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“In re mathematica ars proponendi quaestionem pluris facienda
est quam solvendi”

Georg Cantor

ADV Perspectives in Group Theory

— an open space —

ApV-8a  Gareth Tracey

A subset
{911921"'/9d}

of a group G is said to invariably generate G if {g7',95%,...,95%}
generates G for each d-tuple (x7,x7...,%x4) € G4. An easy exercise
shows that if G is finite then such a set always exists, and in this case
the Chebotarev invariant C(G) of G is defined to be the expected value
of the random variable n which is minimal subject to the require-
ment that n randomly chosen elements of G invariably generate G.
The study of the invariant C(G) has deep motivations coming from
computational Galois Theory and the Inverse Galois Problem (see [D]
and [KZ] for more information).

Indeed, in this direction the case G = Sym(n), which was first pro-
posed by B.L. van der Waerden [vdW] in 1936 (albeit in a different
form), is particularly important. With this in mind, Pemantle, Peres
and Rivin (2016) and Eberhard, Ford and Green (2017) proved semi-
nal results which combine to give the following theorem; for a finite
group G, let Py g (k) denote the probability that k randomly chosen
elements of G invariably generate G.

Theorem (see Theorem 1.5 of [PPR] and Theorem 1.2 of [EFG])
Let G = Sym(n).
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1. There exists a constant € such that P1 g(4) > € foralln € IN.
2. P1g(3) - 0asn — oo.

An easy exercise in Probability Theory allows one to deduce from
the Theorem that C(Sym(n)) is absolutely bounded, and that

C(Sym(n)) > 4

if n is large enough. However, sharp bounds for C(Sym(n)) are un-
known, and this leads us to propose the following question.

Question 1 Find the infimum of C(Sym(n)) as n runs over the natural
numbers.

It is also unclear whether or not C(Sym(n)) depends on the the
arithmetic of n, or if the limit exists (the limit limy_,o e(Sym(n))
of the expected number e(Sym(n)) of uniform random elements re-
quired to generate Sym(n) exists - see Theorem 8 of [L]). This leads
us to our next suggested open problem.

Question 2 Does limp o, C(Sym(n)) exist?

With the motivation from Galois Theory again in mind, it is also
natural to consider the more general case of G being a subgroup of
the symmetric group Sym(n). Indeed, we do not know any examples
where C(G) is not linear in n, where G < Sym(n).

Question 3 Does there exist a constant 3 such that C(G) < pn whenever
G < Sym(n)?

We remark that in a forthcoming paper, Lucchini and the author
prove that C(G) is polynomial in n whenever G < Sym(n) is either
primitive or soluble.

Finally, we remark that for any € > 0 there exists and absolute
constant k = k(e) such that Py g(k) > 1 — e whenever k > c. This is
proved for groups of Lie type in [FG], and for alternating groups
in [LP]. In particular, it follows that there exists an absolute con-
stant y such that C(G) <y whenever G is a non-abelian finite simple
group. Our final open problem then reads as follows.

Question 4 Find the infimum of C(G) as G runs over the set of finite
simple groups.
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ADV -8B  Andreas Biichle

All groups considered here are finite. Rationality questions are clas-
sical and at the very heart of finite group theory. An element x € G
is called rational in G if it is conjugate in G to all generators of (x), the
cyclic subgroup generated by x. A group G is called rational if every
element is rational in G. This is equivalent to the character table being
a rational matrix (whence the name). The notion of rational groups
was generalized by D. Chillag and S. Dolfi in [CD]: an element x € G
is called inverse semi-rational in G if every generator of (x) is conjugate
to x or to x~! in G; a group G is called inverse semi-rational if every
element is inverse semi-rational in G. It turned out that this has nice
interpretations of different flavor. The following are equivalent for a
group G (see e.g. [BCJM]):

(i) G is inverse semi-rational.

(ii) Z(U(ZG)), the center of the unit group of the integral group
ring of G, is finite.
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(iii) Kq(ZG), the Whitehead group of the integral group ring of G,
is finite.

(iv) For all rows of the character table of G, the field extension of Q
generated by the entries of this row equals Q or an imaginary
quadratic extension.

(v) For all columns of the character table of G, the field extension
of Q generated by the entries this column equals Q or an imag-
inary quadratic extension.

This is a surprisingly frequently happening phenomenon: for in-
stance, about 86.62% of all groups up to order 512 are inverse semi-
rational (mainly due to the fact that many 2-groups are inverse semi-
rational) whereas 0.57% of the groups of order at most 512 are ratio-
nal, see Section 7 of [BCJM]. Due to the characterization (ii) above, in-
verse semi-rational groups are also called cut groups (for central units
trivial, a name coined by Bakshi-Maheshwary-Passi [BMP]) and for
brevity this is also the term we will also use in what follows

Denote by Q(G) the field extension of the rationals generated by all
entries of the character table of G. Clearly, |Q(G) : Q| =1 if and only
if G is rational. Is there a natural class comprising the rational groups
such that the degrees of the fields Q(G) is uniformly bounded?

Question 1 Is there ¢ > 0 such that |Q(G) : Q| < c for all cut groups?

J. Tent proved in [T], Theorem B, that |[Q(G) : Q| < 27 (or actual-
ly < 25) for solvable cut groups. There is also an affirmative answer
to Question 1 for all quasi or almost simpel groups (in particular
for all simple groups), cf. Theorem 5.1 of [BCJM] and S. Trefethen’s
article [Tr].

On the other hand, the answer to Question 1 is no, if one consid-
ers the slightly larger classes of semi-rational or quadratic rational
groups (i.e. groups where one allows arbitrary quadratic extensions
for each row or column of the character table, respectively) instead
of cut groups, as can be seen from the alternating groups.

Since non-trivial rational groups have even order, the Sylow 2-sub-
groups play a fundamental role in these groups. In particular it was
conjectured that they should again be rational! This was refuted
by I.M. Isaacs and G. Navarro in the article [IN] providing counterex-
amples of order 27 - 3, where they also proved that the Sylow 2-sub-
group of a rational group is rational again in certain classes of groups.
Since every non-trivial cut group has an order divisbile by 2 or 3 (see
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Theorem 1 of [BMP]), one might wonder what can be said about
the corresponding Sylow subgroups. It is not hard to find examples
of cut groups having Sylow 2-subgroups that fail to be cut. How-
ever for Sylow 3-subgroups the situation seems to be different; see
also Question 6.8 of [BCJM].

Question 2 Let G be a cut group, P € Syl;(G). Is P cut?

Why might there be more hope that this question has a positive an-
swer compared to the question on rationality of the Sylow 2-sub-
groups in rational groups? One can prove the following: A 3-element
of a group G is inverse semi-rational in G if and only if it is in-
verse semi-rational in some Sylow 3-subgroup P of G containing
it (see Lemma 6.1 of [BCJM]). The basic fact behind this is that the
automorphism group of a cyclic 3-group is cyclic, which is in gen-
eral not the case for a cyclic 2-group, hence the corresponding proof
does not work for rationality and 2-elements. In Section 6 of [BCJM]
a positive answer to Question 2 is provided for supersolvable groups
(or, more generally, for solvable groups of 3-length 1), Frobenius
groups, for groups of small order and in several other situations.
Moreover, the answer to Question 2 is yes for all groups of odd
order (see Theorem C of [G]) and for all (quasi or almost) simpel
groups as can be checked departing from the data in Theorem 5.1
of [BCJM] and [Tr]. N. Grittini also showed that Question 2 has an
affirmative answer for solvable cut groups, if their Sylow 3-subgroup
has nilpotency class at most 2, see Theorem A of [G]. Note that in
case Question 2 has a positive answer, then P/P’ is also cut, hence
an elementary abelian 3-group. This is indeed always the case by a
result of Isaacs-Navarro, Grittini (for solvable groups) or, in general,
by Corollary D of [NT].

The only primes that divide the order of a solvable rational group
are 2, 3 and 5 by a classical result of R. Gow. A striking result of P. He-
ged{s asserts that 5 plays a very special role: the Sylow 5-subgroup is
normal and elementary abelian in every solvable rational group [H].
The only primes that divide the order of a solvable cut group
are 2, 3, 5 and 7 (see Theorem 1.2 of [B]). Yet one can construct ex-
amples of solvable cut groups with arbitrary large p-length and Sy-
low p-subgroups with arbitrary large exponent (for p € {5,7} take
the iterated wreath product of the normalizer of a Sylow p-subgroup
in Sp, the symmetric group of degree p). But is at least
the Hall {5, 7}-subgroup of each Fitting layer nice? As usual, O (G)
denotes the largest normal p-subgroup of G.
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Question 3 Let G be a solvable cut group. Is it true that exp Op(G) | p
forp €{5,7}?
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ApV-8C  Lev Kazarin

Eugene P. Wigner introduced in 1940 the class of simply reducible
groups (SR-groups). These are the real groups for which tensor prod-
uct of any two irreducible representations are decomposable into the
sum of irreducible representations of a group with coefficients not
exceeding 1.

It was proved in [L.S. Kazarin — E.I. Chankov: “Finite simply re-
ducible groups are solvable”, Sbornik Math. 201 (2010), 655 — 668]
that finite simply reducible groups are soluble.

Question 1 Determine the structure of soluble SR-groups.
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In particular it is not known when the wreath product of two fi-
nite SR-groups is an SR-group. Is the derived length of a finite SR-
group bounded?

The attempts to obtain a fast group-theoretic based algorithms of
matrix multiplications lead to the investigations of finite groups for
which the sums of the cubes of irreducible representations is not too
far from |G|log|G|. This is also interesting for the applications of a
group-theoretic based algorithms for computing convolutions used
in a signal processing.

It is also natural to study finite groups with extremely large de-
grees of irreducible characters.

Question 2 Determine the structure of a finite group G admitting an irre-
ducible character x such that |G| < 3x(1)2. Note that the sporadic Thomp-
son group has such an irreducible character of degree 190373976.

Clearly, it is interesting in general to study the behaviour of the
set cd(G) of degrees of irreducible characters of a finite group G.

Question 3 Is it true that every alternating group Ay, for n > 20 has three
irreducible complex characters Xi1,X2,X3 such that n!/2 divides

x1(1)x2(1)x3(1)?

ADV-8D  Francesco de Giovanni & Marco Trombetti

Let X be a class of groups. A group is said to be minimal non-X (or
an opponent of X) if it is not an X-group but all its proper subgroups
belong to X. The structure of minimal non-X groups has been inves-
tigated for several different choices of the group class X since the
beginning of twentieth century, when Smidt on one side, Miller and
Moreno on the other, studied in this context the behaviour of the
class § of finite groups and that of the class 2 of abelian groups.

We shall denote by X° the interior of X, i.e. the subclass of X con-
sisting of all groups that occur as proper subgroups of some locally
graded opponent of X. Of course, the class X° can be much smaller
than X, and it is of interest to understand which groups must belong
to X°.

This problem is easily settled out for the classes § and 2 (see
[dGT1]). Although also the structure of finite minimal non-nilpotent
groups is well described (see [BER]), the situation is much more com-
plicated in the infinite case (see for instance [M]), and so the follow-
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ing problem concerning the class 91 of nilpotent groups naturally
arises.

Question 1 Determine the group class N°, or at least give a satisfactory
approximation of it.

A similar question can be asked for the class ZA of hypercentral
groups.

Question 2 Determine the group class ZA°, or at least give a satisfactory
approximation of it.

Notice that answers to Question 2 will provide information also
on the corresponding problem for the class of hypercyclic groups;
indeed, it is known that an infinite locally graded group is minimal

non-hypercyclic if and only if it is minimal non-hypercentral (see
[dGT])).

The description of the main properties of the interior of a group
class and related concepts can be found in [dGT1].
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