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Abstract

A group representation is said to have the ESQ property if it is isomorphic to
a quotient of its own exterior square. Let us denote the semidirect product of
cyclic groups Zp x Zq by Fp g, where p is a prime and q | p —1. We investigate
whether Fp, 4 has an irreducible representation with the ESQ property. Fixing one
of the parameters q or Pq;‘/ we will be able to give an asymptotic answer to this
question.
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1 Introduction

Let G be a group which acts linearly on the vector space V defined
over the field F. Considering V as an FG-module, we say that this
module has the ESQ property if it is isomorphic to a quotient of its
exterior square (ESQ stands for Exterior Self-Quotient).

This concept in representation theory first appeared in an arti-
cle by Glasby, Péalfy and Schneider [2]. The authors of this paper
have investigated the problem of determining those finite groups
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which have low dimensional irreducible faithful representations with
the ESQ property. They have considered representations over arbi-
trary fields but in the present paper our base field will be the com-
plex numbers. Let us suppose that V is an irreducible CG module
with character x. In this classical case the ESQ property of V is equiv-
alent to the relation V < A% V, which can be expressed through the
inner product of characters as (x,X) # 0, where

Over the complex field the results of [2] on low dimensional irre-
ducible representations with the ESQ property can be summarized
as follows:

— the only finite group which has a four dimensional irreducible
faithful representation with the ESQ property is AGL;(5).

- the unique minimal finite group which has a five dimensional
irreducible faithful representation with the ESQ property is the
nonabelian group of order 55.

All finite subgroups of SO(3) give rise to a three dimensional faithful
representation with the ESQ property since the natural representa-
tion of SO(3) is isomorphic to its own exterior square. This observa-
tion implies that there is no such a fine classifying result in dimen-
sion three as in dimensions four and five. The groups which have
appeared in the low dimensional results are semidirect products of
two cyclic groups Fp q = Zp X Zgq where p is a prime, q | p — 1
and ¢ is an injective Zq — Z; homomorphism. We denote the
fraction qu by r. This notation remains fixed throughout this arti-
cle. The groups Fp ¢ are unique up to isomorphism for any given
values of p and q. The present paper will investigate the problem
whether F,, 4 has an irreducible representation with the ESQ prop-
erty. This investigation will produce an infinite number of different
irreducible ESQ representations even in dimension six. Our main re-
sults are the following.

Theorem 1.1 Let q be fixed. If 6 1 q then for any sufficiently large p
with q | p — 1 the metacyclic group Fy, 4 does not have any irreducible repre-
sentation with the ESQ property. If 6 | q then every Ty, ¢ has an irreducible
representation with the ESQ property.
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Theorem 1.2 If r is fixed then for any sufficiently large p the metacyclic
group Fp q has an irreducible representation with the ESQ property.

The character table of an arbitrary Fp, ¢ is well known. All nonlin-
ear irreducible characters of F,, ¢ are associated with g dimensional
faithful representations. As it will turn out, either all of these repre-
sentations will have the ESQ property or none of them. The proof
of Theorem 1.1 and 1.2 will be based on the decomposition of the
exterior square of a nonlinear character of F, 4. Considering this de-
composition we will see that the ESQ property of a q dimensional
irreducible representation of Fp, ¢ will be equivalent to the solvabil-
ity of a Fermat type equation in F.

2 The proof of Theorem 1.1 and 1.2

To prove the Theorem 1.1 and 1.2 we will make use of the irreducible
character values of Fp . Let us fix an element u of order q in F},
some coset representatives vi,vz,..., vy of (u) in F¥ and & = e?™/P,
Finally, we fix the generators a and b in the cyclic groups Z,, and Z4
respectively. A full description of the irreducible characters of F, 4
can be found in [3], Theorem 25.10, which we cite here.

Theorem 2.1 The group ¥y, q = Zp X Zq has q + 1 irreducible char-
acters. There are q linear characters and v characters of degree q given by

xt((a*,bY)) =0if bY #1,

xel(as, 1))=Y &>

sEve{u)

fort=1,2,...,r.

The linear representations of F,, 4 obviously cannot be ESQ. For the
nonlinear irreducible representations of F, 4 the following lemma
will provide a reformulation of the ESQ property. We will call a
group character ESQ if and only if it corresponds to a representation
with the ESQ property.
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Lemma 2.2 Let X be a nonlinear character of Fp q. Then x¢ is ESQ if and
only if there exist natural numbers k, 1, and an element z € P satisfying

&=z 41, 21#1, z9 =1.
ProoF — We denote the subgroup ((a,1)) in F, 4 by A and the

exterior square of the character x¢ by Xt. Using Theorem 2.1, we can
determine the character values of Xt on A as follows:

_ xE((@X, 1)~ xa((a®,1))

Xi((a*, 1)) 5
_ %( Z 8(ers’)x . Z EZSX) _ Z svt(ui+uj)x (2'1)
s,s’€ve(u) sEve(u) 0<i<j<q

Let us take any term eVt HwWix of o 1) If ut+uw = 0 in F,, then
this term will be 1, which can be interpreted as 1((a*, 1)), where 1
denotes the trivial character of Fp, 4. If u' +w # 0 then we isolate the
following partial sum of (2.1):

q—1 , _
Z Evt(u1+k+u]+k)x

k=0

In this case the exponents
vt(qu +uj+k) fork=0,1,...,q—1

form a coset of (u) in [FJ, so we may assume that this coset corre-
sponds to some coset representative vi. This observation implies that
the isolated partial sum equals x((a*,1)). By repeating this proce-
dure we will get a decomposition of the restricted character x¢|a to
some nonlinear irreducible characters of Fp,  restricted to A and 1|A.
We denote the set of constituents in this decomposition by D.

The restrictions of nonlinear characters of Fp q to A and 1|5 are
pairwise orthogonal characters of A, since they are orthogonal in Fp, 4,
and with the exception of 1 all of them vanish on Fp, 4 \ A. This ob-
servation implies the following equivalence

xtla € D <= (xtla, Xtla)a #0 < xq is ESQ.
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We have seen from the decomposition procedure that x¢|a € D if and
only if ut+w € (u) for some 0 < i < j < q. Choosing k appropriately,
we can write this relation as u* = u' 4+ 1 where 1 = j — i. The lemma
follows. 0

An immediate consequence of 2.2 is that either all of the nonlinear
representations of Ty, 4 have the ESQ property or none of them has
it. Since the elements which satisfy the equation z9 = 1 are the rt"
powers in F, we can characterize the ESQ property by the solvabil-
ity of a Fermat type equation as follows.

Lemma 2.3  Let x¢ be a nonlinear character of ¥, q. Then Xt is ESQ if
and only if the equation
T +yr — 7

has a solution in lFf;, such that x" # y'.

Now we prove Theorem 1.1 with the help of Lemma 2.2.

ProoF — We start our proof with the assumption that 6 1 q. We will
show that the equation system zX = z! +1, z9 = 1 has no solution
in [F,, where p is a sufficiently large prime, q | p—1, and k, 1 are
arbitrary nonnegative integers. Let us fix some values for k and 1.
As z9 = 1 we may assume that 0 < k,1 < q.

Our aim is to show that the polynomials

f(z) =z —z' —Tand g(z) =29 — 1

have no common root in FF,. First we will show that f and g have
no common root over C. For a proof of contradiction , assume that
there is a t € C which satisfies f(t) = g(t) = 0. As t9—1 =0, it is
clear that t and t* are on the complex unit circle centered in 0. On
the other hand, t* = t! + 1 implies that t* is also on the unit circle
centered in 1. These circles have two common points, which are the
primitive sixth roots of unity so the order of t* is 6. The order of t*
divides the order of t. Using the equation t9 =1, we get 6 | q, which
contradicts our starting assumption.

The resultant of two polynomials can be computed by a determi-
nant whose entries are either zeroes or coefficients of the polynomi-
als. This value will be zero if and only if the polynomials have a
common root. We conclude that the resultant of f and g over C is
a nonzero integer Ry. The resultant of f and g over FF, is given by
the same determinant as in the complex case, so its value will be the
residue of Ry; modulo p. This will be nonzero if we choose p to be
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greater than [Ry|. Because of the condition 0 < k, 1 < q there are only
finitely many pairs k, 1. Using this observation, we may define C to
be maxp<i,1<q IRkl This choice ensures that for any prime p greater
than C, the equation system z* = z! + 1, z9 = 1 will have no solu-
tion in IF,. Hence by Lemma 2.2 the first statement of Theorem 1.1
follows. Now we deal with the case 6 | q. As q | p— 1, there exists
an element g of order 6 in IF. Since the sixth cyclotomic polynomial
is ®g(z) = 22 —z+ 1, we conclude that g2 — g+ 1 = 0. This implies
that the choice z = g,k = 1 and | = 2 satisfies the equation system
in Lemma 2.2. The second statement of Theorem 1.1 follows. O

Finally, we prove Theorem 1.2. Without the assumption x" # y"
the solvability of a Fermat type equation in Lemma 2.3 is a well in-
vestigated problem. Schur proved in 1916 that a fixed degree Fermat
equation has a solution in IFj for almost every prime p (see [4]). Now
we briefly give the proof for this statement.

Lemma 2.4 For every positive integer c, there exists s(c) € N1, so that
for an arbitrary coloring of the set S(c) ={1,2,...,s(c)} by c colors, there
will be a monochromatic solution for the equation x +y = z (here x and y
can be equal).

Proor — For an arbitrary coloring of the set T = {1,2,...,t} we
assign an edge coloring of the complete graph K as follows. The
edge ey; will get the color of [i —j| € T. As c is fixed, if t is greater
then some constant R(c, 3), then the Ramsey’s theorem ensures that K
will have a monochromatic triangle. Let us denote the vertices of such
a monochromatic triangle by p < q < r. Now the equation

(@-p)+(r—q)=r—p

is a monochromatic solution for x +y = z, hence the lemma is now
demonstrated. O

For s(r) < p let us denote a primitive root of IF{; by g. We color the
elements in the coset g*(g") C F with color i wherei=1,2,...r. For
this coloring Lemma 2.4 provides a monochromatic triple in [FX,
which gives us a solution for x" +y" = z" in FJ. We will strengthen
the statement of Lemma 2.4 in such a way that we will prove the
existence of a monochromatic solution of x +y = z with x #y. After
this, Theorem 1.2 will follow from the previous argument of Schur
and Lemma 2.3. The proof of this can be found in [1], nevertheless,
we briefly present this result.
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ProoF — From an arbitrary coloring of the set T = {1,2,...,t} we
construct the edge coloring of Ky just as before. Now we choose t to
be greater than R(c,4) so there will be an edge monochromatic K4
with vertices w < x <y < z. If

X—W=y—x=z—Yy
holds, then (z—y) + (y—w) = z—w is a monochromatic solution

withz—y #y—w. If x—w #y—x, then (x—w)+(y—x) =y—w
will be an appropriate monochromatic solution in T. Finally, if

U_X#Z_U/

then (y—x)+ (z—y) = z—x shows that the strengthened form
of Lemma 2.4 is true. O

The proof of Theorem 1.2 is now complete.
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