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Abstract
A group representation is said to have the ESQ property if it is isomorphic to
a quotient of its own exterior square. Let us denote the semidirect product of
cyclic groups Zp o Zq by Fp,q, where p is a prime and q | p− 1. We investigate
whether Fp,q has an irreducible representation with the ESQ property. Fixing one
of the parameters q or p−1q , we will be able to give an asymptotic answer to this
question.
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1 Introduction

Let G be a group which acts linearly on the vector space V defined
over the field F. Considering V as an FG-module, we say that this
module has the ESQ property if it is isomorphic to a quotient of its
exterior square (ESQ stands for Exterior Self-Quotient).

This concept in representation theory first appeared in an arti-
cle by Glasby, Pálfy and Schneider [2]. The authors of this paper
have investigated the problem of determining those finite groups
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which have low dimensional irreducible faithful representations with
the ESQ property. They have considered representations over arbi-
trary fields but in the present paper our base field will be the com-
plex numbers. Let us suppose that V is an irreducible CG module
with character χ. In this classical case the ESQ property of V is equiv-
alent to the relation V 6 Λ2 V , which can be expressed through the
inner product of characters as 〈χ, χ̂〉 6= 0, where

χ̂(g) =
χ2(g) − χ(g2)

2
.

Over the complex field the results of [2] on low dimensional irre-
ducible representations with the ESQ property can be summarized
as follows:

– the only finite group which has a four dimensional irreducible
faithful representation with the ESQ property is AGL1(5).

– the unique minimal finite group which has a five dimensional
irreducible faithful representation with the ESQ property is the
nonabelian group of order 55.

All finite subgroups of SO(3) give rise to a three dimensional faithful
representation with the ESQ property since the natural representa-
tion of SO(3) is isomorphic to its own exterior square. This observa-
tion implies that there is no such a fine classifying result in dimen-
sion three as in dimensions four and five. The groups which have
appeared in the low dimensional results are semidirect products of
two cyclic groups Fp,q = Zp oϕ Zq where p is a prime, q | p− 1
and ϕ is an injective Zq −→ Z×p homomorphism. We denote the
fraction p−1

q by r. This notation remains fixed throughout this arti-
cle. The groups Fp,q are unique up to isomorphism for any given
values of p and q. The present paper will investigate the problem
whether Fp,q has an irreducible representation with the ESQ prop-
erty. This investigation will produce an infinite number of different
irreducible ESQ representations even in dimension six. Our main re-
sults are the following.

Theorem 1.1 Let q be fixed. If 6 - q then for any sufficiently large p
with q | p− 1 the metacyclic group Fp,q does not have any irreducible repre-
sentation with the ESQ property. If 6 | q then every Fp,q has an irreducible
representation with the ESQ property.
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Theorem 1.2 If r is fixed then for any sufficiently large p the metacyclic
group Fp,q has an irreducible representation with the ESQ property.

The character table of an arbitrary Fp,q is well known. All nonlin-
ear irreducible characters of Fp,q are associated with q dimensional
faithful representations. As it will turn out, either all of these repre-
sentations will have the ESQ property or none of them. The proof
of Theorem 1.1 and 1.2 will be based on the decomposition of the
exterior square of a nonlinear character of Fp,q. Considering this de-
composition we will see that the ESQ property of a q dimensional
irreducible representation of Fp,q will be equivalent to the solvabil-
ity of a Fermat type equation in F×p .

2 The proof of Theorem 1.1 and 1.2

To prove the Theorem 1.1 and 1.2 we will make use of the irreducible
character values of Fp,q. Let us fix an element u of order q in F×p ,
some coset representatives v1, v2, . . . , vr of 〈u〉 in F×p and ε = e2πi/p.
Finally, we fix the generators a and b in the cyclic groups Zp and Zq
respectively. A full description of the irreducible characters of Fp,q
can be found in [3], Theorem 25.10, which we cite here.

Theorem 2.1 The group Fp,q = Zp oϕ Zq has q+ r irreducible char-
acters. There are q linear characters and r characters of degree q given by

χt((a
x,by)) = 0 if by 6= 1,

χt((a
x, 1)) =

∑
s∈vt〈u〉

εsx

for t = 1, 2, . . . , r.

The linear representations of Fp,q obviously cannot be ESQ. For the
nonlinear irreducible representations of Fp,q the following lemma
will provide a reformulation of the ESQ property. We will call a
group character ESQ if and only if it corresponds to a representation
with the ESQ property.



86 János Wolosz

Lemma 2.2 Let χt be a nonlinear character of Fp,q. Then χt is ESQ if and
only if there exist natural numbers k, l, and an element z ∈ F×p satisfying

zk = zl + 1, zl 6= 1, zq = 1.

Proof — We denote the subgroup 〈(a, 1)〉 in Fp,q by A and the
exterior square of the character χt by χ̂t. Using Theorem 2.1, we can
determine the character values of χ̂t on A as follows:

χ̂t((a
x, 1)) =

χ2t ((a
x, 1)) − χt((a2x, 1))

2

=
1

2

( ∑
s,s ′∈vt〈u〉

ε(s+s
′)x −

∑
s∈vt〈u〉

ε2sx
)
=
∑

06i<j<q

εvt(u
i+uj)x (2.1)

Let us take any term εvt(u
i+uj)x of (2.1). If ui + uj = 0 in Fp then

this term will be 1, which can be interpreted as 1((ax, 1)), where 1

denotes the trivial character of Fp,q. If ui+uj 6= 0 then we isolate the
following partial sum of (2.1):

q−1∑
k=0

εvt(u
i+k+uj+k)x.

In this case the exponents

vt(u
i+k + uj+k) for k = 0, 1, . . . ,q− 1

form a coset of 〈u〉 in F×p , so we may assume that this coset corre-
sponds to some coset representative vl. This observation implies that
the isolated partial sum equals χl((ax, 1)). By repeating this proce-
dure we will get a decomposition of the restricted character χ̂t|A to
some nonlinear irreducible characters of Fp,q restricted to A and 1|A.
We denote the set of constituents in this decomposition by D.

The restrictions of nonlinear characters of Fp,q to A and 1|A are
pairwise orthogonal characters ofA, since they are orthogonal in Fp,q,
and with the exception of 1 all of them vanish on Fp,q \ A. This ob-
servation implies the following equivalence

χt|A ∈ D ⇐⇒ 〈χt|A, χ̂t|A〉A 6= 0 ⇐⇒ χt is ESQ.
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We have seen from the decomposition procedure that χt|A ∈ D if and
only if ui+uj ∈ 〈u〉 for some 0 6 i < j < q. Choosing k appropriately,
we can write this relation as uk = ul + 1 where l = j− i. The lemma
follows. ut

An immediate consequence of 2.2 is that either all of the nonlinear
representations of Fp,q have the ESQ property or none of them has
it. Since the elements which satisfy the equation zq = 1 are the rth

powers in F×p , we can characterize the ESQ property by the solvabil-
ity of a Fermat type equation as follows.

Lemma 2.3 Let χt be a nonlinear character of Fp,q. Then χt is ESQ if
and only if the equation

xr + yr = zr

has a solution in F×p , such that xr 6= yr.

Now we prove Theorem 1.1 with the help of Lemma 2.2.
Proof — We start our proof with the assumption that 6 - q. We will
show that the equation system zk = zl + 1, zq = 1 has no solution
in Fp, where p is a sufficiently large prime, q | p − 1, and k, l are
arbitrary nonnegative integers. Let us fix some values for k and l.
As zq = 1 we may assume that 0 6 k, l < q.

Our aim is to show that the polynomials

f(z) = zk − zl − 1 and g(z) = zq − 1

have no common root in Fp. First we will show that f and g have
no common root over C. For a proof of contradiction , assume that
there is a t ∈ C which satisfies f(t) = g(t) = 0. As tq − 1 = 0, it is
clear that t and tk are on the complex unit circle centered in 0. On
the other hand, tk = tl + 1 implies that tk is also on the unit circle
centered in 1. These circles have two common points, which are the
primitive sixth roots of unity so the order of tk is 6. The order of tk

divides the order of t. Using the equation tq = 1, we get 6 | q, which
contradicts our starting assumption.

The resultant of two polynomials can be computed by a determi-
nant whose entries are either zeroes or coefficients of the polynomi-
als. This value will be zero if and only if the polynomials have a
common root. We conclude that the resultant of f and g over C is
a nonzero integer Rkl. The resultant of f and g over Fp is given by
the same determinant as in the complex case, so its value will be the
residue of Rkl modulo p. This will be nonzero if we choose p to be
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greater than |Rkl|. Because of the condition 0 6 k, l < q there are only
finitely many pairs k, l. Using this observation, we may define C to
be max06k,l<q |Rkl|. This choice ensures that for any prime p greater
than C, the equation system zk = zl + 1, zq = 1 will have no solu-
tion in Fp. Hence by Lemma 2.2 the first statement of Theorem 1.1
follows. Now we deal with the case 6 | q. As q | p− 1, there exists
an element g of order 6 in F×p . Since the sixth cyclotomic polynomial
is Φ6(z) = z2 − z+ 1, we conclude that g2 − g+ 1 = 0. This implies
that the choice z = g, k = 1 and l = 2 satisfies the equation system
in Lemma 2.2. The second statement of Theorem 1.1 follows. ut

Finally, we prove Theorem 1.2. Without the assumption xr 6= yr

the solvability of a Fermat type equation in Lemma 2.3 is a well in-
vestigated problem. Schur proved in 1916 that a fixed degree Fermat
equation has a solution in F×p for almost every prime p (see [4]). Now
we briefly give the proof for this statement.

Lemma 2.4 For every positive integer c, there exists s(c) ∈N+ , so that
for an arbitrary coloring of the set S(c) = {1, 2, . . . , s(c)} by c colors, there
will be a monochromatic solution for the equation x+ y = z (here x and y
can be equal).

Proof — For an arbitrary coloring of the set T = {1, 2, . . . , t} we
assign an edge coloring of the complete graph Kt as follows. The
edge eij will get the color of |i− j| ∈ T . As c is fixed, if t is greater
then some constant R(c, 3), then the Ramsey’s theorem ensures that Kt
will have a monochromatic triangle. Let us denote the vertices of such
a monochromatic triangle by p < q < r. Now the equation

(q− p) + (r− q) = r− p

is a monochromatic solution for x+ y = z, hence the lemma is now
demonstrated. ut

For s(r) < p let us denote a primitive root of F×p by g. We color the
elements in the coset gi〈gr〉 ⊂ F×p with color iwhere i = 1, 2, . . . r. For
this coloring Lemma 2.4 provides a monochromatic triple in F×p ,
which gives us a solution for xr + yr = zr in F×p . We will strengthen
the statement of Lemma 2.4 in such a way that we will prove the
existence of a monochromatic solution of x+ y = z with x 6= y. After
this, Theorem 1.2 will follow from the previous argument of Schur
and Lemma 2.3. The proof of this can be found in [1], nevertheless,
we briefly present this result.



Representations of metacyclic groups 89

Proof — From an arbitrary coloring of the set T = {1, 2, . . . , t} we
construct the edge coloring of Kt just as before. Now we choose t to
be greater than R(c, 4) so there will be an edge monochromatic K4
with vertices w < x < y < z. If

x−w = y− x = z− y

holds, then (z − y) + (y −w) = z −w is a monochromatic solution
with z− y 6= y−w. If x−w 6= y− x, then (x−w) + (y− x) = y−w
will be an appropriate monochromatic solution in T . Finally, if

y− x 6= z− y,

then (y − x) + (z − y) = z − x shows that the strengthened form
of Lemma 2.4 is true. ut

The proof of Theorem 1.2 is now complete.

R E F E R E N C E S

[1] P. Blanchard – F. Harary – R. Reis: “Partitions into sum-free
sets”, Integers 6 (2006), A7.

[2] S. P. Glasby – P. P. Pálfy – Cs. Schneider: “p-groups with unique
proper non-trivial characteristic subgroup”, J. Algebra 348 (2011),
85–109.

[3] G. James – M. Liebeck: “Representations and Characters
of Groups" (2nd ed.), Cambridge University Press, Cambridge
(2001).

[4] I. Schur: “Über die Kongruenz xm + ym = zm (mod p)”, Jahres-
ber. Deutsche Math.-Verein. 25 (1916), 114–116.



90 János Wolosz

János Wolosz
ELTE Eötvös Loránd University,
Budapest (Hungary)
e-mail: janos.wolosz@gmail.com


	János Wolosz: On the ESQ property of certain representations of metacyclic groups

