for G supersolvable.

It was observed in [8] that the counterexamples to (ZC1) construc-
ted in [47] can not provide negative solutions to (KP) as they have Sy-
low towers and are also metabelian. Actually, as explained above, the
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methods in [47] can probably allow to construct more counterexam-
ples G, some of which might not have a Sylow tower and not be
metabelian. However all units providing counterexamples with this
method will live in V(ZG,N) for a normal nilpotent subgroupN of G.
On the other hand, for elements in V(ZG,N), the Kimmerle Problem
has a positive solution by Proposition 5.2 and [110, Theorem 3.3]. In
this sense a solution to (KP) would need significant new ideas.

The other weaker version of (ZC1) mentioned in the introduction,
i.e. (SP), is very natural and more in the style of questions already
asked by Higman. As a consequence of Proposition 2.5.5 we have the
following corollary.

Corollary 5.3 (SP) has a positive solution for solvable groups.

So (SP) has a positive answer for a very big class of groups, a class
for which probably there will never be an argument or algorithm
that can tell if a specific group in this class satisfies (ZC1) or not. It
is very interesting what this class can give for (KP).

Problem 6 Does (KP) hold for solvable groups?

One weaker version of (SP) which found some attention was also
formulated by Kimmerle [83]. Recall that the prime graph, also called
the Gruenberg-Kegel graph, of a group G is an undirected graph
whose vertices are the primes appearing as order of elements in G
and the vertices p and q are connected by an edge if and only if G
contains an element of order pq.

The Prime Graph Question (PQ) Let G be a finite group.
Do G and V(ZG) have the same prime graph?

The structural advantage is that for (PQ) there is a reduction the-
orem, while this is not the case for any of the other questions given
above. Recall that a group G is called almost simple if there is a non-
abelian simple group S such that G is isomorphic to a subgroup
of Aut(S) containing Inn(S), and in this case S is called the socle
of G.

Theorem 5.4 (see [88]) Let G be a finite group. Then (PQ) has a positive
answer for G if and only if it has a positive answer for all almost simple
homomorphic images of G.
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So one might hope that the Classification of Finite Simple Groups
can provide a way to prove (PQ) for all groups. But a lot remains to
be done, since many series of almost simple groups still need to be
handled. We summarize some important results.

Theorem 5.5 Let G be a finite almost-simple group. Then (PQ) has a
positive answer for G if the socle of G is one of the following:

1. The alternating group An (see [97, 65, 130, 131, 11, 4, 14]).

1. PSL(2,p) or PSL(2,p2) for some prime p (see [60, 10]).

1. One of 18 sporadic simple groups (see [36, 27, 28, 33, 35, 29, 24, 30,
31, 26, 34, 32, 87, 107, 14]).

1. A group whose order is divisible by at most three pairwise different
primes (see [88, 11]) or one of many groups whose order is divisible
by four pairwise different primes (see [13]).

6 p-subgroups

In this section we revise the main results and questions on the fi-
nite p-subgroups of U(ZG) for G a finite group and p a prime integer.
The questions are the specialization to p-subgroups of V(ZG) of the
problems given above which we refer to by adding the prefix “p-”.
For example, the p-versions of (ZC3) and (SIP) are as follows:

(p-ZC3) Given a finite group G, is every finite p-subgroup
of V(ZG) conjugate in QG to a subgroup of G?

(p-SIP) What are the finite p-groups P satisfying the fol-
lowing property for all finite groups G? If V(ZG) contains
a subgroup isomorphic to P then G contains a subgroup
isomorphic to P.

The following terminology was introduced in [104, 90]. One says
that G satisfies a Weak Sylow Like Theorem when every finite p-sub-
group of V(ZG) is isomorphic to a subgroup of G.

That the role of p-subgroups in V(ZG) is very special is expressed
already by the Lemma of Coleman (Theorem 3.2), which implies
a positive solution for (p-NP). Also, the result of James Cohn and
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Donald Livingstone on the exponent of V(ZG), mentioned above, is
equivalent to a positive solution to (p-SP).

By Theorem 4.2, the p-version of Sehgal’s 35th Problem has a pos-
itive answer in general. This was in fact already observed earlier
by Hertweck [61]. Moreover, as a consequence of Theorem 2.6, (ZC3)
holds for p-groups and hence (p-ZC2) and (p-ISO) hold. These latter
also follows from the following result:

Theorem 6.1 (see [92]) If G is a finite solvable group and P is a p-sub-
group of a group basis of ZG then P is conjugate in QG to a subgroup
of G.

In the situation of general p-subgroups the knowledge is much
more sparse. There is no counterexample to (p-ZC3). Neither is there
a general answer to (p-ZC1), not even for units of order p, though in
this case (p-KP) holds, cf. Theorem 5.2. Note, that all positive results
for (SIP), mentioned in Section 2, are in fact results for (p-SIP). A
big step in the solution of this problem might be an answer to the
following:

Problem 7 Is (SIP) true for elementary-abelian groups?

We collect here some results on (p-ZC3) and Weak Sylow Like The-
orems:

Theorem 6.2 If G is a finite group and p a prime integer then (p-ZC3)
has a positive answer for G in the following cases:

1. G is nilpotent-by-nilpotent or supersolvable (see [43]).

2. G has a normal Sylow p-subgroup (see [136, 41.12]).

3. G is solvable and the Sylow p-subgroups of G are abelian (see [43,
Proposition 2.11]).

4. G is solvable and every Sylow subgroup of G is either abelian or a
quaternion 2-group (see [43, Theorem 5.1]).

5. G is a Frobenius group (see [43, 44, 80, 25, 90]).

6. p = 2, the Sylow 2-subgroup of G has at most 8 elements and G is
not isomorphic to A7 (see [6, 105]).

Theorem 6.3 G satisfies a Weak Sylow Like Theorem for p-subgroups in
the following cases:
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1. p = 2 and the Sylow 2-subgroups of G are either abelian, quater-
nion (see [86]) or dihedral (see [105]).

2. G has cyclic Sylow p-subgroups (see [84, 64]).

For G = PSL(2, rf) the p-subgroups of V(ZG) found some atten-
tion starting with [67]. It is known today that (p-ZC3) has a positive
answer for G if p 6= r, or p = r = 2, or f = 1 [104]. Also a Weak Sylow
Like Theorem holds for G if f 6 3 [67, 9].

Remark A quarter of a century ago Sehgal included a list of 56 open
problems in his book on units of integral group rings [136]. Several
of those concerned topics mentioned in this article. Some have been
solved, while others remain open.

1. Problem 8 is (SP), Problem 45 is (MIP) and hence both are still
open. Problem 43 is (NP) and has been solved by Hertweck.

2. By Proposition 5.1, Problem 9 is equivalent to (p-KP) and Prob-
lem 44 to (KP). Both remain open.

3. Problems 10 and 11 ask to prove (ZC1) and (ZC3) for symmet-
ric groups. Problem 14 asks about (ZC1)-(ZC3) for alternating
groups. They remain open.

4. Problems 33, 34 and 37 are related with the matrix strategy
mentioned in Section 4. They have been solved by Cliff
and Weiss [39].

5. Problems 12, 35 and 36 are solved negatively by the counterex-
ample to (ZC1) [47].

6. Problem 32 asks the following: Let N be a normal subgroup
in G, where G is a finite group, and u a torsion element
in V(ZG,N). Does the order of u necessarily divide the order
of N? This has positive solution if N is solvable, as we quickly
show: Assume that u is of order n and let N ′ be a minimal
normal subgroup of G contained in N. Then N ′ must be an
elementary-abelian p-group, for some prime p, as N is solvable.
If the projection u ′ of u in Z(G/N ′) has order smaller than u,
then the order of u ′ is n/p by [61, Proposition 4.2]. So arguing
by induction on the order of N we can answer the problem for
solvable N.
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We are thankful to the referee who provided the idea for this
proof.
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