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Abstract
Braces were introduced by Rump as a generalization of Jacobson radical rings. It
turns out that braces allow us to use ring-theoretic and group-theoretic methods for
studying involutive solutions to the Yang–Baxter equation. If braces are replaced by
skew braces, then one can use similar methods for studying not necessarily involu-
tive solutions. Here we collect problems related to (skew) braces and set-theoretic
solutions to the Yang-Baxter equation.
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1 Introduction

In this paper I propose several problems in the theory of skew braces.
I hope that these problems will help to strengthen the interest in the
theory of skew braces and set-theoretic solutions to the Yang-Bax-
ter equation. I have not attempted to review the general theory. I
do not discuss problems related to homology of solutions (see [48]),
semibraces (see [19]) or trusses (see [12]). I concentrate only on skew
braces and the Yang-Baxter equation.

* This work is supported by PICT-2481-0147 and MATH-AmSud 17MATH-01. The
author thanks F. Cedó, T. Gateva-Ivanova, E. Jespers, V. Lebed, K. Nejabati Ze-
nouz, J. Okniński, A. Smoktunowicz, W. Rump, P. Zadunaisky for discussions,
comments and problems.
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In §9 of [32], Drinfeld wrote that maybe it would be interesting to
study set-theoretical solutions to the equation

R12R13R23 = R23R13R12, (1.1)

where X is a set, R : X× X → X× X and Rij is the map acting like R
on the two factors i and j and leaving the third factor alone. Writing
r = τ ◦ R, where τ is the map (x,y) 7→ (y, x), Equation (1.1) becomes

r12r23r12 = r23r12r23, (1.2)

where r12 = r× id and r23 = id× r.
Let us say that a pair (X, r) is a set-theoretic solution to the Yang-

Baxter equation (YBE) if X is a non-empty set and r : X× X → X× X
is a bijective map satisfying (1.2). If (X, r) is a solution of the YBE we
write

r(x,y) = (σx(y), τy(x)).

We say that the solution (X, r) is involutive if r2 = idX×X and non-
degenerate if σx ∈ SX and τx ∈ SX for all x ∈ X, where SX denotes
the group of bijective maps X → X. By convention, our solutions will
always be non-degenerate solutions.

One tool to study set-theoretic solutions to the YBE is the theory
of skew left braces. Braces were introduced by Rump in [59]. For a
recent survey on braces we refer to [21]. Skew braces appeared later
in [43]. A skew left brace is a triple (A,+, ◦), where (A,+) and (A, ◦)
are groups (not necessarily abelian) such that

a ◦ (b+ c) = a ◦ b− a+ a ◦ c (1.3)

for all a,b, c ∈ A. To define skew right braces one needs to re-
place (1.3) by

(a+ b) ◦ c = a ◦ c− c+ b ◦ c. (1.4)

The inverse of an element a ∈ A with respect to the circle (or mul-
tiplicative) group of A will be denoted by a ′. Examples of skew left
braces can be found in [2],[25],[43],[61].

A skew two-sided brace is a skew left brace that is also a skew right
brace with respect to the same pair of operations.

If X is a class of groups, a skew left brace will be called of type X if
its additive group belongs to X. Skew left braces of abelian type are
those braces introduced by Rump in [59]. By convention, a left brace
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will always be a skew left brace of abelian type, i.e. with abelian
additive group.

Braces and skew left braces have several interesting connections,
see for example [61] and [67]. The connection between skew left
braces and non-degenerate solutions of the YBE is given in the fol-
lowing theorem (see Theorem 3.1 of [43]):

Theorem If A is a skew left brace, then the map

rA : A×A→ A×A, rA(a,b) = (−a+ a ◦ b, (−a+ a ◦ b) ′ ◦ a ◦ b),

is a non-degenerate set-theoretic solution of the YBE. Moreover, rA is invo-
lutive if and only if A is of abelian type.

Solutions produced from skew left braces are universal. In a differ-
ent language, one finds the following result in [36],[50],[68]:

Theorem If (X, r) be a solution of the YBE, then there exists a unique
skew left brace structure over the group

G = G(X, r) = 〈X : x ◦ y = u ◦ v whenever r(x,y) = (u, v)〉

such that the diagram

X×X X×X

G×G G×G

r

ι×ι ι×ι
rG

commutes, where ι : X→ G(X, r) is the canonical map.

One proves that the pair (G(X, r), ι) satisfies a universal property
(see Proposition 3.9 of [43] and Theorem 3.5 of [67]). The groupG(X, r)
is infinite since for example the degree map X → Z, x 7→ 1, extends
to a group homomorphism G(X, r)→ Z. Several properties of G(X, r)
are discussed in [45]. If the set X of the solution (X, r) is finite, then
one can realize this solution using a finite skew left brace (see [4]
and [25]).
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2 Problems

It was observed by Rump in [57] that non-degenerate involutive solu-
tions are in bijective correspondence with non-degenerate cycle sets.
A cycle set is a pair (X, ·), where

X×X→ X, (x,y) 7→ x · y,

is a map such that each ϕx : X→ X, y 7→ x · y, is bijective, and

(x · y) · (x · z) = (y · x) · (y · z)

for all x,y, z ∈ X.
A cycle set (X, ·) is said to be non-degenerate if the map

x 7→ x · x

is bijective. Finite cycle sets are non-degenerate (see Theorem 2

of [57]). The correspondence between non-degenerate cycle sets and
involutive solutions is given by

r(x,y) = ((y ∗ x) · y,y ∗ x)

where x ∗ y = z if and only if x · z = y. Homomorphisms of cycle sets
are defined in the usual manner.

Problem 2.1 Construct the free cycle set.

It would be interesting to have a nice description of the free cy-
cle set. This nice description could be used for example to compute
homology.

In [36], Etingof, Schedler and Soloviev constructed all non-degene-
rate involutive solutions of cardinality 6 8, see Table 2.1. To construct
finite involutive solutions one needs to construct finite cycle sets.

Table 2.1: Involutive non-degenerate solutions of cardinality 6 8

cardinality 1 2 3 4 5 6 7 8

solutions 1 2 5 23 88 595 3456 34528

square-free 1 1 2 5 17 68 336 2041

indecomposable 1 1 1 5 1 10 1 98

Problem 2.2 Construct all cycle sets of small cardinality.
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One can try for example with the construction of cycle sets of car-
dinality nine. Of course Problem 2.2 refers to the construction of all
isomorphism classes of cycle sets. It would also be interesting to con-
struct all cycle sets (or involutive solutions) of small cardinality un-
der particular assumptions. For example, a solution (X, r) of the YBE
is said to be square free if r(x, x) = (x, x) for all x ∈ X, this means that
one needs cycle sets (X, ·) such that x · x = x for all x ∈ X.

Problem 2.3 Construct all square-free cycle sets of small cardinality.

An involutive solution (X, r) is said to be indecomposable if the
group G(X, r) defined as the subgroup of SX generated by {σx : x ∈ X}
acts transitively on X. Similarly one defines indecomposable cycle
sets. The classification of indecomposable solutions with a prime
number of elements appears in [35] and [37].

Problem 2.4 Construct all indecomposable cycle sets of small cardinality.

Maybe Problems 2.2–2.4 and similar problems could be studied
using constraint satisfaction methods.

The number of finite involutive solutions increases rapidly with
the number of elements of the underlying set. Therefore it makes
sense to ask for an estimation:

Problem 2.5 Estimate the number of cycle sets of cardinality n for n→∞.

Much less is known for non-involutive solutions. Before going into
the general problem of constructing non-involutive solutions, one
could start with injective solutions. A solution (X, r) is said to be in-
jective if the canonical map X→ G(X, r) is injective. As it was proved
in [36], involutive solutions are always injective:

{involutive solutions} ( {injective solutions} ( {solutions}.

Problem 2.6 Construct all injective non-involutive solutions of small car-
dinality.

Problem 2.7 Construct all solutions of small cardinality.

Problem 2.7 is related to the construction of finite biquandles of
small cardinality, see for example [10] and [38]. A different approach
to construct all solutions could be based on skew left braces, see [4];
this method requires the classification of finite skew left braces.
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Simple involutive solutions were defined in §2 of [69]. A surjective
map

p : X→ Y

of involutive solutions is said to be a covering if all the fibers p−1(y)
have the same cardinality. A covering X → Y is said to be trivial if
either |Y| = 1 or |Y| = |X|. An involutive solution (X, r) is said to be
simple if |X| > 1 and any covering X→ Y is trivial.

Problem 2.8 Classify finite simple involutive solutions.

One could simply ask for examples of small involutive simple so-
lutions:

Problem 2.9 Construct finite simple involutive solutions of small cardi-
nality.

It would be interesting to understand the simplicity of an involu-
tive solution in the language of left braces:

Problem 2.10 Is it possible to read off the simplicity of an involutive so-
lution (X, r) in terms of the left brace G(X, r)?

It would be also interesting to develop the theory of non-involutive
simple solutions. Some ideas could be obtained if one reads off the
simplicity of a solution in terms of a skew left brace where it is real-
ized.

Problem 2.11 Let (X, r) be a solution to the YBE. When does the multi-
plicative group of G(X, r) have torsion?

Problem 2.11 was posed by Bachiller in [4]. Gateva-Ivanova and
Van den Bergh proved in [42] that in the case of involutive solutions
the multiplicative group of G(X, r) is always torsion-free. It is easy
to construct examples of non-involutive solutions (X, r) such that the
multiplicative group of G(X, r) has torsion.

Problem 2.12 Construct the free (skew) left brace.

Based on the work of Bachiller [3] and Catino and Rizzo [20] on
regular subgroups, an algorithm to construct finite skew left braces
was introduced in [43]. With some exceptions, this algorithm was
used to construct small (skew) left braces. For n ∈ N let s(n) be the
number of non-isomorphic skew left braces of size n and let b(n) be
the number of non-isomorphic left braces of size n. Table 2.2 shows
some values of s(n) and b(n) and several open cases. Maybe some of
these open cases are fairly straightforward computational projects.
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Table 2.2: The number of non-isomorphic left braces and skew left braces.
n 1 2 3 4 5 6 7 8 9 10 11 12

b(n) 1 1 1 4 1 2 1 27 4 2 1 10

s(n) 1 1 1 4 1 6 1 47 4 6 1 38

n 13 14 15 16 17 18 19 20 21 22 23 24

b(n) 1 2 1 357 1 8 1 11 2 2 1 96

s(n) 1 6 1 1605 1 49 1 43 8 6 1 855

n 25 26 27 28 29 30 31 32 33 34 35 36

b(n) 4 2 37 9 1 4 1 ? 1 2 1 46

s(n) 4 6 101 29 1 36 1 ? 1 6 1 400

n 37 38 39 40 41 42 43 44 45 46 47 48

b(n) 1 2 2 106 1 6 1 9 4 2 1 1708

s(n) 1 6 8 944 1 78 1 29 4 6 1 66209

n 49 50 51 52 53 54 55 56 57 58 59 60

b(n) 4 8 1 11 1 80 2 91 2 2 1 28

s(n) 4 51 1 43 1 ? 12 815 2 6 1 418

n 61 62 63 64 65 66 67 68 69 70 71 72

b(n) 1 2 11 ? 1 4 1 11 1 4 1 489

s(n) 1 6 11 ? 1 36 1 43 1 36 1 17790

n 73 74 75 76 77 78 79 80 81 82 83 84

b(n) 1 2 5 9 1 6 1 1985 ? 2 1 34

s(n) 1 6 14 29 1 78 1 ? ? 6 1 606

n 85 86 87 88 89 90 91 92 93 94 95 96

b(n) 1 2 1 90 1 16 1 9 2 2 1 ?
s(n) 1 6 1 800 1 294 1 29 8 6 1 ?
n 97 98 99 100 101 102 103 104 105 106 107 108

b(n) 1 8 4 51 1 4 1 106 2 2 1 494

s(n) 1 53 4 711 1 36 1 944 8 6 1 ?
n 109 110 111 112 113 114 115 116 117 118 119 120

b(n) 1 6 2 1671 1 6 1 11 11 2 1 395

s(n) 1 94 8 ? 1 78 1 43 47 6 1 ?
n 121 122 123 124 125 126 127 128 129 130 131 132

b(n) 4 2 1 9 49 36 1 ? 2 4 1 24

s(n) 4 6 1 29 213 990 1 ? 8 36 1 324

n 133 134 135 136 137 138 139 140 141 142 143 144

b(n) 1 2 37 108 1 4 1 27 1 2 1 ?
s(n) 1 6 101 ? 1 36 1 395 1 6 1 ?
n 145 146 147 148 149 150 151 152 153 154 155 156

b(n) 1 2 9 11 1 19 1 90 4 4 2 40

s(n) 1 6 123 43 1 401 1 ? 4 36 12 782

n 157 158 159 160 161 162 163 164 165 166 167 168

b(n) 1 2 1 ? 1 ? 1 11 2 2 1 443

s(n) 1 6 1 ? 1 ? 1 43 12 6 1 ?
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Problem 2.13 Construct all left braces of size 32.

Some results related to Problem 2.13 are shown in Table 2.3. Ac-
cording to these results, one needs to construct left braces of size 32
with additive group isomorphic to

C52 = C2 ×C2 ×C2 ×C2 ×C2,

where C2 denotes the cyclic (multiplicative) group with two elements.
Apparently, this particular case cannot be done in reasonable time
with the techniques of [43]. The number of (skew) left braces of
size 64, 96 or 128 seems to be extremely large and our computational
methods are not strong enough to construct them all.

Table 2.3: Some calculations of braces of size 32.
additive group number time needed

C32 9 0.1
C8 ×C4 1334 4 hours
C16 ×C2 120 30 minutes
C24 ×C2 13512 13 days
C8 ×C22 1547 10 hours

Problem 2.14 Let p be a prime number. Classify skew left braces of
size pn.

Problem 2.14 is important because is the key step in the classifica-
tion of skew left braces of nilpotent type.

Left braces of size p2 and p3, where p is a prime number, were
classified by Bachiller in [2]. He proved that

b(p2) = 4 and b(p3) = 6p+ 19.

Since groups of order p2 are abelian, it follows that s(p2) = 4. Skew
left braces of size p3 were classified by Nejabati Zenouz in [52]. He
proved that

s(p3) = 6p2 + 8p+ 23

whenever p > 3. From Table 2.2 one gets s(8) = 47 and s(27) = 101.

Problem 2.15 Let p and q be different prime numbers. Construct all skew
left braces of size pq.

It should be fairly easy to solve Problem 2.15 using the techniques
of [14].
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Problem 2.16 Let p and q be different prime numbers. Consruct all skew
left braces of size p2q.

Left braces of size p2q for prime numbers p and q such that q>p+1
were classified by Dietzel in [31]. He proved that

b(4q) =

9 if 4 - q− 1,

11 if 4 | q− 1,

if q > 3, and that

b(p2q) =


4 if p - q− 1,

p+ 8 if p | q− 1 and p2 - q− 1,

2p+ 8 if p2 | q− 1,

if q > p+ 1 > 3.

Problem 2.17 Estimate the number of (skew) left braces of size n for
n→∞.

The following problem appears in [21]:

Problem 2.18 Compute automorphism groups of skew left braces of
size pn.

Automorphism groups of skew left braces of size p3 were com-
puted in [53].

In 2.28 (I) of [39], Gateva-Ivanova made the following conjecture:
for each finite involutive square-free solution (X, r) there exist x,y ∈ X
such that x 6= y and σx = σy. It was proved by Cedó, Jespers and O-
kniński in [24] that the conjecture is true if the group G(X, r) gener-
ated by {σx : x ∈ X} is abelian. Later in [41] and in [25] it was shown
using other methods that the result is also valid if G(X, r) is infinite
abelian. In full generality, the conjecture is now known to be false.
The first counterexample appeared in [69]; other counterexamples
were later constructed in [6] and [17]. It would be interesting to find
essentially new counterexamples.

Problem 2.19 Construct counterexamples to Gateva-Ivanova conjecture.
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One could ask, for example, for counterexamples of size nine. Com-
puter calculations show that there is only one counterexample to Ga-
teva-Ivanova conjecture among the 38698 involutive solutions of size
6 8. It could be enlightening to attack Problem 2.19 using the the-
ory of braces. Let A be a brace and X be a subset of A such that the
restriction

rX = rA|X×X

of rA to X× X is a solution to the YBE. We say that (A,X) is a Gate-
va-Ivanova pair if the solution (X, rX) is a counterexample to Gateva-I-
vanova conjecture.

Problem 2.20 Find Gateva-Ivanova pairs.

One could start studying Problem 2.20 by inspecting the database
of small braces. I should remark that counterexamples to Gateva-Iva-
nova conjecture might provide new examples of Artin-Schelter reg-
ular algebras with global dimension > 3 with interesting properties
to study. Gateva-Ivanova conjecture motivated a deeper study of the
structure of braces and related objects (see, for example, [25],[40],
[59]).

Gateva-Ivanova conjecture is of course related with the retractabil-
ity of involutive solutions, introduced in [36]. For an involutive so-
lution (X, r), consider the equivalence relation on X given by x ∼ y
if and only if σx = σy. Denoting by Y the set of equivalence classes
of X, the map r induces a function

r : Y × Y → Y × Y.

The pair (Y, r) is a solution to the YBE which will be denoted
by Ret(X, r). One defines inductively

Retm+1(X, r) = Ret(Retm(X, r))

for all m > 1. The solution (X, r) is said to be a multipermutation
solution if there is a positive integer m such that Retm(X, r) has only
one element. The solution (X, r) is said to be irretractable if

Ret(X, r) = (X, r).

A group G admits a left ordering if it admits a total ordering < such
that if x < y then zx < zy for all x,y, z ∈ G. In [9] it is proved
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that a finite involutive set-theoretic solution (X, r) of the YBE is a
multipermutation solution if and only if its structure group G(X, r)
admits a left ordering. One of the implications was proved in [30]
and [44].

Problem 2.21 Let (X, r) be an injective non-involutive solution of the YBE.
When does the multiplicative group of G(X, r) admit a left ordering?

Problem 2.21 appears in [49].
A group G satisfies the unique product property if for every finite

non-empty subsets A and B of G there is an element x which can be
written uniquely as x = ab with a ∈ A and b ∈ B.

Problem 2.22 Let (X, r) be an involutive irretractable solution of the YBE.
Can G(X, r) satisfy the unique product property?

In Example 8.2.14 of [45], Jespers and Oknińksi proved that the
structure group G(X, r) of a certain involutive irretractable solu-
tion (X, r) of cardinality four does not satisfy the unique product
property. They showed that this structure group contains a subgroup
isomorphic to the celebrated Promislow group [56].

A group G is said to be diffuse if for every finite non-empty subset
A of G there exists a ∈ A such that for all g ∈ G \ {1}, either ga 6∈ A
or g−1a 6∈ A. Diffuse groups satisfy the unique product property.
However, the precise relation between diffuseness and unique prod-
ucts is not clear at the moment. In [49] it is proved that the structure
group G(X, r) of an involutive solution (X, r) is diffuse if and only
if (X, r) is a multipermutation solution. Therefore a positive answer
to Problem 2.22 would give an example of a non-diffuse group with
the unique product property.

Problem 2.23 Study non-involutive multipermutation solutions.

Some work related to Problem 2.23 can be found in [49] and [67].
As it was observed by Rump, two-sided braces are equivalent to

radical rings. The multiplication of this radical ring is the operation

a ∗ b = −a+ a ◦ b− b.

It makes sense to consider this operation for all skew left braces,
although in general it will not be associative. The following problem
appears in [22].
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Problem 2.24 Let A be a left brace such that the operation ∗ is associative.
Is A a two-sided brace?

It is proved in Proposition 2.2 of [22] that the answer is positive if
the additive group of the left brace has no elements of order two. For
skew braces, Problem 2.24 can be answered in the negative (see §1

of [46]).

A left ideal of a skew left brace A is a subgroup L of the additive
group of A such that A ∗ L ⊆ L. An ideal of A is a left ideal I such that

a+ I = I+ a and a ◦ I = I ◦ a

for all a ∈ A. A skew left brace A is said to be simple if it has no
ideals different from {0} and A.

Problem 2.25 Classify finite simple skew left braces.

Problem 2.25 is intensively studied for finite left braces (see for
example [5],[8],[7]). However, not much is known about finite simple
skew left braces that are not of abelian type.

Problem 2.26 Study representation theory of skew left braces.

Rump defined modules over right braces in [58].

Left braces such that either the additive or the multiplicative group
is isomorphic to Z were classified in [28]. It is not clear how to extend
some of these results to skew left braces. The operations

gk + gl = gk+(−1)kl and gk ◦ gl = gk+l

turn the set {gk : k ∈ Z} into a skew left brace with multiplicative
group isomorphic to Z and additive group isomorphic to the infinite
dihedral group. It seems that there are no other non-trivial skew left
braces with multiplicative group isomorphic to Z.

Problem 2.27 Classify isomorphism classes of skew left braces with mul-
tiplicative group isomorphic to Z.

Problem 2.27 could be studied using techniques from factorizable
groups (see for example [1]). Similarly one could also ask for the clas-
sification of skew left braces where one of its groups is isomorphic
to the infinite dihedral group.



Problems on skew left braces 27

Finite skew left braces with cyclic additive groups were classified
by Rump in [60] and [62]. In the same vein, it would be interesting to
know the classification of skew left braces with multiplicative group
isomorphic to the quaternion group. This problem is not even solved
for left braces. Such left braces are called quaternion left braces. For
m ∈ N let q(4m) be the number of isomorphism classes of quater-
nion left braces of size 4m.

Problem 2.28 Prove that

q(4m) =



2 if m is odd,

7 if m ≡ 0 mod 8,

9 if m ≡ 4 mod 8,

6 if m ≡ 2 mod 8 or m ≡ 6 mod 8.

The conjectural formula for q(4m) of Problem 2.28 was verified by
computer for all m 6 128.

Problem 2.29 Which finite abelian groups appear as the additive group
of a quaternion left brace?

For m ∈ {2, . . . , 128} the additive group of a quaternion left brace
of order 4m is isomorphic to one of the following groups:

C4m, C2m ×C2, Cm ×C2 ×C2, Cm ×C4, Cm/2 ×C2 ×C2 ×C2.

By inspection, Cm × C22 appears if m ≡ 2, 4, 6 mod 8 and Cm × C4
and Cm/2 ×C32 appear if m ≡ 4 mod 8.

Problem 2.30 Is it true that there are seven classes of isomorphism of
quaternion left braces of size 2k for k > 4?

It is interesting to study properties of groups appearing as the mul-
tiplicative groups of skew left braces. Let us start with the case of left
braces. A finite group G is said to be an involutive Yang-Baxter group
(or simply a IYB group) if it is isomorphic to the multiplicative group
of a finite left brace. In [36], Etingof, Schedler and Soloviev proved
that IYB groups are always solvable. A natural problem arises: Is ev-
ery finite solvable group the multiplicative group of a left brace? The
answer is negative, as it was shown by Bachiller (see [3]) following
the ideas of Rump (see [61]). However, it would be interesting to find
other counterexamples.
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Problem 2.31 Which is the minimal cardinality of a solvable group that
is not a IYB group?

Some results related to IYB-groups can be found in [11],[23],[25],
[26],[33]. Related problems are the following ones.

Problem 2.32 Is every nilpotent group of nilpotecy class two the multi-
plicative group of a left brace?

Problem 2.33 Is every nilpotent group of nilpotecy class two the multi-
plicative group of a two-sided brace?

Problem 2.34 Which finite nilpotent groups are multiplicative groups of
a two-sided (or left) brace?

Problems 2.32–2.34 appeared in the survey [21]. Problem 2.34 is in-
teresting even in the particular case of groups of nilpotency class 6 3.

I learned the following related problem from Rump.

Problem 2.35 Is there an example of a non-IYB finite group where all
the Sylow subgroups are IYB groups?

The solution to the YBE one obtains from a skew left brace is al-
ways a biquandle. Biquandles are non-associative structures useful
in combinatorial knot theory. We refer to [34],[54],[55] for nice intro-
ductions to the subject.

Problem 2.36 Study knot invariants produced from skew left braces.

As biquandles produce combinatorial knot invariants and these
invariants can be strengthened by using quandle and biquandle ho-
mology, it is then natural to ask if the homology of braces of [47] can
be used in combinatorial knot theory.

Problem 2.37 Is it possible to strengthen invariants produced from skew
left braces by using brace homology?

Left and right nilpotent left (and right) braces were defined by
Rump in [59]. Strongly nilpotent left braces were defined by Smoktu-
nowicz in [65]. These definitions extend to skew left braces, see [28].
A skew brace A is said to be left nilpotent if there exists n > 1 such
that An = 0, where

A1 = A and An+1
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is defined as the subgroup A ∗An of (A,+) generated by

{a ∗ x : a ∈ A, x ∈ An}.

Similarly A is said to be right nilpotent if there exists n > 1 such that
A(n) = 0, where

A(1) = A and A(n+1)

is defined as the subgroup A(n) ∗A of (A,+) generated by

{x ∗ a : x ∈ A(n),a ∈ A}.

The following problem of Smoktunowicz appears in [64] in an
equivalent formulation.

Problem 2.38 Let G be a finite group which is the multiplicative group
of some left brace. Is G is the multipicative group of a right nilpotent left
brace?

Problem 2.38 also makes sense for skew left braces of nilpotent
type.

Problem 2.39 Are there simple two-sided skew braces of nilpotent type?

A skew brace A is said to be prime if for all non-zero ideals I and J,
the subgroup I ∗ J of (A,+) generated by {u ∗ v : u ∈ I, v ∈ J} is non-
zero.

Problem 2.40 Is every finite prime skew left brace of nilpotent type a
simple skew left brace?

Problem 2.41 Is every finite prime left brace a simple left brace?

In §5 of [27], Cedó, Jespers and Okniński found a prime non-simple
finite left brace. This example solves Problems 2.40 and 2.41.

Problem 2.42 Are there prime two-sided skew braces of nilpotent type?

A skew left brace is said to be strongly nilpotent if it is right and
left nilpotent. A skew left brace A is said to be strongly nil if for
every element a ∈ A there is a positive integer n = n(a) such that
any ∗-product of n copies of a is zero.

Problem 2.43 Is every finite strongly nil skew left brace a strongly nilpo-
tent skew left brace?
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For a skew left brace A let ρ1(a) = a and ρk+1(a) = ρk(a) ∗ a
for n > 1. The skew left brace A is said to be right nil if there exists a
positive integer n such that ρn(a) = 0 for all a ∈ A.

Problem 2.44 Is every finite right nil skew left brace a right nilpotent
skew left brace?

Radical rings are the source of several other problems for skew
left braces. For example, it might make sense to discuss an analog
of the Köthe conjecture in the context of skew left braces. For rings
one of the formulations of the conjecture is the following: the sum
of two nil left ideals in a ring is a left nil ideal. The conjecture was
formulated around 1930 and it is still open (see [29] and [63]).

Problem 2.45 Is there an analog of the Köthe conjecture for skew left
braces?

Problems 2.39, 2.40, 2.41, 2.42, 2.43 and 2.44 appear in [28] and [46].
Köthe conjecture has been shown to be true for various classes of

rings such as polynomial identity rings, right Noetherian rings and
radical rings.

Bachiller observed the connection between skew braces and
Hopf-Galois extensions. This connection is precisely described in the
appendix of [67]. In the theory of Hopf-Galois extensions the follow-
ing problems are natural, see [16].

Problem 2.46 Is there a skew left brace with solvable additive group but
non-solvable multiplicative group?

Problem 2.47 Is there a skew left brace with non-solvable additive group
but nilpotent multiplicative group?

Problems 2.46 and 2.47 also appeared in [67] and Problem 19.90

of [51]. In general, it is interesting to know relations between the
multiplicative and the additive group of a skew left brace. Several
results in this direction can be found in the theory of Hopf-Galois
extensions (see for example [13],[15],[16]). The following problem is
mentioned in [49] and Problem 19.49 of [51].

Problem 2.48 Let A be a skew left brace with left-orderable multiplicative
group. Is the additive group of A left-orderable?

Timur Nasybullov constructed an example of a left brace that an-
swers Problem 2.48 negatively (private communication). Another ex-
ample that answers Problem 2.48 appears in [28].
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In [28] it is proved that skew left braces generated (as a skew left
brace) by a single element yield indecomposable solutions of the YBE.
It is then natural to ask if all finite indecomposable solutions are of
the following type.

Problem 2.49 Is it true that for each indecomposable involutive solu-
tion (X, r) there exists a one-generator left brace A generated by x such
that X is of the form X = {ax+ x : a ∈ A}?

Problem 2.49 appears in [66] for left braces.

Rump proved that braces are equivalent to linear cycle sets. A
linear cycle set is a triple (A,+, ·), where (A,+) is an abelian group
and (A, ·) is a cycle set such that

a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · b) · (a · c)

hold for all a,b, c ∈ A.

A theory of dynamical extensions of cycle sets was used in [69] to
produce a counterexample to Gateva-Ivanova conjecture.

Problem 2.50 Develop the theory of dynamical extensions of linear cycle
sets.

To study non-involutive solutions one replaces cycle sets by skew
cycle sets. According to §6 of [67], a skew cycle set is defined as a
linear cycle set but where the commutativity of the group (A,+) is
not assumed. Problem 2.50 can be stated for skew braces and skew
cycle sets.

Almost all of the questions for skew left braces make sense in the
particular and highly interesting case of k-linear left braces, which
are left braces where the additive group is a k-vector space com-
patible with the multiplicative group. Those braces were introduced
by Catino and Rizzo in [20] as circle algebras.

There are also several questions on one-generator skew left braces,
as those skew left braces are maybe easier to study than skew left
braces. In particular, one could also ask most of the previous ques-
tions on skew left braces for one-generator skew left braces.



32 L. Vendramin

R E F E R E N C E S

[1] B. Amberg – S. Franciosi – F. de Giovanni: “Products of
Groups”, Clarendon, Oxford (1992).

[2] D. Bachiller: “Classification of braces of order p3”, J. Pure Appl.
Algebra 219 (2015), 3568–3603.

[3] D. Bachiller: “Counterexample to a conjecture about braces”,
J. Algebra 453 (2016), 160–176.

[4] D. Bachiller: “Solutions of the Yang-Baxter equation associated
to skew left braces, with applications to racks”, J. Knot Theory
Ramifications 27 (2018), n.8, 36pp.

[5] D. Bachiller: “Extensions, matched products, and simple
braces”, J. Pure Appl. Algebra 222 (2018), 1670–1691.

[6] D. Bachiller – F. Cedó – E. Jespers – J. Okniński: “A family of
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[24] F. Cedó – E. Jespers – J. Okniński: “Retractability of set theoretic
solutions of the Yang-Baxter equation”, Adv. Math. 224 (2010),
2472–2484.

[25] F. Cedó – E. Jespers – J. Okniński: “Braces and the Yang-Baxter
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