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Abstract
In this article, we study (locally) nilpotent and hyper-central Leibniz algebras. We
obtained results similar to those in group theory. For instance, we proved a result
analogous to the Hirsch-Plotkin Theorem for locally nilpotent groups.
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1 Introduction

The concept of nilpotency arises in many algebraic disciplines and
plays a key role there. One of the sources of its origin were trian-
gular matrices. The ring theoretical concept of a commutator of two
triangular matrices led to the zero-triangular matrices, the nilpotency
in associative rings, the lower central series, and the concept of nilpo-
tency in Lie algebras. The concept of a group-theoretical commutator
of two nonsingular triangular matrices led to unitriangular matrices,
and to the concept of the lower central series in the group of ma-
trices. At the first stage, this commonality of origin brought some
parallelism in approaches, however then the specificity of each the-
ory introduces its own modifications. Nevertheless, it turned out that
in many cases, the same approaches led to comparable results in
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groups and Lie algebras. This parallelism runs through the book [1],
it was noted in many articles devoted to Lie algebras, in particu-
lar, in the paper [17]. One of the interesting generalizations of Lie
algebras is Leibniz algebras. Therefore, the following question natu-
rally arises: Which of the group-theoretical concepts and results have
analogs in Leibniz algebras? An algebra L over a field F is said to be
a Leibniz algebra (more precisely a left Leibniz algebra) if it satisfies
the Leibniz identity

[[a,b], c] = [a, [b, c]] − [b, [a, c]] for all a,b, c ∈ L. (LI)

Leibniz algebras are generalizations of Lie algebras. Indeed, a Leib-
niz algebra L is a Lie algebra if and only if [a,a] = 0 for every el-
ement a ∈ L. By this reason, we may consider Leibniz algebras as
“non-anticommutative” analogs of Lie algebras. Leibniz algebras ap-
peared first in the papers of A.M. Bloh [4],[5],[6],. . . in which he
called them the D-algebras. However, at that time these researches
were not in demand, and they have not been properly developed.
Real interest in Leibniz algebras arose only after two decades. This
happened thanks to J.L. Loday [12], who “rediscovered” these al-
gebras and used the term Leibniz algebras since it was Leibniz who
discovered and proved the “Leibniz rule” for differentiation of func-
tions.
The Leibniz algebras appeared to be naturally related to several ar-
eas such as differential geometry, homological algebra, classical al-
gebraic topology, algebraic K-theory, loop spaces, noncommutative
geometry, and so on. The theory of Leibniz algebras develops quite
intensively now, however, it should be noted that most of the ob-
tained results refer to finite-dimensional Leibniz algebras, and in
the greater part of the latter, algebras over fields of characteristic
zero are only considered. This also applies to nilpotent Leibniz al-
gebras. The concept of nilpotency for the Leibniz algebras is intro-
duced as follows. Let L be a Leibniz algebra over a field F. If A,B are
subspaces of L, then [A,B] will denote a subspace, generated by all
elements [a,b] where a ∈ A,b ∈ B. We note that if A is an ideal of L,
then [A,A] is also an ideal of L.

If M is non-empty subset of L, then 〈M〉 denotes the subalgebra
of L generated by M.

Let L be a Leibniz algebra. We define the lower central series of L

L = γ1(L) > γ2(L) > . . . > γα(L) > γα+1(L) > . . . γδ(L)
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by the following rule: γ1(L) = L,γ2(L) = [L, L], and recursively,

γα+1(L) = [L,γα(L)]

for all ordinals α, while

γλ(L) =
⋂
µ<λ

γµ(L)

for limit ordinals λ. It is possible to shows that every term of this
series is an ideal of L. The last term γδ(L) is called the lower hypocenter
of L. We have γδ(L) = [L,γδ(L)].

If α = k is a positive integer, then γk(L) = [L, [L, [L, . . . , L] . . .].

A Leibniz algebra L is called nilpotent if there exists a positive in-
teger k such that γk(L) = 〈0〉. More precisely, L is said to be nilpo-
tent of nilpotency class c if γc+1(L) = 〈0〉, but γc(L) 6= 〈0〉. We denote
by ncl(L) the nilpotency class of L.

In some algebraic structures, another definition of nilpotency based
on the concept of the (upper) central series is used. In fact, suppose
that L is a nilpotent Leibniz algebra and γk+1(L) = 〈0〉. For each fac-
tor γj(L)/γj+1(L) we have

[L,γj(L)] = γj+1(L) and [γj(L), L] 6 γj+1(L),

and this leads us to the following concepts. Let A,B be the ideal of L
such that A 6 B. The factor B/A is called central (in L) if

[L,B], [B, L] 6 A.

The center ζ(L) of a Leibniz algebra L is defined in the following
way:

ζ(L) = {x ∈ L | [x,y] = 0 = [y, x] for each element y ∈ L}.

Clearly, ζ(L) is an ideal of L. In particular, we can consider the factor-
algebra L/ζ(L). Starting from the center we can define the upper cen-
tral series

〈0〉 = ζ0(L) 6 ζ1(L) 6 . . . 6 ζα(L) 6 ζα+1(L) 6 . . . ζγ(L) = ζ∞(L)
of Leibniz algebra L by the following rule: ζ1(L) = ζ(L) is the center
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of L, and recursively

ζα+1(L)/ζα(L) = ζ(L/ζα(L))

for all ordinals α, while

ζλ(L) =
⋃
µ<λ

ζµ(L)

for limit ordinals λ. By definition, each term of this series is an ideal
of L. The last term ζ∞(L) of this series is called the upper hypercenter
of L. A Leibniz algebra L is said to be hypercentral if it coincides with
the upper hypercenter. Denote by zl(L) the length of upper central
series of L. In the paper [11], the connection between the lower and
upper central series in nilpotent Leibniz algebras has been consid-
ered. It was proved that in this case, the lengths of the lower and
upper central series coincide. Moreover, they are the least among the
lengths of all other central series.

The concepts of upper and lower central series introduced here
immediately lead to the following classes of Leibniz algebras.

A Leibniz algebra L is said to be hypercentral if it coincides with the
upper hypercenter.

A Leibniz algebra L is said to be hypocentral if it coincides with the
lower hypercenter.

In the case of finite dimensional algebras, these two concepts co-
incide, but in general, these two classes are very different. Thus, for
finitely generated hypercentral Leibniz algebras we have the follow-
ing theorem.

Theorem A. Let L be a finitely generated Leibniz algebra over a field F. If L
is hypercentral, then L is nilpotent. Moreover, L has finite dimension. In
particular, a finitely generated nilpotent Leibniz algebra has finite dimen-
sion.

This result is an analog of a similar group theoretical result proved
by A.I. Mal’cev (see [13]).

At the same time, a finitely generated hypocentral Leibniz alge-
bra can have infinite dimension. Thus, a cyclic Leibniz algebra 〈a〉
where an element a has infinite depth is hypocentral and has infinite
dimension (see [8]).

A Leibniz algebra L is said to be locally nilpotent if every finite
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subset of L generates a nilpotent subalgebra.
That is why, hypercentral Leibniz algebras give us examples of lo-

cally nilpotent algebras. We obtained the following characterization
of hypercentral Leibniz algebras.

Theorem B. Let L be a Leibniz algebra over a field F. Then L is hypercentral
if and only if for each element a ∈ L and every countable subset {xn|n ∈N}

of elements of L there exists a positive integer k such that all commuta-
tors [x1, . . . , xj,a, xj+1, . . . , xk] are zeros for all j, 0 6 j 6 k.

Corollary. Let L be a Leibniz algebra over a field F. Then L is hypercentral
if and only if every subalgebra of L having finite or countable dimension is
hypercentral.

These results are analogues to the results proved for groups
by S.N. Chernikov (see [7]).

Let L be a Leibniz algebra. If A,B are nilpotent ideals of L, then
their sum A+B is a nilpotent ideal of L (see [3], Lemma 1.5). In this
connection, the following question arises: is an analogous assertion
valid for locally nilpotent ideals? As it was shown by
B. Hartley (see [9]), for Lie algebras this assertion takes place. Our
next result gives a positive answer to this question.

Theorem C. Let L be a Leibniz algebra over a field F,A,B be locally nilpo-
tent ideals of L. Then A+B is locally nilpotent.

Corollary C1. Let L be a Leibniz algebra over a field F and S be a family
of locally nilpotent ideals of L. Then a subalgebra generated by S is locally
nilpotent.

Corollary C2. Let L be a Leibniz algebra over a field F. Then L has the
greatest locally nilpotent ideal.

Let L be a Leibniz algebra over field F. The greatest locally nilpo-
tent ideal of L is called the locally nilpotent radical of L and will be
denoted by Ln(L).

These results are the analogues to the results for groups proved
by K.A. Hirsch (see [10]) and B.I. Plotkin (see [15]); see also the sur-
vey [16].

The subalgebra Nil(L) generated by all nilpotent ideals of L is
called the nil-radical of L. Clearly Nil(L) is an ideal of L. If L = Nil(L),
then L is called a Leibniz nil-algebra. Every nilpotent Leibniz algebra
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is a nil-algebra, but the converse is not true even for a Lie algebra. Ev-
ery Leibniz nil-algebra is locally nilpotent, but converse is not true
even for a Lie algebra. Moreover, there exists a Lie nil-algebra, which
is not hypercentral (see, for example, [1], Chapter 6).

Note the following important properties of locally nilpotent Leib-
niz algebras.

Theorem D. Let L be a locally nilpotent Leibniz algebra over a field F.

(i) If A,B are ideals of L such that A 6 B and the factor B/A is L-chief,
then B/A is central in L (that is B/A 6 ζ(L/A)). In particular, we
have that dimF(B/A) = 1.

(ii) If A is a maximal subalgebra of L, then A is an ideal of L.

Let L be a Leibniz algebra over a field F and H a subalgebra of L.
The idealizer of H is defined by the following rule:

IL(H) = {x ∈ L | [h, x], [x,h] ∈ H for all h ∈ H}.

It is possible to prove that the idealizer of H is a subalgebra of L.
If L is a hypercentral (in particular, nilpotent) Leibniz algebra,
then H 6= IL(H) (see Proposition 1.10 below). This leads us to the
following class of Leibniz algebras.

Let L be a Leibniz algebra over field F. We say that L satisfies the
idealizer condition if IL(A) 6= A for every proper subalgebra A of L.

A subalgebra A is called ascendant in L, if there is an ascending
chain of subalgebras

A = A0 6 A1 6 . . . Aα 6 Aα+1 6 . . . Aγ = L

such that Aα is an ideal of Aα+1 for all α < γ.
It is possible to prove that L satisfies the idealizer condition if and

only if every subalgebra of L is ascendant. The last our result is the
following

Theorem E. Let L be a Leibniz algebra over a field F. If L satisfies the
idealizer condition then L is locally nilpotent.

This result is an analogue to the result proved for groups in [14]
by B.I. Plotkin.

Again, it should be noted that Leibniz algebras with the idealizer
condition will form a subclass of the class of locally nilpotent Leib-
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niz algebras, since this is already the case for Lie algebras (see, for
example, [1], Chapter 6).

2 On hypercentral Leibniz algebras

Proposition 2.1 Let L be a finitely generated Leibniz algebra over a field F.
Let H be an ideal of L having finite codimension. Then H is finitely gener-
ated as an ideal.

Proof — Let
M = {a1, . . . ,an}

be a finite subset generated L, and let B be a subspace of L such
that L = B⊕H. Let codimF(H) = d. Then dimF(B) = d. Choose in B
some basis {b1, . . . ,bd}. Denote by prB (respectively prH) the canoni-
cal projection of L on B (respectively H). Let E be the ideal, generated
by the elements

{prH(aj),prH([aj,bm]),prH([bm,aj])|1 6 j 6 n, 1 6 m 6 d}.

By such choice H includes E, and E is a finitely generated as an ideal
of L. If x is an arbitrary element of E+B, then x = u+ b where u ∈ E
and b ∈ B. Furthermore

b = α1b1 + . . .+αdbd

for suitable elements α1, . . . ,αd ∈ F. We have

[b,aj] = [α1b1 + . . .+αdbd,aj] = α1[b1,aj] + . . .+αd[bd,aj] =

α1(prH([b1,aj]) + prB([b1,aj]) + . . .+αd(prH([bd,aj]) + prB([bd,aj]) =

α1prH([b1,aj]) +. . .+αdprH([bd,aj]) +α1prB([b1,aj]) +. . .+αdprB([bd,aj]);

[aj,b] = [aj,α1b1 + . . .+αdbd] = α1[aj,b1] + . . .+αd[aj,bd] =

α1(prH([aj,b1]) + prB([aj,b1]) + . . .+αd(prH([aj,bd]) + prB([aj,bd]) =

α1prH([aj,b1]) + . . .+αdprH([aj,bd]) +α1prB([aj,b1]) + . . .+αdprB([aj,bd]).

The elements

Σ1 6 m 6 d(αmprH([bm,aj]) +αmprB([bm,aj])),
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and
Σ1 6 m 6 d(αmprH([aj,bm]) +αmprB([aj,bm]))

clearly belong to E+B. It follows that E+B is an ideal of A. Since

aj = prH(aj) + prB(aj) ∈ E+B, 1 6 j 6 n,

then
E+B = A = H+B.

The inclusion E 6 H and the equation H∩B = 〈0〉 imply that H = E.
In particular, H is a finitely generated as an ideal. ut

Corollary 2.2 Let L be a finitely generated Leibniz algebra over a field F.
If L is nilpotent, then L has finite dimension.

Proof — Let
〈0〉 = Z0 6 Z1 6 . . . 6 Zn = L

be the upper central series of L. Proposition 2.1 shows that Zn−1
is finitely generated as an ideal, since L/Zn−1 is abelian and the
dimension dimF(L/ζn−1(L)) is finite. The inclusion

Zn−1/Zn−2 6 ζ(L/Zn−2)

implies that Zn−1/Zn−2 is finitely generated as a subalgebra. In turn
out, it follows that dimF(Zn−1/Zn−2) is finite. Then dimF(L/Zn−2)
is finite. Using the similar arguments and ordinary induction we
prove that dimF(L) is finite. ut

Proof of Theorem A — Let

〈0〉 = Z0 6 Z1 6 . . . 6 Zα 6 Zα+1 6 . . . Zγ = ζ∞(L) = L
be the upper central series of L. Since L is finitely generated, γ is
not a limit ordinal. Suppose that γ is infinite, then γ = κ+n for
some limit ordinal κ > ω. Then L/Zκ is a nilpotent finitely gener-
ated Leibniz algebra, and Corollary 2.2 shows that L/Z has finite
dimension. Then Proposition 2.1 implies that Zκ is finitely generated
as an ideal. Let

W = {w1, . . . ,wm}

be a finite subset such that Zκ is generated by W as ideal. From the
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equation
Zκ =

⋃
β<κ

Zβ

we obtain that wj ∈ Zβ(j) for some β(j) < τ, 1 6 j 6 m. Let σ be the
greatest ordinal from the set

{β(1), . . . ,β(m)}.

Then wj ∈ Zσ for all j, 1 6 j 6 m. Since Zσ is an ideal, it follows
that Zσ includes the ideal of L, generated by elements w1, . . . ,wm.
But the last coincides with Zκ, so that Zκ 6 Zσ, and we obtain a
contradiction. This contradiction shows that γmust be finite. In other
words, L is nilpotent and we can apply Corollary 2.2. ut

Corollary 2.3 Let L be a hypercentral Leibniz algebra over a field F.
Then L is locally nilpotent.

We will obtain some properties of hypercentral Leibniz algebras.

Lemma 2.4 Let L be a hypercentral Leibniz algebra over a field F and A
be a non-zero ideal of L. Then the intersection A∩ ζ(L) is non - zero.

Proof — Let

〈0〉 = ζ0(L) 6 ζ1(L) 6 ζ2(L) 6 . . . 6 ζα(L) 6 ζα+1(L) . . . ζγ(L) = L

be the upper central series of L. Choose the least ordinal β such
that A∩ ζβ(L) 6= 〈0〉. Clearly β is not a limit ordinal. So β− 1 ex-
ists. Let

0 6= a ∈ A∩ ζβ(L)

and let x be an arbitrary element of L. Since A is an ideal of L, it
follows that [x,a], [a, x] ∈ A. On the other hand, since a ∈ ζβ(L), we
obtain that [x,a], [a, x] ∈ ζβ−1(L), so that

[x,a], [a, x] ∈ A∩ ζβ−1(L) = 〈0〉.

It follows that a ∈ ζ(L). ut

Now we obtain the following characterization of hypercentral Leib-
niz algebras.
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Proof of Theorem B — Let

〈0〉 = Z0 6 Z1 6 . . . Zα 6 Zα+1 . . . Zγ = L

be the upper central series of L. Then there exists the least ordinal κ
such that a ∈ Zκ. By such a choice a /∈ Zα for all α < κ. For the proof
we will use an induction by κ. If κ = 1, then

[x1,a] = [a, x1] = 0.

Assume now that κ > 1, and we have already proved our assertion for
all elements of Zα where α < κ. If κ is a limit ordinal, then a ∈ Zβ
for some β < κ, and we come to contradiction. Thus κ is not limit
ordinal, so that κ− 1 exists. Since

Zκ/Zκ−1 6 ζ(L/Zκ−1),

then
[x1,a], [a, x1] ∈ Zκ−1.

Hence for elements [x1,a], [a, x1] we can use the induction hypothe-
sis. An application of induction hypothesis shows that there are the
positive integers m, s such that

[x1, . . . , xj,a, xj+1, . . . , xm] = 0, 1 6 j 6 m,

[x1, . . . , xm,a] = 0,

[x1, . . . , xj,a, xj+1, . . . , xs] = 0, 1 6 j 6 s− 1,

[a, x1, . . . , xs] = 0

at any arrangement of parentheses.

Put k = max{m, s}, then

[x1, . . . , xj,a, xj+1, . . . , xk] = 0

for all j, 0 6 j 6 k.

To prove the sufficiency of the condition, we first note that this
condition is inherited by each factor-algebra of L. Hence it suffices
to prove that ζ(L) 6= 〈0〉. Assume that this is false. Let a be an ar-
bitrary non-zero element of L. Since ζ(L) = 〈0〉, a /∈ ζ(L). It follows
that there exists an element x1 such that [x1,a] 6= 0 or [a, x1] 6= 0. For
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definiteness, we assume that [x1,a] 6= 0. Since [x1,a] /∈ ζ(L), there ex-
ists an element x2 such that [x2, [x1,a]] 6= 0 or [[a, x1], x2] 6= 0. Us-
ing the same arguments we find for every positive integer k the
elements x1, x2, . . . , xk such that there exists a non-zero commuta-
tor [x1, . . . , xj,a, xj+1, . . . , xk], a contradiction. Therefore ζ(L) 6= 〈0〉.ut

Proof of Corollary to Theorem B — If L is hypercentral, then
each of its subalgebra is hypercentral and hence every countable di-
mensional subalgebra is certainly hypercentral.

Conversely, suppose that every countable dimensional subalgebra
of L is hypercentral, but L is not hypercentral. Factoring by the hy-
percentre we may suppose that ζ(L) = 〈0〉. Using the arguments from
the proof of Theorem B we find an element a and a countable sub-
set {xn|n ∈N} such that for every positive integer n there exists a
non-zero commutator

[x1, . . . , xj,a, xj+1, . . . , xn].

The subalgebra 〈a, xn|n ∈N〉 has finite or countable dimension and
hence is hypercentral. Theorem B shows that there exists a positive
integer k such that all commutators

[x1, . . . , xj,a, xj+1, . . . , xk]

are zeros, and we obtain a contradiction. ut

Let H be a subalgebra of L. The left idealizer or the left normalizer
of H in L is defined as the following:

Ileft
L (H) = {x ∈ L|[x,h] ∈ H for all h ∈ H}.

Clearly, the term left normalizer arise from group theory. Similarly,
the right idealizer is defined as the following:

I
right
L (H) = {x ∈ L|[h, x] ∈ H for all h ∈ H}.

Then IL(H) = Ileft
L (H)∩ I

right
L (H).

The left idealizer of H is a subalgebra of L. Indeed, let x,y ∈ Ileft
L (H)

and h ∈ H, α ∈ F; then

[x− y,h] = [x,h] − [y,h] ∈ H, [αx,h] = α[x,h] ∈ H,



12 L.A. Kurdachenko – I.Ya. Subbotin – N.N. Semko

and
[[x,y],h] = [x, [y,h]] − [y, [x,h]] ∈ H.

The idealizer of H is also a subalgebra of L. Indeed, let x,y ∈ IL(H),
h ∈ H, α ∈ F. As above, we can show that x− y, x, [x,y] ∈ IL(H). Fur-
ther,

[h, [x,y]] = [[h, x],y] + [x, [h,y]] ∈ H,

α ∈ F, then

[x− y,h] = [x,h] − [y,h] ∈ H, [αx,h] = α[x,h] ∈ IL(H).

However, the right idealizer need not be a subalgebra. The corre-
sponding example has been constructed in [2].

Proposition 2.5 Let L be a hypercentral Leibniz algebra over a field F.
Then IL(H) 6= H for every proper subalgebra H of L.

Proof — Let

〈0〉 = Z0 6 Z1 6 . . . Zα 6 Zα+1 . . . Zγ = L

be the upper central series of L. There exists an ordinal α such that

Zα < H

but H does not include Zα+1. Choose an element x ∈ Zα+1\H. For
every element h ∈ H we have [x,h], [h, x] ∈ Zα. The inclusion Zα 6 H
implies that [x,h], [h, x] ∈ H. This shows that IL(H) 6= H, moreover

I
right
L (H) 6= H 6= Ileft

L (H).

The proof is complete. ut

Corollary 2.6 Let L be a nilpotent Leibniz algebra over a field F. Then

IL(H) 6= H

for every proper subalgebra H of L.

For finite dimensional Leibniz algebras this result was proved in
the paper [2] (see Lemma 2.2).
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3 On some properties of locally nilpotent ideals

Let x1, . . . , xn be elements of a Leibniz algebra L. If we write the com-
plex commutator as [x1, . . . , xn], then it means that the arrangement
of the square brackets here is arbitrary.

Lemma 3.1 Let L be a Leibniz algebra over a field F, a be an element of L
and Y be a finite subset of L. Then a subalgebra A, generated by the subset

{x, [a,y], [z,a] | x,y, z ∈ Y}

contains all elements

[a,y1, . . . ,yk], [x1, . . . , xn,a], [x1, . . . , xn,a,y1, . . . ,yk],

for all x1, . . . , xn,y1, . . . ,yk ∈ Y.

Proof — For the elements [a,y1, . . . ,yk] we will use induction by k.
If k = 2, then we have only the following elements:

[[a,y1],y2] and [a, [y1,y2]].

Here the first element belongs to A. For the second element we
have [a, [y1,y2]] = [[a,y1],y2] + [y1, [a,y2]] ∈ A.

Let k > 2 and suppose that we already proved our statement for
complex commutators of weight k. For the element [a,y1, . . . ,yk] we
have the following alternatives: [a, [y1, . . . ,yk]], [[a,y1, . . . ,yk−1],yk]
or [[a,y1, . . . ,yj], [yj+1, . . . ,yk]] (here we have written only external
direct brackets). By induction hypothesis, the elements

[a,y1, . . . ,yk−1] and [a,y1, . . . ,yj]

belong to A, which implies that the elements

[[a,y1, . . . ,yk−1],yk] and [[a,y1, . . . ,yj], [yj+1, . . . ,yk]]

belong to A. For the element [a, [y1, . . . ,yk]] we have the following
variants of the parenthesis arrangement:

[a, [y1, [y2, . . . ,yk]]], [a, [[y1, . . . ,yk−1],yk]]

and
[a, [[y1, . . . ,yj], [yj+1, . . . ,yk]].
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For each of these elements we obtain successively

[a, [y1, [y2, . . . ,yk]]] = [[a,y1], [y2, . . . ,yk]] + [y1, [a, [y2, . . . ,yk]]],

[a, [[y1, . . . ,yk−1],yk]] = [[a, [y1, . . . ,yk−1]],yk] + [[y1, . . . ,yk−1], [a,yk]],

[a, [[y1, . . . ,yj], [yj+1, . . . ,yk]]

= [a, [y1, . . . ,yj]], [yj+1, . . . ,yk]] + [[y1, . . . ,yj], [a, [yj+1, . . . ,yk]]].

By induction hypothesis, the elements

[a, [y2, . . . ,yk]], [a, [y1, . . . ,yk−1]], [a, [y1, . . . ,yj]], [a, [yj+1, . . . ,yk]]

belong to A, and so it follows that A contains the elements

[a, [y1, [y2, . . . ,yk]]], [a, [[y1, . . . ,yk−1],yk]],

[a, [[y1, . . . ,yj], [yj+1, . . . ,yk]].

Consider now the elements [x1, . . . , xn,a]. For these elements we
also will use induction by n. If n = 2, then we have only the following
elements:

[[x1, x2],a] and [x1, [x2,a]].

The second element belongs to A. For the first element we obtain

[[x1, x2],a] = [[x1, [x2,a]] − [x2, [x1,a]] ∈ A.

Let n > 2 and suppose that we already proved our statement for com-
plex commutators of weight n. For the element [x1, . . . , xn,a] we have
the following variants of the parenthesis arrangement: [[x1, . . . , xn],a],
[x1, [x2, . . . , xn,a]] and [[x1, . . . , xj], [xj+1, . . . , xn,a]] (here we have
written only external direct brackets). By induction hypothesis, the el-
ements [x2, . . . , xn,a] and [xj+1, . . . , xn,a] belong to A, which implies
that the elements [x1, [x2, . . . , xn,a]] and [[x1, . . . , xj],[xj+1, . . . , xn,a]]
belong to A. For the element [[x1, . . . , xn],a] we have the following
variants of parenthesis arrangement:

[[[x1, . . . , xn−1], xn],a], [[x1, [x2, . . . , xn]],a],

and
[[[x1, . . . , xj], [xj+1, . . . , xn]],a].
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For each of these elements we obtain successively

[[[x1, . . . , xn−1], xn],a] = [[x1, . . . , xn−1], [xn,a]] − [xn, [[x1, . . . , xn−1],a]].

[[x1, [x2, . . . , xn]],a] = [x1, [[x2, . . . , xn],a]] − [[x2, . . . , xn], [x1,a]].

[[[x1, . . . , xj], [xj+1, . . . , xn]],a]

= [[x1, . . . , xj], [[xj+1, . . . , xn],a]] − [[xj+1, . . . , xn], [[x1, . . . , xj],a]].

By induction hypothesis, the elements

[[x1, . . . , xn−1],a], [[x2, . . . , xn],a], [[xj+1, . . . , xn],a], [[x1, . . . , xj],a]

belong to A, which implies that A contains the elements

[[[x1, . . . , xn−1], xn],a], [[x1, [x2, . . . , xn]],a]

and
[[[x1, . . . , xj], [xj+1, . . . , xn]],a].

Finally, consider the elements

[x1, . . . , xn,a,y1, . . . ,yk].

In this case, we will use induction by n+ k. Let n+ k=2, i.e. n=k=1.
Here we have only two commutators [x1,[a,y1]] and [[x1,a],y1], which
clearly belong to A. Suppose that we already proved our statement
for the case when n+ k = d > 2. Let now

n+ k = d+ 1.

As for the element [x1, . . . , xn,a,y1, . . . ,yk] we have the following
variants of the parenthesis arrangement

[x1, [x2, . . . , xn,a,y1, . . . ,yk]], [[x1, . . . , xn,a,y1, . . . ,yk−1],yk],

[[x1, . . . , xj], [xj+1, . . . , xn,a,y1, . . . ,yk]], [[x1, . . . , xn], [a,y1, . . . ,yk]],

[[x1, . . . , xn,a], [y1, . . . ,yk]], [[x1, . . . , xn,a,y1, . . . ,ym], [ym+1, . . . ,yk]]

(here we have written only external direct brackets). By induction
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hypothesis, the elements

[x2, . . . , xn,a,y1, . . . ,yk], [x1, . . . , xn,a,y1, . . . ,yk−1],

[xj+1, . . . , xn,a,y1, . . . ,yk], [a,y1, . . . ,yk]],

[x1, . . . , xn,a], [x1, . . . , xn,a,y1, . . . ,ym]

belong to A, which implies that all of the above elements belong
to A. ut

Lemma 3.2 Let L be a Leibniz algebra over a field F, a be an element of L,
and Y be a finite subset of L such that [a,a] ∈ Y. Let X be the set of elements

[a,y1, . . . ,yk], [x1, . . . , xn,a], [x1, . . . , xn,a,y1, . . . ,yk]

for all x1, . . . , xn,y1, . . . ,yk ∈ Y. Let B be the subalgebra generated by a
and Y, and put C to be the subalgebra generated by a and X. Then C is an
ideal of B.

Proof — Clearly, if z ∈ Y, then the elements

[z,a,y1, . . . ,yk], [a,y1, . . . ,yk, z], [z, x1, . . . , xn,a],

[x1, . . . , xn,a, z], [z, x1, . . . , xn,a,y1, . . . ,yk],

[x1, . . . , xn,a,y1, . . . ,yk, z]

belong to X. Next, we must consider the following elements:

[a,a,y1, . . . ,yk], [a,y1, . . . ,yk,a], [x1, . . . , xn,a,a],

[a, x1, . . . , xn,a,y1, . . . ,yk], [x1, . . . , xn,a,y1, . . . ,yk,a].

We consider each of these elements and again use induction on
the number of elements in these complex commutators. For the ele-
ment [a,a,y1] we have only two possibilities: [[a,a],y1] = 0
and [a, [a,y1]] ∈ C. If k > 1, then for element [a,a,y1, . . . ,yk] we have
the following possibilities:

[a, [a,y1, . . . ,yk]], [[a,a], [y1, . . . ,yk]] = 0,

[[a,a,y1, . . . ,yj], [yj+1, . . . ,yk]].
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By induction hypothesis all these elements belong to C.

For element [a,y1,a] we have only two possibilities: [a, [y1,a]]
and [[a,y1],a]. Both these elements belong to C. If k > 1, then we
come to the following elements:

[a, [y1, . . . ,yk,a]], [[a,y1, . . . ,yj], [yj+1, . . . ,yk,a]], [[a,y1, . . . ,yk],a].

By induction hypothesis, all of these elements belong to C.

For element [x1,a,a] we have only two possibilities: [[x1,a],a] ∈ C
and [x1, [a,a]]. For the last element we obtain

[x1, [a,a]] = [[x1,a],a] + [a, [x1,a]],

so again [x1, [a,a]] ∈ C. If k > 1, then we come to the following ele-
ments:

[[x1, . . . , xn,a],a], [[x1, . . . , xn], [a,a]], [[x1, . . . , xj], [xj+1, . . . , xn,a,a]].

By induction hypothesis, the first and third elements belong to C. For
the second element we obtain

[[x1, . . . , xn], [a,a]] = [[[x1, . . . , xn],a],a] + [a, [[x1, . . . , xn],a]] ∈ C.

For elements [a, x1,a,y1] we have the following variants of the paren-
thesis arrangement:

[a, [x1,a,y1], [[a, x1], [a,y1]] ∈ C, [[a, x1,a],y1].

By what we have proved above [a, x1,a] ∈ C, so that [[a, x1,a],y1]∈C.
If k > 1, then we come to the following elements:

[a, [x1, . . . , xn,a,y1, . . . ,yk]], [[a, x1, . . . , xj], [xj, . . . , xn,a,y1, . . . ,yk]],

[[a, x1, . . . , xn], [a,y1, . . . ,yk]], [[a, x1, . . . , xn,a], [y1, . . . ,yk]],

[[a, x1, . . . , xn,a, y1, . . . ,ym], [ym+1, . . . ,yk]]

By what we have proved above and induction hypothesis all of these
elements belong to C.

For elements [x1,a,y1,a] we have the following variants of the
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parenthesis arrangement:

[[x1,a,y1],a], [[x1,a], [y1,a]] ∈ C, [x1, [a,y1,a]].

By what we have proved above [a,y1,a] ∈ C, so that [x1, [a,y1,a]]∈C.
If k > 1, then we come to the following elements:

[[x1, . . . , xn,a,y1, . . . ,yk],a],

[x1, . . . , xn,a,y1, . . . ,yj], [yj+1, . . . ,yk,a]],

[[x1, . . . , xn,a], [y1, . . . ,yk,a]], [[x1, . . . , xn], [a,y1, . . . ,yk,a]],

[[x1, . . . , xj], [xj+1, . . . , xn,a,y1, . . . ,yk,a]].

By what we have proved above and induction hypothesis all of these
elements belong to C. ut

Let L be a Leibniz algebra over a field F,M be a non-empty subset
of L and H be a subalgebra of L. Put

Annleft
H (M) = {a ∈ H | [a,M] = 0},Annright

H (M) = {a ∈ H | [M,a] = 0}.

The subset Annleft
H (M) is called the left annihilator or left centralizer

of M in subalgebra H; the subset Annright
H (M) is called the right anni-

hilator or right centralizer of M in subalgebra H. The intersection

AnnH(M) = Annleft
H (M)∩Annright

H (M)

= {a ∈ H | [a,M] = 〈0〉 = [M,a]}

is called the annihilator or centralizer of M in subalgebra H.
It is not hard to see that all of these subsets are the subalgebras of L.

Moreover, if M is a left ideal of L, then Annleft
L (M) is an ideal of L. In-

deed, let x be an arbitrary element of L, a ∈ Annleft
H (M),b ∈ M. Then

[[a, x],b] = [a, [x,b]] − [x, [a,b]] = 0− [x, 0] = 0, and

[[x,a],b] = [x, [a,b]] − [a, [x,b]] = [x, 0] − 0 = 0.

If M is an ideal of L, then AnnL(M) is an ideal of L. Indeed, let x
be an arbitrary element of L, a AnnL(M),b ∈ M. Using the above
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arguments, we obtain that [[a, x],b] = [[x,a],b] = 0. Further,

[b, [a, x]] = [[b,a], x]] + [a, [b, x]]] = [0, x] + 0 = 0

and
[b, [x,a]] = [[b, x],a] + [x, [b,a]]] = 0+ [x, 0] = 0.

Lemma 3.3 Let L be a Leibniz algebra over a field F and A be an ideal
of L. If dimF(A) = n is finite, then dimF(A/AnnL(A)) is also finite.

Proof — By Proposition 3.2 of the paper [11], Annleft
L (A) has finite

codimension.
For an arbitrary element v ∈ L we consider the mapping

rv : A −→ A,

defined by the rule rv(x) = [x, v], x ∈ A. For every x,y ∈ A and λ ∈ F
we have

rv(x+ y) = rv(x) + rv(y), rv(αx) = αrv(x),

which implies that rv is a linear mapping. We also note that

βrv = rβv and rv + rw = rv +w

for all v,w ∈ L, and β ∈ F.
Consider now the mapping

f : L −→ EndF(A)

defined by the rule f(v) = rv for each element v ∈ L. We have

f(v+w) = rv+w = rv + rw = f(v) + f(w),

and
f(βv) = rβv = βrv = βf(v)

for all v,w ∈ L and β ∈ F. It shows that mapping f is linear. The
fact that dimF(A) is finite implies that dimF(EndF(A)) is finite, so
that Im(f) is finite dimensional. We have

Ker(f) = {v | v ∈ L and rv is a zero mapping}.
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But 0 = rv(x) for each x ∈ A means that [x, v] = 0 for each x ∈ A,
which implies that v ∈ Annright

L (A). Thus

Ker(f) = Ann
right
L (A),

so we obtain that
A/Ann

right
L (A)

has finite dimension. In turn it implies that

AnnL(A) = Ann
left
L (A)

⋂
Ann

right
L (A)

has finite codimension. ut

Lemma 3.4 Let L be a locally nilpotent Leibniz algebra over a field F
and A be an ideal of L. If dimF(A) = n is finite, then a hypercenter with a
finite number k includes A. Moreover, k > n.

Proof — Since dimF(A) is finite, A has a finite L-composition series

〈0〉 = A0 6 A1 6 . . . 6 At = A.

Suppose that the center of L does not include A1. Then

C = AnnL(A) 6= L.

Let B be a complement to C in A, i.e.

L = C⊕B.

By Lemma 3.3 dimF(B) is finite. Let D be a subalgebra, generated
by A1 and B. Since dimF(A) and dimF(B) are finite, D is finitely gen-
erated as a subalgebra. Then D is nilpotent. The choice of D yields
that A1 is a D-chief factor of D. Lemma 2.4 proves that

A1 ∩ ζ(D) 6= 〈0〉.

Since A1 ∩ ζ(D) is D-invariant,

A1 ∩ ζ(D) = A1,

that is A1 = ζ(D), and we obtain a contradiction. This contradiction
shows that A1 6 ζ(D).
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Using the similar arguments and ordinary induction, we prove
that A 6 ζk(L) for some positive integer k. ut

Lemma 3.5 Let L be a Leibniz algebra over a field F, A and B be the
ideals of L. Suppose that B is locally nilpotent, dimF(A) is finite and A is
nilpotent. Then A+B is locally nilpotent.

Proof — Suppose first that A∩B = 〈0〉. It follows that [A,B] = 〈0〉.
Let C be an arbitrary finitely generated subalgebra of B. Then we
have

ζk(A⊕C) = ζk(A)⊕ ζk(C)

for all positive integer k. If ncl(A) = n, then

ζn(A⊕C) = A⊕ ζn(C).

It follows that

(A⊕C)/ζn(A⊕C) = (A⊕C)/(A⊕ ζn(C)) ∼= C/ζn(C),

in particular, (A⊕C)/ζn(A⊕C) is nilpotent. It follows that A⊕C is
also nilpotent, which implies that A⊕B is locally nilpotent.

Suppose now that A∩B = C 6= 〈0〉. Since A is nilpotent, there is a
number k such that C 6 ζk(A). The fact that A is an ideal in L implies
that C is an ideal in B. Using Lemma 3.4 we obtain that there is a num-
ber t such that C 6 ζt(B). Put m = max{k, t}. Then C 6 ζm(A+B).
Since

A/C+B/C = A/C⊕B/C,

by what we have proved above we obtain that

(A+B)/ζm(A+B)

is locally nilpotent. It follows that A+B is locally nilpotent. ut

Proposition 3.6 Let L be a Leibniz algebra over a field F,A,B be lo-
cally nilpotent ideals of L. If U is a finitely generated subalgebra of A such
that (U+B)/B is abelian, then U+B is locally nilpotent.

Proof — Let
a ∈ U\B.

The fact that (U+B)/B is abelian implies that [a,a] ∈ B. Choose ar-
bitrary finite subsets Y ⊆ B such that [a,a] ∈ B. Let X be the set of
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elements

[a,y1, . . . ,yk], [x1, . . . , xn,a], [x1, . . . , xn,a,y1, . . . ,yk]

for all x1, . . . , xn,y1, . . . ,yk ∈ Y, and denote by C the subalgebra
generated by a and X. Let D be the subalgebra generated by {a}∪ Y.
Then Lemma 3.1 shows that a subalgebra of B, generated by the sub-
set

S = {x, [a,y], [z,a] | x,y, z ∈ Y}

includes a subset X. Since Y is finite, S is also finite. The fact that B
is locally nilpotent implies that a subalgebra 〈S〉 is nilpotent. Then
there exists a positive integer m such that all commutators

[a,y1, . . . ,yk], [x1, . . . , xn,a], [x1, . . . , xn,a,y1, . . . ,yk]

are zeros whenever k,n > m. In other words, a subset X is finite and
hence subalgebra C is finitely generated. Since a ∈ A and A is an
ideal, X ⊆ A. Then the fact that A is locally nilpotent implies that C
is nilpotent. By Lemma 3.2, C is an ideal of D. The inclusions 〈a〉 6 D
and D 6 〈a〉+B imply that

D = 〈a〉+ V

where V = D∩B. It follows that D = C+ V . Here C is a nilpotent
ideal of D and V is a locally nilpotent ideal of D and Lemma 3.5 im-
plies that D is locally nilpotent. Since D is a finitely generated subal-
gebra, D is nilpotent. In turn out it follows that a subalgebra 〈a〉+B
is locally nilpotent.

The fact that (U+B)/B is abelian and finitely generated implies
that dimF(U+B)/B is finite, so that

(U+B)/B = (a1F+ . . .+ anF+B)/B

for some elements a1, . . . ,an ∈ U. Then

B1 = a1F+B

is an ideal of U+B. By what we have proved above B1 is locally
nilpotent. We have now that (U+B1)/B1 is abelian, and

dimF(U+B1)/B1 6 dimF(U+B)/B.
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Using ordinary induction we obtain that U+B is locally nilpotent. ut

Proof of Theorem C — Let M be an arbitrary finite subset of A
and D be a subalgebra of A, generated by M. Then

(D+B)/B = (〈M〉+B)/B,

which shows that (D+B)/B is nilpotent and finitely generated. In
particular, Corollary 2.2 yields that dimF((D+B)/B) is finite. Let

〈0〉 = Z0/B 6 Z1/B 6 . . . 6 Zn/B = (D+B)/B

be the upper central series of (D+B)/B. For the proof we will apply
induction by n. If n = 1, then (D+B)/B is abelian. Proposition 3.6 im-
plies that D is locally nilpotent. Suppose now that n > 1. Ideal Z1/B
of (D+B)/B is abelian and finite dimensional. Using Proposition 3.6
we obtain that Z1 is locally nilpotent. Since

ncl((D+B)/Z1) < ncl((D+B)/B)

we can apply induction hypothesis and obtain that D+B is locally
nilpotent.

Let now S be an arbitrary finite subset of A+B, S = {y1, . . . ,yk}.
Then yj = aj + bj for some elements aj ∈ A,bj ∈ B, 1 6 j 6 k. We
have now

〈S〉 6 〈aj,bj|1 6 j 6 k〉.

It turn out
〈aj,bj|1 6 j 6 k〉 6 〈a1, . . . ,an〉+B.

By what we have proved above, the last subalgebra is locally nilpo-
tent. It follows that 〈S〉 is nilpotent, so that A+B is locally nilpo-
tent. ut

The left (respectively right) center ζleft(L) (respectively ζright(L)) of L
is defined by the rule

ζleft(L) = {x ∈ L|[x,y] = 0 for each element y ∈ L}.

(respectively,

ζright(L) = {x ∈ L[y, x] = 0 for each element y ∈ L}).
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The left center of L is an ideal of L, moreover Leib(L) 6 ζleft(L), so
that L/ζleft(L) is a Lie algebra. The right center is an subalgebra of L,
and, in general, the left and right centers are different, moreover,
they even may have different dimensions. Example 2.1 of paper [11]
shows it.

Lemma 3.7 Let L be a locally nilpotent Leibniz algebra over a field F. IfM
is a minimal ideal of L, then M 6 ζ(L). In particular, dimF(M) = 1.

Proof — Let K = Leib(L), then either M 6 K or M∩K = 〈0〉. Con-
sider first the last case. Factor-algebra L/K is a Lie algebra. Since

(M+K)/K

is a minimal ideal of L/K, Lemma 10 of paper [11] shows that

(M+K)/K 6 ζ(L/K).

It follows that [M, L], [L,M] 6 K. On the other hand, the fact that M
is an ideal of L implies that

[M, L], [L,M] 6M,

so that
[M, L], [L,M] 6M∩K = 〈0〉.

This means that M 6 ζ(L).
Consider now the case when M 6 K. Suppose the contrary, let ζ(L)

does not include M. Since Leib(L) 6 ζleft(L), [M, L] = 〈0〉. Being
non-central, M contains an element b, and L has an element x such
that

[x,b] = c 6= 0.

Since M is an ideal, c ∈M. Then the fact that M is a minimal ideal
of L implies that M = 〈c〉L. Hence there exists a finite subset S of L
such that b ∈ 〈c〉S. Let H = 〈b, x, S〉 and D = 〈b〉H 6 H. Then

c = [x,b] ∈ [H,D]

Let u, v be arbitrary elements of H,d ∈ D. The inclusion D 6 ζleft(L)
implies that [[u,d], v] = 0. We have

[v, [u,d]] = [[v,u],d] + [u, [v,d]].
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Since D is an ideal of H, [v,d] ∈ D, so that [u, [v,d]] ∈ [H,D]. It follows
that [v, [u,d]] ∈ [H,D], and therefore, [H,D] is an ideal of H. Then
from c ∈ [H,D] we obtain that

〈c〉H 6 [H,D].

Since b ∈ 〈c〉S 6 〈c〉H,b∈ [H,D] and it implies that 〈b〉H= D = [H,D].
Being finitely generated, subalgebra H is nilpotent. Then there is a
positive integer t such that

γt(H) = [H, [H, [. . . [H,H] . . .] = 〈0〉.

Then [H, [H, [. . . [H,D] . . .] = 〈0〉. On the other hand, D = [H,D] im-
plies that [H, [H,D]] = [H,D] = D. Using an ordinary induction we
obtain that [H, [H, [H, . . . [H,D] . . .] = D, and we obtain a contradic-
tion. This contradiction proves the inclusion M 6 ζ(L). ut

Proof of Theorem D — (i) In fact, B/A is a minimal ideal of
factor-algebra L/A. Then Lemma 3.7 implies that B/A 6 ζ(L/A)).

(ii) Since A is a maximal subalgebra of L, then L = 〈A, x〉 for each
element x /∈ L. Then the fact that A is an ideal of L implies that a
factor-algebra L/A is cyclic. If we suppose that L/A is not a Lie al-
gebra, then Leib(L/A) is a non-zero proper ideal of L/A, and we
obtain a contradiction. This contradiction shows that L/A is a Lie
algebra. Being cyclic L/A is abelian, which implies that [L, L] 6 A.

Assume now that A is not an ideal of L. Then by above remarked A
does not include [L, L]. It follows that there exists an element x in [L, L]
such that x ∈ A. The fact that A is maximal subalgebra implies that

L = 〈A, x〉.

Since x ∈ [L, L], there exists a finite subset M of L such that

x ∈ [〈M〉, 〈M〉].

If y ∈M, then the equality L = 〈A, x〉 shows that A includes a finitely
generated subalgebra Hy such that

y ∈ 〈Hy, x〉.

Put
H = 〈Hy |y ∈M〉.
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Then H is finitely generated and M ⊆ 〈H, x〉. Put

B = 〈H, x〉.

Since B is finitely generated, it is nilpotent. The inclusion H 6 A im-
plies that x /∈ H. Among all of the subalgebras B including H and
not containing the element x, we choose a maximal subalgebra D.
Taking into account the equality B = 〈H, x〉, we obtain that D is a
maximal subalgebra of B. Since B is nilpotent, it follows that D is
an ideal of B. By above remarked [B,B] 6 D. On the other hand, the
inclusion M ⊆ B implies

[〈M〉, 〈M〉] 6 [B,B].

Then from x ∈ [〈M〉, 〈M〉] we obtain that

x ∈ [B,B] 6 D,

which contradicts the choice of D. This contradiction proves the re-
sult. ut

Corollary 3.8 Let L be a hypercentral Leibniz algebra over a field F. Then
every maximal subalgebra of L is an ideal of L.

4 The idealizer condition for Leibniz algebras

We note the following trivial characterization of algebras satisfying
idealizer condition.

Proposition 4.1 Let L be a Leibniz algebra over a field F. Then L satisfies
the idealizer condition if and only if every subalgebra of L is ascendant in L.

Corollary 4.2 Let L be a Leibniz algebra over a field F. If L satisfies the
idealizer condition then every maximal subalgebra of L is an ideal of L.

Lemma 4.3 Let L be a finite dimensional Leibniz algebra over a field F.
If L satisfies the idealizer condition then L is nilpotent.
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Proof — In fact, let M be a maximal subalgebra of L. Since

IL(M) 6=M, IL(M) = L.

In other words, M is an ideal of L. Thus every maximal subalgebra
of L is an ideal. By Theorem 5.3 of paper [2] L is nilpotent. ut

Corollary 4.4 Let L = 〈a〉 be a cyclic Leibniz algebra over a field F. If L
satisfies the idealizer condition then

L = Fa⊕ Fa1 ⊕ . . .⊕ Fan

where
[aj,a] = [aj,am] = 0

for all j,m with

1 6 j,m 6 n, [a,a] = a1, [a,a1] = a2, . . . , [a,an−1] = an,

[a,an] = 0. In particular, L is nilpotent.

Proof — Put

[a,a] = a1, [a,a1] = a2, . . . , [a,an] = an+1,n ∈N.

Suppose first that element a has infinite depth, that all elements

{a,an |n ∈N}

are linearly independent. We note that

Leib(L) =
⊕
j∈N

Faj.

Consider a subalgebra 〈a− a1〉. We have

[a− a1,a− a1] = [a,a] − [a,a1] − [a1,a] + [a1,a1] = a1 − a2,

[a− a1,a1 − a2] = [a,a1] − [a,a2] − [a1,a1] + [a1,a2] = a2 − a3,

[a− a1,aj − aj+1] = [a,a1] − [a,a2] − [a1,a1] + [a1,a2] =

aj+1 − aj+2, j ∈N.
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These equalities shows that

〈a− a1〉 = F(〈a− a1〉)⊕

⊕
j∈N

F(aj − aj+1)

 .

It implies that subalgebra 〈a− a1〉 has a codimension 1. In particular,
this subalgebra is maximal in L. If we suppose that

IL(〈a− a1〉)〈a− a1〉,

then IL(〈a− a1〉) = L, which means that 〈a− a1〉 is an ideal of L. It
follows that

[a− a1,a] 6= 〈a− a1〉.

However [a− a1,a] = [a,a] = a1. In this case,

(a− a1) + a1 = a ∈ 〈a− a1〉,

and we obtain a contradiction. This contradiction shows that element
a has finite depth. In this case, L has finite dimension (see Theo-
rem 1.1 of the paper [8]), and we can apply Lemma 4.3. ut

Corollary 4.5 Let L be a Leibniz algebra over a field F. If L satisfies the
idealizer condition then L has an ascending series

〈0〉 = A0 6 A1 6 . . . Aα 6 Aα+1 6 . . . Aγ = L

of subalgebras, whose factors are cyclic and finite dimensional.

Lemma 4.6 Let L be a Leibniz algebra over a field F,K be an ideal of L,
andA an ascendant subalgebra of L. IfA,K are locally nilpotent, thenA+K
is also locally nilpotent.

Proof — Let

A = A0 6 A1 6 . . . Aα 6 Aα+1 6 . . . Aγ = L

be the ascendant series of subalgebras, connecting A and L. To avoid
introducing new notation, we can put

L = A+K.
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We have
A1 = A0 + (K∩A1).

Since K is ideal of L,K∩A1 is an ideal of A1. Then the fact that A0
is an ideal of A1 together with Theorem C prove that A1 is locally
nilpotent. Suppose that we have already proved that the subalge-
bras Aβ +K are locally nilpotent for all β < α. If α is a limit ordinal,
then

Aα =
⋃
β<α

Aβ

and
K+Aα =

⋃
β<α

(K+Aβ).

This equality shows that K+Aα is locally nilpotent. Suppose now
that α is not a limit ordinal. Then α− 1 exists. We have

Aα = A+ (K∩Aα) = Aα−1 + (K∩Aα).

Again, Aα−1 and K∩Aα are the ideals of Aα, so using again Theo-
rem C we obtain that Aα is locally nilpotent. For α = γ we obtain the
result. ut

Proof of Theorem E — By Corollary 4.5, L has an ascending series

A = A0 6 A1 6 . . . Aα 6 Aα+1 . . . Aγ = L

of subalgebras, whose factors are cyclic and finite dimensional. It fol-
lows that An has finite dimension and therefore it is nilpotent (Lem-
ma 4.3). Suppose that we have already proved that the subalgebrasAβ
are locally nilpotent for all β < α. If α is a limit ordinal, then

Aα =
⋃
β<α

Aβ,

so that Aα obviously is locally nilpotent. Suppose now that α is not
a limit ordinal. Then α− 1 exists. Let a be an element of L such that

Aα = 〈a〉+Aα−1.

Since Aα−1 is an ideal of Aα and a subalgebra 〈a〉 is ascendant
by Proposition 4.1, Lemma 4.6 implies that Aα is locally nilpotent.
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For α = γ we obtain the result. ut
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