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Abstract

Let P and Q be different normal Sylow subgroups of the finite group G. If G/P
and G/Q are soluble PST -groups (respectively BT -groups), then G is also a solu-
ble PST -group (respectively BT -group). These results have been known for several
years. In this paper we establish similar results for MS-groups and MSN-groups.

Mathematics Subject Classification (2010): 20D10, 20D15, 20D20

Keywords: PST -group; T0-group; MS-group; MSN-group

1 Introduction

In the following G always denotes a finite group. Recall that a sub-
group H of a group G is said to permute with a subgroup K of G if HK
is a subgroup of G. The subgroup H is said to be permutable in G if H
permutes with all subgroups of G.

There are many articles in the literature (for instance [1],[3],[4],[9],
[10],[15] to name six) where global information about a group G is
obtained by assuming that all p-subgroups H, p a prime, of a given
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order satisfy a sufficiently strong embedding property extending per-
mutability. In many cases, the subgroups H are the maximal sub-
groups of the Sylow p-subgroups of G, and the embedding assump-
tion is that they are S-semipermutable in G.

Following [11], we say that a subgroup X of a group G is said to
be S-semipermutable in G provided that it permutes with every q-Sy-
low subgroup of G for all primes q not dividing |H|. We define the
class of MS-groups to be the class of groups G in which the maximal
subgroups of all the Sylow subgroups of G are S-semipermutable
in G. This class was studied in [5], [6] and [10].

Suppose that X is a subnormal S-semipermutable subgroup of a
group G. If P is a subgroup (respectively, Sylow subgroup) of G with
gcd (|X|, |P|) = 1, then X is a subnormal Hall subgroup of XP, and
so X is normalized by P. This observation motivates the following
definition (see [9]).

A subgroup X of a group G is said to be seminormal (respective-
ly, S-seminormal) in G if it is normalized by every subgroup (respecti-
vely, Sylow subgroup) K of G such that gcd (|X|, |K|) = 1.

Note that the term seminormal has different meanings in the litera-
ture. By [9], Theorem 1.2, a subgroup of a group is seminormal if and
only if it is S-seminormal. Furthermore, a Sylow 2-subgroup of the
symmetric group of degree 3 is an example of an S-semipermutable
subgroup which is not seminormal.

We say that a group G is an MSN-group if the maximal subgroups
of all the Sylow subgroups of G are seminormal in G. It is clear that
the class of all MSN-groups is a subclass of the class of
all MS-groups. To show that this inclusion is proper is the aim of
the following example.

Example 1.1 (see [6]) Let A = 〈y〉 × 〈z〉 be a cyclic group of order 18
with y an element of order 9 and z an element of order 2. Let V
be an irreducible A-module over the field of 19 elements such that
CA(V) = 〈z〉. Then V is a cyclic group of order 19. Let G = V oA
be the semidirect product of V by A. The maximal subgroups of
the Sylow subgroups are either trivial or cyclic of order 3. Since V
and 〈z〉 are normal Sylow subgroups of G, it follows that the maxi-
mal subgroups of the Sylow 3-subgroups are S-permutable. Hence G
is an MS-group. However, the cyclic subgroups of order 3 are not
normalized by V and so G is not an MSN-group.

The main purpose of this paper is to provide several new proper-
ties of MS-groups and MSN-groups. We now collect the definitions
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and results which are used to prove our theorems.
The books [4] and [16] will be the main reference for terminology

and results on permutability. S-semipermutability and seminormal-
ity are closely related to the following subgroup embedding property
introduced by Kegel in [12].

A subgroup H of G is said to be S-permutable in G if H permutes
with every Sylow p-subgroup of G for every prime p.

The following classes of groups have been extensively studied in
recent years. They play an important role in the structural study of
groups.

1. A group G is a T -group if normality is a transitive relation in G.
That is, if every subnormal subgroup of G is normal in G.

2. A group G is a PT -group if permutability is a transitive relation
in G. That is, if H is permutable in K and K is permutable in G,
then H is permutable in G.

3. A group G is a PST -group if S-permutability is a transitive rela-
tion in G. That is, if H is S-permutable in K and K is S-permuta-
ble in G, then H is S-permutable in G.

A classical result of Kegel shows that every S-permutable sub-
group must be subnormal [12], Theorem 1.2.14 (3). Therefore, a
group G is a PST -group (respectively a PT -group) if and only if every
subnormal subgroup is S-permutable (respectively permutable) in G.

Note that T implies PT and PT implies PST . On the other hand, PT
does not imply T (non-Dedekind modular p-groups) and PST does
not imply PT (non-modular p-groups).

Another interesting class of groups in this context is the class
of T0-groups studied in [2],[7] and [17]: a group G is called a T0-group
if the Frattini factor group G/Φ(G) is a T -group.

The following example shows that the class of all T0-groups prop-
erly contains the class of all T -groups.

Example 1.2 Let E = 〈x,y〉 be an extraspecial group of order 27
and exponent 3. Let a be an automorphism of order 2 of G given
by xa = x−1, ya = y−1. Let G = E o 〈a〉 be the corresponding
semidirect product. Clearly G is a T0-group. The subgroup H = 〈x〉
is a subnormal subgroup of G which does not permute with the Sy-
low 2-subgroup 〈ay〉. Therefore H is not S-permutable. Hence G is
not a PST -group and so is not a T -group either.
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The following theorem shows that soluble T0-groups are closely
related to PST -groups.

Theorem 1.3 (see [13], Theorems 5, 7 and Corollary 3) Let G be a
soluble T0-group with nilpotent residual L = γ∞(G). Then:

1. G is supersoluble.

2. L is nilpotent Hall subgroup of G.

3. If L is abelian, then G is a PST -group.

Here the nilpotent residual γ∞(G) of a group G is the smallest nor-
mal subgroup N of G such that G/N is nilpotent, that is, the limit of
the lower central series of G defined by

γ1(G) = G and γi+1(G) = [γi(G),G]

for i > 1.
Let G be a group whose nilpotent residual L = γ∞(G) is a Hall

subgroup of G. Let π = π(L) and let θ = π′, the complement of π in
the set of all prime numbers. Let θN denote the set of all primes p
in θ such that if P is a Sylow p-subgroup of G, then P has at least two
maximal subgroups. Further, let θC denote the set of all primes q
in θ such that if Q is a Sylow q-subgroup of G, then Q has only one
maximal subgroup, or equivalently, Q is cyclic.

Throughout this paper we will use the notation presented above
concerning π, θ = π′, θN, and θC. Note that θ = θN ∪ θC
and θN ∩ θC = ∅.

We now present a characterization of MS-groups established in [5].

Theorem 1.4 Let G be a group with nilpotent residual L = γ∞(G).
Then G is an MS-group if and only if G satisfies the following:

1. G is a T0-group.

2. L is a nilpotent Hall subgroup of G.

3. If p ∈ π and P ∈ Sylp(G), then a maximal subgroup of P is normal
in G.

4. Let p and q be distinct primes with p ∈ θN and q ∈ θ. If
P ∈ Sylp(G) and Q ∈ Sylq(G), then [P,Q] = 1.
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5. Let p and q be distinct primes with p ∈ θC and q ∈ θ. If
P ∈ Sylp(G) and Q ∈ Sylq(G) and M is the maximal subgroup of P,
then QM =MQ is a nilpotent subgroup of G.

Our next result (see [5]) gives precise conditions for an MS-group
to be a MSN-group. It is, therefore, a characterization theorem.

Theorem 1.5 A group G is an MSN-group if and only if G satisfies the
following conditions:

1. G is a MS-group.

2. Let p and q be distinct primes with p ∈ π and q ∈ θN. If
P ∈ Sylp(G) and Q ∈ Sylq(G) then [P,Q] = 1.

3. Let p and q be distinct primes with p ∈ π and q ∈ θC. If P ∈ Sylp(G)
and Q ∈ Sylq(G) and T is a maximal subgroup of Q then [P, T ] = 1.

A group G is called a BT -group if semipermutability is a transitive
relation in G. In a very interesting paper, Yangming Li, Lifang Wang,
and Yanming Wang [18] prove the following theorem about solva-
ble BT -groups.

Theorem 1.6 Let G be a group with nilpotent residual L. The following
statements are equivalent:

1. G is a solvable BT -group.

2. Every subgroup of G of prime power order is semipermutable in G.

3. Every subgroup of G is semipermutable in G.

4. G is a solvable PST -group and if p and q are distinct primes not
dividing the order of L with Gp ∈ Sylp(G) and Gq ∈ Sylq(G)
then [Gp,Gq] = 1.

Note that the class of solvable BT -groups is subgroup and quotient
closed.

The next theorem shows that under certain assumptions homo-
morphic images can be used to find conditions on such images that
yield information for soluble PST -groups, soluble BT -groups, solu-
ble PT -groups, and soluble T -groups.
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Theorem 1.7 (see [2]) Let G be a group with normal Sylow subgroups
P ∈ Sylp(G) and Q ∈ Sylq(G) with p and q distinct primes. Then

1. If G/P and G/Q are soluble PST -groups, then also G is a soluble
PST -group.

2. If G/P and G/Q are soluble BT -groups, then G is a soluble BT -group.

3. If G/P and G/Q are soluble T -groups (PT -groups), then G is a solu-
ble T -group (PT -group).

One of our purposes in this paper is to determine if theorems
like Theorem 1.7 can be established for MS-groups and MSN-groups.
These questions are answered in our next two theorems, namely The-
orems A and B.

Theorem A Let G be a group with distinct normal Sylow subgroups P
and Q. If G/P and G/Q are MS-groups, then G is an MS-group.

Theorem B Let G be a group with distinct normal Sylow subgroups P
and Q. If G/P and G/Q are MSN-groups, then G is an MSN-group.

We next provide three results which give some information about
MS-groups, MSN-groups and BT -groups. Theorems A and B are
used in the proofs of these results.

Theorem C Let L be the nilpotent residual of a group G and let N be a
nilpotent normal Hall subgroup of G such that G/N′′ is an MS-group. If L
is abelian, then G is an MS-group.

Theorem D Let L be the nilpotent residual of a group G and let N be
a nilpotent normal Hall subgroup of G such that G/N′′ is an MSN-group.
If L is abelian, then G is an MSN-group.

Theorem E Let L be the nilpotent residual of a group G and let N be a
nilpotent normal Hall subgroup of G such that G/N′′ is a soluble BT -group.
If L is abelian, then G is a soluble BT -group.

We remark that theorems like Theorem E can be established for
soluble PST -groups and soluble PT -groups using Theorem 1.7.
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2 Preliminary lemmas and some examples

In this section we list several lemmas which will be useful in the
proofs of our main theorems.

Lemma 2.1 (see [10]) Let N be a normal subgroup of a group G. Then:

1. If G is an MS-group, then G/N is also an MS-group.

2. If G is an MSN-group, then G/N is also an MSN-group.

Example 2.2 Let
G = 〈a, x,y | a2 = x3 = y3 = [x,y]3 = [x, [x,y]] = [y, [x,y]] = 1,

xa = x−1,ya = y−1〉.
Then H = 〈x,y〉 is an extraspecial group of order 27 and exponent 3.
Let z = [x,y], so za = z. Then

Φ(G) = Φ(H) = 〈z〉 = Z(G) = Z(H).

Note that G/Φ(G) is a T -group so that G is a T0-group. The maximal
subgroups of H are normal in G and it follows that G is an MS-group.
Let K = 〈x, z,a〉. Then 〈xz〉 is a maximal subgroup of 〈x, z〉, the Sy-
low 3-subgroup of K. However, 〈xz〉 does not permute with 〈a〉 and
hence 〈xz〉 is not an S-semipermutable subgroup of K. Therefore, K
is not an MS-subgroup of G. Also note that Φ(K) = 1 and so K is not
a T -subgroup and K is not a T0-subgroup of G. Hence the class of
soluble T0-groups is not closed under taking subgroups. Note that G
is a soluble group which is not a PST -group.

Example 2.3 Let

G = 〈y, z, x | y9 = z2 = x19
2
= 1, [y, z] = 1, xy = x62, xz = x−1〉.

Then the soluble group G is a PST -group, but G is not an MS-group
since

[
〈y2〉x, z

]
6= 1.

Example 2.2 shows that the class of MS-groups and the class
of T0-groups are not subgroup closed. Example 2.3 shows that a sol-
uble PST -group need not be an MS-group.

Lemma 2.4 (see [14]) If G is an MS-group, then G is supersoluble.

Lemma 2.5 (see [8]) Let N be a normal subgroup of the group G such
that N and G/N′′ are supersoluble. Then G is supersoluble.
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3 Proofs of the main theorems

Proof of Theorem A — Most of the proof given here was in my
paper with Ragland (see [10]). However for the sake of completeness
we give a somewhat new proof.

Let G be a group with distinct normal Sylow subgroups P
and Q such that G/P and G/Q are MS-groups. We are to prove
that G is a MS-group. By Lemma 2.4 G/P and G/Q are supersoluble.
Since this class of supersoluble groups is a formation and the fact
that P ∩Q = 〈1〉, it follows that G is supersoluble.

Let H be a Hall {p,q}′-subgroup of G then G = (P×Q)oH, the
semidirect product of (P×Q) by H.

Let M be a maximal subgroup of P. Then [M,Q] 6 P ∩Q = 1
so that [M,Q] = 1. Likewise, if W is a maximal subgroup of Q,
then [W,P] = 1. Hence M permutes with Q and W permutes with P.

Let r be a prime divisor of |G| with r ∈ {p,q}′ and let R be a Sy-
low r-subgroup of G. We may assume that R is a subgroup of H.
NowG/Q ' PoHwhich is anMS-group so thatMR = RM. HenceM
permutes with R.

We also note W permutes with R. Let Y be a maximal subgroup
of R. Then since P and Q are normal subgroups of G, YP and YQ
are subgroups of G. Hence Y permutes with P and Q. Let t ∈ {p,q}′

and we assume that t divides the order |G| of G. Let T ∈ Sylt(G).
Note that YP/P is a maximal subgroup of G/P. Also TP/P is a Sy-
low t-subgroup of G/P.

Assume t 6= r and note that YP/P and TP/P permute. We deduce
that (YT)P = (TY)P. Similarly, we can deduce (YT)Q = (TY)Q. It
now follows that

YT ⊆ (TY)P ∩ (TY)Q = TY and TY ⊆ (YT)P ∩ (YT)Q = YT .

We see that YT = TY. Hence, the maximal subgroups of every Sy-
low subgroup of G is S-semipermutative in G. Therefore, G is
an MS-group. ut

Proof of Theorem B — Let G be a group with distinct normal Sy-
low subgroups P and Q such that G/P and G/Q are MSN-groups.
We note that G/P and G/Q are MS-groups so by Lemma 2.4 G/P
and G/Q are supersoluble. Hence G is supersoluble. Let H be
a Hall {p,q}′-subgroup of G and note G = (P×Q)oH, the semidi-
rect product of (P×Q) by H. Let M be a maximal subgroup of P.
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Then [M,Q] 6 [P,Q] = 1 so that Q normalizes M. Likewise P norma-
lizes W.

Let r be a prime divisor of |G| and let r ∈ {p,q}′. Let R be a Sy-
low r-subgroup of G. We may assume that R is contained in H. Note
that G/Q ' PoH which is an MSN-group. Hence, R normalizes M.

We also mention that the maximal subgroup W of Q is normalized
by R.

Let Y be a maximal subgroup of R. Since G/Q ' P o H is
an MSN-group it follows that P normalizes Y. In the same way,
G/P ' QoH is an MSN-group so that Q normalizes Y.

We note that YP/P is a maximal subgroup of RP/P. Let t be a prime
divisor of |G| where t ∈ {p,q}′ and let T ∈ Sylt(G). Assume t 6= r.
Since G/P is an MSN-group TP/P normalizes YP/P so that TP nor-
malizes YP. We note that since G/Q is an MSN-group, TQ normali-
zes YQ.

Hence we have that T normalizes YQ ∩ YP = Y. Therefore, every
maximal subgroup of every Sylow subgroup of G is S-seminormal
in G so that G is an MSN-group. ut

Proof of Theorem C — Let L be the nilpotent residual of a group G
and let N be a nilpotent normal Hall subgroup of G. If L is abelian
and G/N′′ is an MS-group, then G is an MS-group. By Lemma 2.5 G
is supersoluble. Let p be the largest prime divisor of the order of G
and let P be a Sylow p-subgroup of G. Then P is normal in G and G/P
satisfies the assumptions of the theorem. Hence G/P is an MS-group.

Now let t be a prime divisor of |N| and let T be a Sylow t-subgroup
of N. Since N is a nilpotent Hall normal subgroup of G, T is a nor-
mal Sylow t-subgroup of G. Also G/T satisfies the assumptions of
the theorem and hence G/T is an MS-group. If t 6= p then G is
an MS-group by Theorem A. So we may assume that t = p and
hence P = N. Note that L 6= 1 since if G is nilpotent, then G is an
MS-group. So let R be a minimal normal subgroup of G contained
in L. Then G/R satisfies the assumptions of the theorem and hence,
by induction, G/R is an MS-group. Now L/R is the nilpotent residual
of G/R and so L/R is a Hall subgroup of G/R by statement (2) of The-
orem 1.4. It follows that L is a Hall subgroup and hence P = L = N.

Now L′ = 1 so that N′′ = 1 and G is an MS-group. This completes
the proof of Theorem C. ut

Proof of Theorem D — Let L be the nilpotent residual of a group G
and let N be a nilpotent normal Hall subgroup of G such that G/N′′
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is an MSN-group. We are to show the G is an MSN-group. By Lem-
ma 2.5 G is a supersoluble group. By a proof very much like the
proof of Theorem C and using Theorem B instead of Theorem A, we
obtain that G is an MSN-group. ut

Proof of Theorem E — Let L be the nilpotent residual of a group G
and letN be a nilpotent normal Hall subgroup of G such that G/N′′ is
a soluble BT -group. Then we are to show that G is a soluble BT -group.
Note that N is nilpotent and G/N′′ is a soluble BT -group and hence
by part (4) of Theorem 1.6 G/N′′ is a soluble PST -group. By a theorem
of Agrawal (see [1]) G/N′′ is supersoluble. Hence, by Lemma 2.5, G
is supersoluble.

Let p be the largest prime dividing the order of G and let P be
a Sylow p-subgroup of G. Then P is normal in G. Notice that G/P sat-
isfies the assumptions of the theorem. Let T be a Sylow t-subgroup
of N where t is a prime dividing the order of N. Then T is nor-
mal in N and is also normal in G. Note that G/T satisfies the as-
sumptions of the theorem. So, by induction, G/P and G/T are solu-
ble BT -groups.

First assume p 6= t. Then G is a soluble BT -group by part (2) of The-
orem 1.7. Hence assume p = t, then N = P. Let R be a minimal nor-
mal subgroup of G contained in L. Then G/R satisfies the assump-
tions of the theorem so that G/R is a soluble BT -group which is a
soluble PST -group by statement (4) of Theorem 1.6. Now L/R is the
nilpotent residual of the soluble PST -group G/R. Then, by a result
of Agrawal (see [1]), L/R is a Hall subgroup of G/R and so L is a Hall
subgroup of G. This means the P = N = L. Since L′ = 1 it follows
that N′′ = 1 and so G is a soluble BT -group. ut
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