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Abstract

Given distinct prime numbers q and r, we construct a semidirect product CR
with R < CR, where C is a cyclic group of order ¢, and R is an extraspecial r-group,
such that C centralizes R’, and R is minimal among the extraspecial normal sub-
groups of CR. We also calculate the automorphism group of CR, and we investigate
certain situations in which an automorphism fixes a nontrivial element of R/R’.
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1 Introduction

Extraspecial groups play a useful role in the theory of finite
groups (see [1, Chapter 2, Section 8], [6, III(13.10)], [8, IX(2.6)]). This
is particularly true for questions which involve representation theo-
ry [11, Theorems 3.5, 4.4, 7.3 and 8.4], and in many cases one is led
to investigate a subgroup CR with R < CR, where C is cyclic, R is
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extraspecial and [R, C] =R, [R’, C] = 1. In this paper, we consider the
case when C is of prime order, and R is minimal among the extraspe-
cial normal subgroups of CR. We use the theory of Galois fields to
give an explicit construction of such groups CR, and to derive some
of their properties. The construction was motivated by the proof of
a result about the injectors for certain Fitting classes in a finite solv-
able group [3], and some of our results are designed to be used in
this proof.

The layout of the paper is as follows. In the remainder of this sec-

tion we state some known results which will be used later, and in Sec-
tion 2 we construct the groups CR. In Section 3 we show that CR is
unique (up to isomorphism), and in Section 4 we find the automor-
phism group of CR. Finally in Section 5 we prove some results about
automorphisms fixing a nontrivial element of R/R’, which are used
in our application [3].
NotaTioN — If n is a natural number, let C,, be the cyclic (mul-
tiplicative) group of order n, and let Z,, = Z/nZ be the additive
group of integers modulo n. If also r is a prime number, let Fyn be
the Galois field of order r™, and write IF;ZL and ]FrxTl for the additive
and multiplicative groups of F;n respectively. Then F, is elemen-
tary abelian of order r™, and ]Frxn =Cin_q.

Lemma 1.1

(@) [5, B (9.3.b) and (9.8.c)] Let W be a module which is C-faithful
and F,C-irreducible, where C is a finite abelian group (and r is
a prime number). Then C = (c¢) = Cn is cyclic with v { n,
and dimg_ W = k where k is the order of v modulo n.

(b) [5, B (9.8.b)] More explicitly, assuming the hypotheses and conclu-
sions of (a), there exist an F -isomorphism 6 : W — ]F:rk, and

an element vy which is a primitive n-th root of 1 in F), such
T

that (£c)® = vEP (& € W). Thus C permutes the set W — 0 semireg-
ularly.

(c) With the notation of (b), form the F .C-module W7 = F .« ® g W.
Then there is an IF x-basis {&9,&1,...,&k—1} of Wy such that

Eic=7"& (1€ Zy).

ProorF — The statements (a) and (b) are proved in the given refer-
ences.
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(c) Let
1

x(x) =x* — g1 xK T — L —xx —
be the minimum .polynomial of v over F,, and take vectors vi € W
such that vie =v' (0 <1< k). Then {vg,vq,...,Vk—_1} is an F,-basis
of W, and the matrix of ¢ with respect to this basis is the companion
matrix

0 1
0 1
M = N
0 1
X X1 e 2 Xk

Moreover x(x) is the characteristic polynomial of M, so v is an eigen-
value for the action of ¢ on W. Hence the other eigenvalues are the

images v (i € Zy) under the Galois group of F i over IF,. We get
the result by choosing eigenvectors &; € W with eigenvalue y™. O

Lemma 1.2 Let v be a prime number.

(@) [5, B (12.9)] If k is a natural number, then there is an affine
semilinear group BoCoW with Co < BoCpop, W < BoCoW and
BoNCpo =BoCoNW =1, where

Bo = (bo) =Cr, Co={co)=Cr_y, ¢g°=c}.

Also W = ]F;Lk is a module which is BoCo-faithful and F,Cy-ir-
reducible, and there is a generator vy of ]FTXk such that

wby =w", wcyg=vow (weW).

(b) [5, B (12.4)] Suppose n is a natural number with v { n, and let k
be the order of v modulo n. Let CW be a semidirect product with
W a CWand CNW =1, such that C = Cy, and W is a mod-
ule which is C-faithful and F.C-irreducible. Then CW is unique

(up to isomorphism), and [W| = r*. Hence CW can be embedded in

. . Ak =1)/n
the group CoW constructed in (a), with C = C, . Moreover

if ©y = Aut(CW) and ¥y = N@O(C), then BoCo < Yo.

(c) [6, IT (3.11)] Using the notation of (b), ©g = YoW is a semidirect
product, with W < Qg and Yo NW = 1. Also ¥y = B Co.
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(d) [10, (2.35)] If L < BoCp with Cyw (L) # 0, then L < B for some
element ¢ € Co. Moreover W has an Fr-basis which is permuted
reqularly by Bo.

Proor — (a) This is proved in the given reference.

(b) The uniqueness is a consequence of Lemma 1.1(b) (and is gen-
eralized in the given reference), while the other statements follow
from (a).

(c) Clearly C is a Hall r’-subgroup of CW, and CW < @y, so Frat-
tini’s argument shows that @y =¥y - CW =YW [6, 1 (7.8)]. Also

YoNW=Nw(C)=CwI(C)=1.

To prove the last equation, suppose ¢ € ¥y; because of (b) it suffices
to deduce that ¢ € BpCp. As in Lemma 1.1(b) W = ]F:rk, and the
notation can be chosen so that

k__ i .
Y=y A =y A eF, i€ Zy).
Now ¢ preserves the addition in W, so

A+ =A%+ u®, (aAN)® =or® (A pcF «xeclF,).

If 19 = v{, then 19co® = y0_31¢ = 1. Since ¢,* € Cp, we can re-
place ¢ by ¢c55, and arrange that 19 = 1. Since C% = C, there is an
integer h such that ¢c® = ch. Suppose A, u € F,x, and note

that Frly] =F,«, s0 A=} icz, aiy' with o; € Fr. Now

ip _ ]Cid) — ]d)cih — ]Cih :,Yih

y ,
¥
M= Y vt =) v =) oyt
1€EZy 1€Zy ieZy
¥ ¢
AP =1 > ay'n] =) au | =) ou®
i€Zy ieZy ieZy
ih .
= > op® = Yyt =adud,
ieZy ieZy

which proves that ¢ € AutF .« = Bo.
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(d) Choose an element 6 € Cyw(L) —0, and suppose & = yz‘). Then
L < Cpyc, (V) = CBOCOU)CB = B§, where ¢ = c{. Finally the given
reference shows that F .« has a normal FF,-basis {Ag,A1,...,Ak_1},
with A; = AL Then Aibo = Ai 41 (i € Zy). 0

REMARK — In Sections 2, 3, 4 and 5 we prove results corresponding
to Lemma 1.2 (a), (b), (c) and (d) respectively, when the elementary
abelian group W is replaced by an extraspecial group R. The construc-
tions in Section 2 are inspired by Lemma 1.3, and use Lemma 1.4.

DEerFINITIONS — (a) Let X be a (right) FG-module, where F is a field
and G is a group. Then the dual FG-module is defined to be the vector
space X* = Hom¢ (X, F), with action

EAg) = (Eg" A (E€X, AeX*, g€ G).

(b) Let Q be a finite group which acts on an extraspecial r-group R
(where 1 is a prime number) and take

Z=ZR) =R =C,.

Then R will be called extraspecially Q-irreducible if it satisfies the fol-
lowing conditions:

(i) [R, QI =R;
(i) [Z,Ql =T,

(iii) there is no extraspecial subgroup Ry such that Z < Ry < R and
Ro < QR.

Lemma 1.3 ([2, Lemma 14], [7, Satz 2]) Let Q be a finite v'-group which
acts on an extraspecial v-group R (where 1 is a prime number). Take

Z={(z)=Z(R)=R'=(C,,
and form the F+ Q-module W = R/Z. Suppose [R,Ql = Rand [Z,Q] = 1.

(a) Then R can be written as a central product R = RjoRzyo0...0Rp
of extraspecially Q-irreducible groups R, with R{ = RyNR; = Z
and [Ri, R;] = 1 when i #j.

(b) If R is extraspecially Q-irreducible, then W satisfies one of the follow-
ing conclusions:
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(i) Wis F,Q-irreducible, and if v # 2 then R" =1;

(i) W = X; @ Xy where Xy and X, are F.Q-irreducible, with
X1 = X5, and if Dy/Z = X; then D = D] =1 (i = 1,2).
Moreover if d; € Dy, with Zdy = A € X5 and Zd, =£€X;,
then the notation can be chosen so that [d,, dq] = z&M.

Proor — (a) Note that W is completely F, Q-reducible by Maschke’s
theorem [5, A (11.5)], so this is proved in the first reference.

(b) The required facts are proved in the first reference, except for the
statements that R" = 1 when v # 2 in case (i), and that D] = 1 in
case (ii). If v # 2 in case (i), then there is an IF; Q-homomorphism

O:W—2Z

defined by taking (Zd)® = d" (d € R). But [W, Q] = W, so W has no
quotient module centralized by Q, whereas [Z, Q] = 1, and hence 6
must be the zero homomorphism. Similarly in case (ii) D{ = 1, so
there are FF,Q-homomorphisms 6; : X; — Z defined by ta-
king (2d;)%% = di (di € Dy). As before [X;, Q] = Xj, so 6; is the zero
homomorphism (i =1, 2). O

Lemma 1.4 ([5, A (20.6)], [9, §1A]) Suppose W and Z are additive abelian
groups, and let f : W x W — Z be a biadditive map. Put E = W x Z, and
define a binary operation on E by taking

(W, NG ) = (w+ A+ u+flw, Q) (w,CeW, ApeZ)
Then E is a group, with

(w, )™ = (nw,n?x + %n(n— 1)f(w,w)) (ne?Z),
l(w, A, (6 W] = (0, flw, §) (¢, w)).

Proor — The operation is associative, with

(w,A) (G )M, v) =
=(W+C+n, A+pu+v+flw, )+ f(w,n) +1f(n)).

Also (0,0) is the identity, and (w,A\)7! = (—w,—A+ f(w, w)). The
required formulae follow from these facts. 0
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2 Constructions

In this section we prove results corresponding to Lemma 1.2(a), when
the elementary abelian group W is replaced by an extraspecial
group R. The constructions are inspired by Lemma 1.3, and use Lem-
ma 1.4.

DEFINITIONS — (a) Suppose 1 is an even number, and consider the
group Co, = (cp, c7) with defining relations

and ¢{° = c1_1. Then Co will be called a quasiquaternion group.
Put C; ={(cy), and note that (co) = C4, C; = C,, C; < Cw
and |Coo| = 2n. If further n=npn; where ny is a power of 2and 2 { ny,
then (co)C]" is a (generalized) quaternion group of order 2ny (or
cyclic of order 4 when ng = 2), and C?O = Cp, with

(co)C]" - CT0 = Cu and (co)Cy' NCTO =1

2 _ .n/2

Moreover the element y = c§ = c?
[6, IIT (8.2.b)].

(b) Suppose E is a finite r-group (where r is a prime number).
If [d,E] = E’ for every element d € E—E’, then E is called a Cami-
na r-group [4, Section 1]. Note that if further E" < E/ = Z(E) and Z<E’
with [E’/Z| = r, then E/Z is extraspecial [5, A (20.3)].

is the unique involution in C

Lemma 2.1 Suppose v is an odd prime number, and X is a natural number.
Then there is a group BCR such that Co, < BCo, R < BCR, and
BN Cox =BCox NR =1, where Co, = (co, C1) is a quasiquaternion group
of order 2(rk —1), and

B=(b)=Cy, (c0)=C4, Cy=(c1)=Cux_y,

(rk—1)/2 o 1
c(z):c1 , cf=co, cP=cl, cf°=c7".

Also R = D1D; is an extraspecial r-group such that

Z=ZR)=R'=D;ND; =¢C,,

~
<
Il

D{ = 1and |D4| = v**+1 (i = 1,2). Moreover if W = R/Z and
Di/Z are regarded as additive abelian groups, then Xy and X, are

=
ke
|
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modules which are BC1-faithful and F,.Cy-irreducible, and
Xib :XiC] :Xi, XiCo :Xg_i (i: 1,2), Z:Z(BCOOR).

Proor — Take

X1 =Xy =144 :IF:_kI W =X; & Xy,
fl&r@ &M @n2) =m € Z1 (&,mi € X4),

and define E = W x Z; as in Lemma 1.4. Put
Yi={(EN):£e X, AeZy} (i=1,2),
and identify Z; with the subgroup {(0,A) : A € Z1}. Then

(&1 @&, A" =(0,0),
[(‘E] ® 62/7\)/ (TI 6901 }‘L)] - (O/ 5211),
(&1 ® &2, A), (0@, W] = (0,—&1m).

Hence [d,E] = Z; for every element d € E—Z;, so E is a Cami-
na r-group with B/ = Zy,and E" =Y/ =1 (i = 1,2). Let y; be a
generator of Ika, and take

(E1®E2, NP = (] @ &5,A7),
(1 @&, N = (2 (—&61),A—&1&2),
(19 E2, N = ((v1&1) ® (v7 '€2),N),
B=(b), Ce={co,c1), Cqi={(c1).

Then

k_ k_1)/2
b,co,c1 € Autk, bk =cf=c] =1, c%:cgr )2
b_ b co _ —1

Xib=Xic1 =Xi, Xico=X3-3 (i=1,2), Z;=Z(CxE),

and X7, X3 are modules which are BC;-faithful and F.-C;-irreducible.

Let {Ag,A1,...,Ax_1} be a normal F,-basis of F x, with A; = ?\5i
(1 € Zy) [10, (2.35)]. Then Z; = Iij has a corresponding basis which
is permuted regularly by B. Consider an element

A= Z XA € 2y
ieZy
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with o; € Fy, and define p: Z; — [F, by taking

PN =) i

ieZy

Put Zy =Kerp, R=E/Zy, Dy =Y;i/Zy and Z = Z1/Zy. Then
Zy = [Z;,B] < BCE,

so BCR has the required properties. 0

REMARK — Let 1¢ : F', — ;" be the F,-linear trace map, with
T
To(w) = ) u'.
ieZy
Using the above notation for A and p, we get

M) =) aito(M) = ) aito(Ao) = p(A)T0(o)-

ieZy ieZy

Thus p(A) = 1o(A)/T0(Ao), s0 p is a constant multiple of 1.

Lemma 2.2 Suppose k is a natural number. Then there is a group BCooR
such that Co <0 BCs, R <« BCxR, and BN Co, = BCox NR =1, where
Cw = (co,C1) is a dihedral group of order 2(2%—1), and

Co _

B = <b> ~ Cy, <C0> ~C,, C= <C]> ~ Czkf],
c :c%, (o —cf1.

Also R = D1D; is an extraspecial 2-group with
Z=7(R) :R/:D] NDy ~Cy,

D? = D! = 1, |Dy| = 2! (i = 1,2). Moreover if W = R/Z and
Xi = Di/Z are regarded as additive abelian groups, then Xy and X, are
modules which are BCq-faithful and IF, C-irreducible, and

Xib = XiC] = Xi, XiCo = X3,i (l = ],2), L= Z(BCOOR).

ProorF — We can copy the proof of Lemma 2.1 as follows. Take

Xi=X2=21=F, W=X10X,

fl&r@&,men2) =Em € Z1 (&,mi € X4),
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and define E = W x Z; as in Lemma 1.4. Put
Yi={(EN):£eXi, A€y} (i=1,2),
and identify Z; with the subgroup {(0,A) : A € Z1}. Then

(81 @ &2, M) =(0,&182),

(E®0,A)? = (08 &) =(0,0)
(&1 @ &2,A), M@0, 1) = (0,&2m),
[(E‘I ® E»Z/)\)/ (0 EBT]/ p’)] - (O/ 5111)
Hence [d,E] = Z; for every element d € E—Z;, so E is a Cami-

na 2-group with E/ = Z;, and Y2 = Y/ =1 (i = 1,2). Let y1 be a
generator of ]F;k, and take

(L1 @82, N0 = (E7 @ E3,A%),
(E1@ELNC = (D&, A +E182),
(E1 @&, N = ((v1&1) @ (v E2),N),
B:<b>, COOZ<C0,C]>, C] =<C]>.

Then

k
b,cp,c1 € AutE, bk:c(z) :c% —1 =1,

2 c —1
cgzco, cl]’:cw c®=cy,

Xib=Xic1 =X, Xico=X3-i (i=1,2), Z; =Z(CxE),
and Xy, X5 are modules which are BC-faithful and IF, Cq-irreducible.

Let {Ao,A1,...,Ak—1} be a normal [F,-basis of [F,x, with A; = Aéi
(i€ Zy) [10, (2.35)]. Then Z; = IF;“k has a corresponding basis which
is permuted regularly by B. Consider an element

A= Z oA € Zq
i€Zy
with «; € F,, and define p: Z7 — F; by taking
A =D .

ieZy

Put Zy = Kerp, R = E/Zy, Dy = Yi/Zo and Z = Z71/Zy. Then
Zo =[Z1,B] < BCxE, so BCxR has the required properties. 0



Extraspecially irreducible groups 41

Remark Asin Lemma 2.1, let 1y : IF;k — F} be the trace map, with

o=y u?.

ieZy

Using the above notation for A and p, we get p(A) = To(A)/T0(Ao),
so p is a constant multiple of To.

Definition Suppose 1 is an odd prime number, and k is an even
number, and consider the group B, = (by,c) with defining rela-

. /2
tions b7k = ¢} 1=,

Then Bo, will be called a hyperquaternion group. Put
B = <b1> ~ CZk and C] = <C1> ~ Crk/2+1’
and observe that C; < By and |Boo| = k(r%/2 4+ 1). Also

k/2 1
= C] ,

50 Coo = (b]f/z, c1) is a quasiquaternion group. If 2 { k/2 then
B = B% x BX/2, 50 By, = B*Cy with B4 N Cs = 1. On the other hand,
if 2 ‘ k/2 then v%/2 = 1 modulo 4, so

24 (%2 £ 1)/2and C; = ("2 2,

and therefore B, = BC% with BN C% = 1. In both cases, the ele-

k/2
ment y = b¥ = cgr /2 s the unique involution in By.

Lemma 2.3 Suppose v is an odd prime number, and k is an even num-

ber. Then there is a group BooR such that R < BooR and Booc MR =1,

where By, = (b1,¢1) is a hyperquaternion group of order k(v*/% +1), with
B=(b1)~Cy, Ci={c1)~ Crk/2+1,

k/211)/2 b
b‘f:cgr /e ¢, =cj.

Also R is an extraspecial r-group with Z = Z(R) = R’ ~ C;, R" =1
and [R| = v*+ 1. Moreover if W = R/Z is regarded as an additive abelian
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group, then W is a module which is B, Cy-faithful and IFCq-irreducible,
and Z = Z(BxR).

ProOF — Define F x/>-homomorphisms o,7 : F!, — F' by the
equations o(w) = w — wrk/z, T(w) =w+ w™? (w € F,«), and take

W= lF:k, Z; =Imgo =Kerr,
flw, ) = do(wl™*) ez (w,eW).

Define E = W x Z; as in Lemma 1.4, and identify Z; with the sub-
group {(0,A) : A € Z1}. Then

2

(W, A" =(0,0), [(w,A), (& w)]=(0,0(wc™)).

Hence [d,E] = Z; for every element d € E—Z;, so E is a Cami-
na r-group with B/ = Z;, and E" = 1. Let v be a generator of ]Frxk,
and suppose 11 is an odd number; in the present proof we can
take r1 =1, but in the proof of Theorem 5.4 it will be conve-
nient to choose a different value for ri. Note that if A € Z;, then

k/2 k/2
T(A") = t(A)" = O0and t(y§ A = v5 (M) =0,

so A" and ygk/z“q A are both in Ker t = Z7. We can therefore define

(@, AP = (W', A7), (W, A) = (yow,v5 “*TA) (w e W, A € Z1),

by zbcg‘”*”/z, C1 ZCBk/2_1, Beo = (b1,c1), Cq={c1),

k/2_ (%2112
vi=vy T =y, I
Then b,cy € AutE and
Yo —T=7, bk:cgk*] =1, cgzcg‘ =cp,

k/241 b, T

ﬂm“:L (W, A = (yiw,A), ¢} =1, c¢;'=cj,

bi =bic) "2 (ix0),

k_ k/2 k/2
b]f:bkcg](r 1)/2 :(Cgr +1)/2)r1 :Cgr +1)/2

7

oy (rKrk/2 (P
6Tk/2:YOT1(T‘ +r )/zzyon(r N/25 (L5 = —5, 5 € 24,

Zy =Z(CE),



Extraspecially irreducible groups 43

and W is a module which is By, Cq-faithful and IF;-C;-irreducible,
while Z; = F_x/,0 is the 1-dimensional IF i -subspace of IF « span-
ned by &.

Let{Ao,A1,...,A(x/2)—1}be anormal F;-basis of F x> with A :?\6‘l
(i € Zy/2) [10, (2.35)], and take A{ = A8 € Z7 (i € Zy/,). Then
Ag, ], "’)\Ek/Z)—1} is an [F-basis of Z7, and

r1(r—1)/2 K/2
(O,}\{)b — (O’A{ér)co1 (0 7\1+]6T r(r—1)(r +])/2)

= (A8 ") = (0,A144) (i€ Zyy2),
s0 {Ay, A7, .-+, Ay /2y 1} is permuted regularly by B/B¥/2. Consider

an element A = ZiEZk/z oA, € Z7 with o € F,, and define
p:Z7 — F; by taking
Z Xi.

iEZk/z
Put Zo =Kerp, R=Et/Zy and Z=21/Zy. Then Zy =[Z7,B] < BE,
s0 BoR has the required properties. 0

Remark As in Lemma 2.1, let 1o : [F x> — F; be the trace map,

with .
> o

iezk/z

and define an F,-linear map 17 : Z; — F, by taking t1(A) = To(A6~T)
(A € Z1). Using above notation for A and p, we get

= Y am)= )  atoA)=pA)T0(Ao),

i€Zy /2 i€Zy s
so p(A) =11(A)/To(Ao), and hence p is a constant multiple of Ty.

Lemma 2.4 Suppose k is an even number. Then there is a group BC1R
such that

C1 <BCy,R<BCiRand BNCy =BC;NR =1,
with [BCy| = k(2%¥/2 + 1), where

B = <b> ~ Ck, C] = <C1> ~ C2k/2+1’ le = C%.
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Also R is an extraspecial 2-group with Z = Z(R)=R’ ~ C, and [R| = 2k+T,
Moreover if W = R/Z is regarded as an additive abelian group, then W is
a module which is BCq-faithful and IF, C-irreducible and Z = Z(BC1R).

ProOF — Define the TF,y/,-linear trace map v : F;, — FJ, , by

2k/2
taking

9k/2

T(w)=w+w (w e Fy),

and note that T is epimorphic [10, (2.23.iii)]. Choose € € [F,«
with t(e) = 1, and take

W=F), Zy=Imgt=Kert=F,, ,,

flw, Q) =t(ew®*) €2y (w,CeW).
Define E = W x Z; as in Lemma 1.4, and identify Z; with the sub-
group {(0,A) : A € Z1}. Then

(w, N2 = (0, t(e)w? 1) = (0, w2+ 1),

[(w,A), (¢ w)] = (0, 7(ewt®” +ew? Q)

= (0, t(ew®” + 2w ") = (0, 71(w ")),

Hence [d,E] = Z; for every element d € E—Z;, so E is a Cami-
na 2-group with E’ = Z;. Let yo be a generator of FJ,, and put

— 2824 2K/21
4

€1 Y1 =75 ,

with o s
2 teter =2+ (e+e2H e+ 2P =0,

Suppose (w,A\)? = (w?,A2 4+ f'(w)), and note that b € AutE pro-
vided

(W +0) + ' () +F(0) = ert(w® )2

— e (wzcz-zk/z + wz.zk/2 Cz)'
We therefore take f'(w) = €7 w2(2¥241) "and define

(wIA)b = (wzl}\z + €1w2(2k/2+”)/ (wIA)C] = (Y1 wIA)I
B= <b>, C] = <C1>.
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Then b,c; € AutE and

(@, M) = (@ A2+ F1Tge} w? 25) (e 2y,
€%l _ €%i+(k/2), y%k/l_‘_] _ ]’ bk' _ C%k/2+1 1
Zy =Z(CqE),

and W is a module which is BCq-faithful and IF, C-irreducible.
Let

Ao, A1, A 2)—1)

be a normal F,-basis of IF,k,» with ?\127\%1 (i € Zy,3) [10, (2.35)].
Then 77 = leLk /, has a corresponding basis which is permuted regu-

larly by B/B*/2. Finally consider an element

A= ) M€ Z
iGZk/z

with o € [Fp, and define p : Z; — FF; by taking

Y a

iEZk/Z

Put Zo=Kerp, R=E/Zy and Z=72,/Zy. Then Zy =[Z1,B] < BC+E,
so BC1R has the required properties. 0

Remark As in Lemma 2.1, let 1¢ : ]F;rk ,» — 3 be the trace map,

with to(n) = ZieZk/z uzi. Using the above notation for A and p, we
get p(A) =10(A)/T0(Ap), so p is a constant multiple of 7.

3 Uniqueness

In this section we prove results corresponding to Lemma 1.2(b), when
the elementary abelian group W is replaced by an extraspecial
group R.

Lemma 3.1 Suppose v is a prime number, and n is a natural number
with v{n, and let k be the order of v modulo n. Let CR be a group,
with R < CR and CNR =1, where C ~ Cy, and R is a C-faithful extra-
special r-group. Put Z = Z(R) = R’ ~ Cy, and assume that R satisfies
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the conditions in Lemma 1.3(b - ii), with [R,C] = Rand [Z,C] =1 (but R
need not be extraspecially C-irreducible). Then CR is unique (up to isomor-
phism), and [R| = r2<+1,

Proor — The conditions in Lemma 1.3(b - ii) imply that CR can be
constructed as follows. Let CX; be the group described in Lem-
ma 1.1(b) (so X3 is a module which is C-faithful and F,C-irreducible),
and take X; = X% and Z = F. Note that D{ = D] = [Z,C] = 1,
and that D; is completely F,C-reducible by Maschke’s theorem [5,
A (11.5)]. Hence D; = X; x Z, with binary operation

(E,, 0‘)(‘1/ B) = (E»_‘_T]/‘X—i_ B)/

and action
(&, )¢ = (&c,)({,ne X, ,pEZ,cecC,i=12).

Suppose (A, y) (n,8) € Dy, and (&,a), (n,B) € Dy, and ¢ € C.
Ifdi=A,v),d=(¢,«) and z = (0,1) € D>, then
(&, &), (A, y)] = [da,d1] = 25 = (0, 1)} = (0, &N),
(&, 0)MY) = (£, )[(E, &), (N, 7)) = (& ) (0, EA)
= (& oc+ &EN),
(& )M, B)AY) = (E+m, a+ B)MY) = (E+1, a+ B+ EA+TA)
= (& o+ EA)M, B +1A) = (& ) MY (m, gAY,
(&, ) AYI(D) — (& o+ EA)B) = (&, oc+ EN+ Ep)
— (5 (x)(?\+u,y+6)
(&, 00)MY)e = (£, a+ EN)C = (£, oc+(ac)mc))
= (&c, a)AeY) = (g, )€l

Finally if R = DD, = X1X,Z (with Dy N D, = Z), then CR has the
required properties. Moreover CX; is unique by Lemma 1.2(b), and
hence CR is also unique (up to isomorphism). 0

Lemma 3.2 Suppose q and r are distinct prime numbers, and let k be the
order of v modulo q. Let CR be a group with R < CRand CNR =1,
where C ~ Cq and R is a C-faithful extraspecial T-group. Put

Z=Z(R) =R ~C,
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and assume that R is extraspecially C-irreducible, with [R,C] = R
and [Z,C] = 1. Put

I'= Aut(CR), © = Cr(Z) and ¥ = Ng(C),

and suppose 2 1 k.

(a) The group CR is unique (up to isomorphism), and R is of type (ii) in
Lemma 1.3(b) with |R| = r2k+1,

(b) If r # 2, then BCoo < W, where BCR is the group constructed in
Lemma 2.1.

(c) If r =2, then BCs, < V¥, where BC,R is the group constructed in
Lemma 2.2.

Proor — Note that 2 ‘ dimp, (R/Z) (because R is extraspecial),
but 21k, so it is clear that R is not of type (i). Then (a) is a con-
sequence of Lemma 3.1, while (b) and (c) follow from Lemmas 2.1

k
and 2.2 respectively, with C = Cgr —N/a o Cq. |

Proposition 3.3 Suppose r is a prime number, and X is an even number.
Then there is a group C1R with R < CiRand C; NR =1, where

Ci={c1)~ Cox2q-
Also R = DD, = Ry o R} is an extraspecial r-group, with

Z:Z(R):R/:D1QD2:R]ﬂRzZCT,

DI = D{ = [Ry,Rz] = 1, Ry is extraspecial and [D;| = [R;| = v}
(i = 1,2). Moreover if W = R/Z, X; = D;/Z and W; = R;{/Z are
regarded as additive abelian groups, then X; and W; are modules
which are Cq-faithful and IF,-Cq-irreducible (1 = 1,2) with

W=X; X, =W; eW>, Xq ZX; and Z = Z(CqR).

Proor — First suppose 1 # 2, and define [F i ,2-homomorphisms
o,7:F, — F, by the equations
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Take
w; =W, :Iij, W=W;eW,, Z; :ImgG:KerT,
Xi={woow:weW;}, Xog={wd(—w):we Wi},
flwy @ wy, {1 @ (2) = Jo(wi ] K —wa () ez,

with wji, ¢; € W;. Define E = W x Z; as in Lemma 1.4, put
Ei={(w,AN):weW;, AcZitand Y; ={(&,A) : &€ Xy, A€ Zy}
(i=1,2), and identify Z; with the subgroup {(0,A) : A € Z1}. Then

1@ wa,A)T = (0,0),
(w1 @ wa, ), (G ® 2, W] = (0, 0(wr ¢ —wa3™™)),
(W@ 0,A), (0@, w)] = (0,0),

(W& w,\), (£ ¢ )] = (0,0),

(W& (—w),A), (¢ (=), w] = (0,0),

(w1 @ wa, ), (C0, W] = (0, 0(wi " ))

(w1 ® wa,A), (0@ ¢, W] = (0, —o(w,™"?)),

(W w,A), (CB (=), W] = (0,20(w™?)).

P —

(w
[
[
[
[
[
[
[

[d;, E;] = Z; for all elements

As in Section 2, we get [d, E] =
=1,2). Hence E, E; and E; are Cami-

deE—-Zjandd; €e By —Z¢ (i
na r-groups with

E'=E{=[Y1,Yal=Z;and E" = [E,E2] =Y{ = 1.
Let v be a generator of IFTXk, define

k/2—1
Y1 =Y, ,

(w1 @ w2, A = ((viwy) @ (yiw2),A) (wi € Wi, Ae Zy),

and note that W; and X; are modules which are Cj—faithful and
IF;.Cq-irreducible. Choose Zy < Z1 with |Z1/Zy| = r, and take

R = E/Zo, Ri = Ei/ZO/ Di ZYi/ZO and Z = Z]/Zo.

Then D! =1 (i=1,2) and [D;,D;] = Z, and hence X; ~ X3}, so C1R
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has the required properties.
Next suppose T = 2, and define the IF,\,,-linear trace map
T F = Fl

by the equation T(w) = w + w2 (w e F,«). Choose € € F,« with
t(e) =1 [10, (2.23.iii)], and let yo be a generator of lF;k. Take

Wi =W, :]F;k, W=W; oW,
k/2_
Z4 :ImgT:KerT:]F;k/z, Y1 :y(z) T
Xi={wow:weW}, Xz={we(yiw):we Wy},

flwr @ w2, (1 ® () = T(ew C%k/z + €wzC%k/z) € Z;
with wi, (; € Wj. Define E =W x Z; as in Lemma 1.4, put
Ei ={(w,N):weW;,AeZi}and Y; ={(§,A) : & € Xy, A€ Z1}

(i=1,2), and identify Z; with the subgroup {(0,A) : A € Z1}. Then

(W ® wa, N2 = (0, w1 4 W+,
(W w,AN)? = (wa (y1w),A)? =(0,0),
[(wy @ waz, ), (&1 @ G, W] = (0, (w1 " + wa23"%)),
[(we0,A), (06 ¢ 1] = (0,0),
(W w,A), (Lo w)l=(0,0),
[(w (yiw), ), (C® (v1Q), w)] = (0,0),
(w1 @ wa,A), (C® O, W] = (0, (w1 2*)),
[(w1 @ wy, A, (08¢ ] = (0, (w2,
[(w®w,A), (Lo (v10), W] = (0,7((1+v; Hw®*)),
As in Section 2, we get [d, E]=[d;, E;]=Z; for all elements d € E —Z;
and d; € E; —Z; (i=1,2). Hence E, E; and E; are Camina 2-groups
with

E'=E/=1[Y1,Y2l=Zyand [E1,Exl = Y7 =Y{ =1.

Define
(w1 ® w2, AT =((yiwy) @ (viwz),A)  (wy € Wy, Ae Zy),

and note that W; and X; are modules which are Cj-faithful and
IF, C;-irreducible. Choose Zy < Z1 with |Z1/Zp|=2, and take R=E/Z,,
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Ri = Ei/Zo, Di = Yi/Zo and Z = Z1/Z,. As before DZ = D! =1
(i=1,2) and [D7,D,] = Z, and hence X; ~ X3, so CiR has the
required properties. O

NoraTioN — Write q* || n to mean that ¢*|n but ¢**' { n (where n
and t are natural numbers, and q is a prime number).

Proposition 3.4 Suppose q and r are distinct prime numbers, and let k
be the order of v modulo q. Suppose CR is a group with R < CR and
CNR =1, where C ~ Cq, and R is a C-faithful extraspecial v-group. Put
Z = Z(R) = R’ ~ C,, and assume that R is extraspecially C-irreducible,
with [R,C] = Rand [Z,C] = 1. Put ' = Aut(CR) and © = Cr(2),
Y = Ng(C), and suppose 2 ‘ k.

(@) The group CR is unique (up to isomorphism), and R is of type (i)
in Lemma 1.3(b) with |R| = r*+1.

(b) If v # 2, then Boo < W, where BooR is the group constructed in Lem-
ma 2.3.

(c) If r = 2, then BCy < W, where BCyR is the group constructed
in Lemma 2.4.

Proor — (a) Note that q # 2 and q {%/2—1, and hence q| /% + 1.
First suppose R is of type (ii) in Lemma 1.3(b). Let C1R be the group

k/2
constructed in Proposition 3.3, and take C = Cgr /A Cyq.

Then R = DD, satisfies the conditions in Lemma 1.3(b - ii), so CR
is the unique such group by Lemma 3.1. But R = Ry o R; is extraspe-
cially C-reducible, which contradicts the hypothesis. This shows
that R must be of type (i), and it remains to prove the uniqueness.
Put

A=AutR, A=Ca(Z), W=R/Z, Q=CA(W).

Then Lemmas 2.3 and 2.4 imply that there is a group C;R such
that q* || r*/2 +1 and

t—1

k/2
C=cm e L, c=cd xey G <A

First suppose v # 2. Then R" = 1 by Lemma 1.3(b - i), and hence
QO =W and A/Q ~ Sp, (1) ([5, A (20.8)], [12, Theorem 1(a)]). More-
over R

Al = 1R/ 2 1yt 1)L (-,
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and therefore q* || |Al. Thus C; € Syl q />, and it follows from Sylow’s
theorem that A has a unique conjugacy class of subgroups of order q.
Now suppose CoRp is any group with Ry < CoRp and Co MRy =1,
where Cy ~ C4 and Ry is an extraspecially Cp-irreducible r-group of
type (i), such that [Rg, Co] = Rp and [R}, Co] = 1. Then ]RO/RO’| =rk
by Lemma 1.1(a), so [Rp| = &1 Also R = 1, so Ry can be identi-
fied with R. Hence Cy is identified with a subgroup of A, so Cy is
conjugate to C in A, and CoRp ~ CR.

Next suppose r = 2. Then O = W and A/Q) ~ Of(r) ([5, A (20.8)],
[12, Theorem 1(c)]), and hence

Al = 2K20/22=(k/2)41 (22 _1y(24 — 1) ... (2% 2 —1)(2%/2 £ 1),

Therefore C; € Syl q A (and A/Q = O, (r)), and the result follows, as
before.

The statements (b) and (c) are consequences of Lemmas 2.3 and 2.4
respectively. 0

4 Automorphisms

In this section we prove results corresponding to Lemma 1.2(c), when
the elementary abelian group W is replaced by an extraspecial
group R. Throughout the section, we assume the following hypothe-
sis.

Hypothesis Suppose q and v are distinct prime numbers, and let k be the
order of v modulo q. Take CR as in Lemma 3.2 if 2 { k, and as in Proposi-
tion 3.4 if 2|k, and put

Z=Z7Z(CR)=R' ~C,,
'=Aut(CR), ©=Cr(Z), ¥Y=Ng(C),
W =R/Z, ©y=Aut(CW), VYy= N@O(C).

Given an element 0 € ©, define a homomorphism 7 : © — ©¢ by taking 0™
to be the induced automorphism of CW = CR/Z.

Lemma 4.1 Assume the above Hypothesis. Then:
(@) @<Tand /O ~ Cy_q;
(b) ©=YW is a semidirect product, with W < @ and Y "W =1;
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(c) the restricted map my : ¥ — W is monomorphic.

ProoF — (a) Let o and z be generators of [F and Z respectively.
Clearly ® < T, and I'/O < AutZ ~ C,_q, so it suffices to find an
element a € I'such that z* =z*. If r=2,thena =1and ' =0, so
the result is clear, and we may therefore assume that r # 2.

First suppose 2 { k, and use the notation of Lemma 2.1. Defi-
ne a € AutE by taking (&1 @ &2,A) = (& @ («xéz), xA), and note
that c{ = ¢y, so a € Aut(CE). Moreover p(aA) = ap(A) (A € Z;),
so a normalizes Zy. Hence a induces the required automorphism
of Z1/Zp = Z, and in this case I' = AO is a semidirect product,
withA=(a)~C,_jand ANO =1.

Next suppose 2 | k, and use the notation of Lemma 2.3. Define

k/2__ _ k/2__ _
G.ZC(()T 1/ (r—1) and Y1:V(()T 1)/(r 1)'

Then we can take o = yyk/zﬂ, and we get (w,A)® = (y1w, @A), with
ct =c1 and a € Aut(CE). Also p(xA) = ap(A) (A € Z7), so a normal-
izes Zp. Hence a induces the required automorphism of Z.
(b) Clearly C is a Hall r’-subgroup of CW, and CW < ©, so Frattini’s
argument shows that ® =¥ -CW =YW [5,1 (6.3.b)]. Also Y NW =
Nw(C) =CwI(C) =1.
(c) Put

Y, =Kermmy = Ng(C)NCr(CR/Z),

and note that [C,¥;] < CNZ = 1. Given elements 07 € VY,
and & = Zx € W, we can therefore define a map A € Homg ¢ (W, Z)
by taking EA = [x, 0] = x~1x%1. But Homp, (W, Z) =0, and hen-
ceA=0,s007 =1. O

Lemma 4.2 If q = 2, then k = 1 and |R| = 3, W = X7 @ X3, where the
modules Xy and X; are IF,.C-isomorphic to each other. Moreover ¥ =SL; (r).

Proor — Clearly k = 1, so R is of type (ii) by Lemma 3.2(a). In
fact C = (c) ~ C, and R = (dy,d,), with R’ # R" = 1, [R| = 13
and df = d;] (i=1,2). Hence ¥ = Sp, (1) =SL,(7) [5, A (20.8)]. O

Theorem 4.3 Suppose 2 { k.

(@) Ifq#2andr # 2, then ¥ = BC as in Lemma 2.1.

(b) Ifr =2, then ¥ = BC as in Lemma 2.2.
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Proor — We can prove (a) and (b) together, as follows. Note that R
is of type (ii) by Lemma 3.2(a), and BCs < ¥ by Lemma 3.2(b)
and (c). Conversely suppose 6 € ¥; we must deduce that 6 € BCq.
k

Lety = yér /9 pea primitive g-th root of 1 in ]F:k, where vy is a
generator of lF:k. As in Lemma 1.1(c), the eigenvalues for the action
of c on X5 are y,yr,yrz, .. ,yrkf1 (in [F.x), and hence the eigenvalues
for the action of c on X; = X3 are

T —Tz —T

YLy Ty ey

[8, VII (8.2)]. If X7 and X; are [F;-isomorphic, then
Wriiezy =y T riezy),

so there is an integer t € Zj such that y = y_rt. Then y’"t“ =1,
SO q‘rt—H. Thus q ‘ (rt—1)(rt+1) = r2t — 1, and hence k ‘ 2t.
But 21k, so k|t, which implies that t = 0. Therefore y = v T,
soy2=1. This contradicts the fact that q # 2, and proves that X7 £ X.
It follows that X; and X; are the FF,.C;-homogeneous components

of W[5, B (3.4)], so ¥ permutes the set {X;, X3}, and we put

Yy = Ny(Xz) = Ny(Xq).

If X§ = X, then X?CO = Xj, so we can replace 0 by Ocy if necessary,
and arrange that 0 € V.

As in Lemma 1.2(b), put @7 = Aut(CX;) and ¥; = Ng,(C). As
in the Hypothesis, given an element 0, € ¥,, define a homomor-
phism 7, : ¥, — ¥q by taking 9;2 to be the induced automorphism
of CX5. Note that

Kerm, < Cy,(X2) = Cy,(X3) = Cy, (X7) = Cy, (W) =1

by Lemma 4.1 (c), so 7 is monomorphic. Now BC; < ¥, by Lem-
ma 3.2 (b) and (c), and BoCp = ¥; by Lemma 1.2(c). Using the
definitions of b and c; in the proof of Lemmas 2.1 and 2.2, we
get (BC1)™ =BpCp =Yy, so my is also epimorphic. Thus 7, is an
isomorphism, and therefore 6 € ¥, = BCj. O

Theorem 4.4 [6, I (9.23)] Suppose 2| k.
(@) If r #£2, then ¥ = By, as in Lemma 2.3.
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(b) If r =2, then ¥ = BCy as in Lemma 2.4.

ProoF — As in Theorem 4.3, we can prove (a) and (b) together,
as follows. Note that R is of type (i) by Proposition 3.4(a), and as
in Lemma 1.2(b) put 9 = Aut(CW) and ¥y = Ng,(C). As in the Hy-
pothesis, given an element 6 € ¥, define a homomorphism 7t: ¥ — ¥,
by taking 0™ to be the induced automorphism of CW = CR/Z. In
case (a) we define B as in the proof of Lemma 2.3, and in both cases,
we get BC; < V¥ by Proposition 3.4 (b) and (c). Also BoCo = Yo
by Lemma 1.2(c), and it follows from the definition of B in the proof
of Lemmas 2.3 and 2.4 that B"Cy = By Cy. Hence

BT < Y™ <Yy =ByCo=B"Cy,

SO
YT = BT(YT N Cy).

Also there is a nonsingular symplectic form fp(u,v) on W which is
preserved by Y. Put W; = F.« ® p,W, and let f; be the induced
symplectic form on W7, determined by taking

fiA®@u,p®v) =Aufo(w,v) (A peF. uveW).

By Lemma 1.1(c) there exist an IF k-basis {50,5.1, eee, &x—1} of Wy,

and a generator yo of lka, such that &;cq = ygléi (i € Zy). Then
i k_

&ic =vy" & wherey = y(()T /4 js a primitive g-th root of 1, and

hence

f1(E0, &) = F1(Eoc, Eic) = 1 (vE0, Y™ &) =v" "1 (&0, £1).

IfO<i<%k/2thenq{r2i—1=(t=1rt+1), s0 "+ £ 1,
and similarly if k/2 < i < k then q J(rz(k_i) — 1=kt =Dkt 41),
SO yTiH = yri“ +rih) # 1. It follows that f1 (&g, &;) = O wheni # k/2,
and therefore f1(&o, & /2) # 0 (because f; is nonsingular). Now sup-
pose c(i) € Y™ N Cp, and note that

. . . s k)2
f1(&0, &k /2) = f1(&ocy, Ex/2c0) = f1(vo&o, Yo &xy2)

L(vk/241
:YB(T M )f1(£o,5k/z),

and therefore v*/2 —1 ‘ i. Using the definition of Cy in the proof
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of Lemmas 2.3 and 2.4, we deduce that ¢} € Cgk/zq = CT. This
shows that ¥* N Cy = CT, so

YT = BT(YT N Cy) = (BCq)™.

But 7t is monomorphic by Lemma 4.1(c), so it follows that ¥ = BCj.
This completes the proof in case (b), while in case (a) we
get ¥V =BCy = B O

5 Fixed points and regular submodules

In this section we prove results corresponding to Lemma 1.2 (d),
when the elementary abelian group W is replaced by an extraspe-
cial group R. These results can be used in proving the permutability
of the injectors for certain Fitting classes in a finite solvable group [3].

Lemma 5.1 Suppose v is a prime number, and k is a natural number.
Let BoCoW be the group described in Lemma 1.2(a), and choose a gen-
erator yo of lF:k.

(a) Suppose h|k, and let T = {F.ny} : i € Z,_4} be the set of 1-dimen-
sional IF .n-subspaces of F .. Then T1 induces a partition ofIF:k, with

F h F nd
IFThY n IF.rh6 _ +hY wneny € Fn
0 when vy ¢ F nd

and T1 is permuted by B, Co.

(b) Suppose v # 2 and 2 ‘ k, and take TT = {F v 2v8 : 1 € Z,x_4},

k/2_q

My = {IFTk/zy}) 12 ‘ i}, T} = {IFTk/zy(i) : 24 i}and ¢1 = ¢ ,
Cy = (c1) = Cxs2 - Then Ty and TIy are the Cy-orbits in T1, with
Mo UTTy =TTand Ty NTIT; = 0.

(c) Suppose v = 2 and 2 ‘ k, and take TT = {]sz/zy}) 1€ Zy 1}

and ¢; = c%k/2_1, Cy = (c1) = Cyx2, . Then Cy permutes TI

reqularly.

Proor — (a) This follows from Lemma 1.2(a).
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. Sy (pk/2_ )

(b) Note that IF i, 2ypc1 = IFTk/z‘YE')Jr(T Y with 2 ‘ rk/2 1, s0 C;
stabilizes TTp and TTy, and it remains to show that C; permutes Tl
and TT; transitively. Now the stabilizer in Cy of each IF x,>-subspa-
ce F iyl is Co = Cgk/zH ~ C /2_;, and the highest common
factor of |Cq] and |C;| is (r*/2 4+ 1,v%/2 —1) = 2. Hence the stabi-
. . i k_1)/2 .

lizer in Cy of F x/2vy is CiNCy = (yg )/ )~ Cr (i€ Z_yq),
so the Cq-orbits in TT are of size (r*/2 +1)/2. Since |IT| = r*/2 41
and |TTy| = |IT4| = (r*/2 4+ 1) /2, this proves the result.

(c) As before the stabilizer in Cy of IF,y,> is

2K/241
C, =Cj + ~Cox2 4,

but in this case the highest common factor of |Cq| and [C;|
is (2%/2 +1,2%/2 _ 1) = 1. Hence the stabilizer in C; of F,x/2
is C;y N Cy =1, while |Cq| = |IT] = 2¥/2 41, so this proves the result. O

Theorem 5.2 Suppose v is a prime number, and k is a natural number,
and let BCoR be the group described in Lemma 2.1, with R = DD,
and X; =Dy/R' (i=1,2).

(@) If L < BC and Cx, (L) # O, then there is an element ¢ € Cy such
that L < B€.

(b) There are do,dq,...,dx—1 € Dy and ep,eq,...,ex—1 €D2 such
that R can be written as a central product

R=EpoEjo...0Ex_1,

with [Ei] = v3, Bl = 1, B/ = Z, and [E, ] = 1 when i # j,

1
where By = (dy, ey) and d}’ =dit1, e}’ =ei 1 (1 € Zy).

ProorF — With the notation of Lemma 2.1, take W = X; & X,
with X7 = X, = lek, and Z = F, and define fo : W x W — Z by
taking fo(&1 @ &2,m1 ©n2) = p(&am1) (&,mi € Xi). If also o, B € Z,
then as in Lemma 1.4, R =W x Z with

(&1 @&, x)m1 ®n2,B) = (&1 +n1) @ (&2 +m2), x+ B+ p(Eam1)),
(&1 @&, x)" =(0,0),
(&1 @ &2, 00), (M1 DM2, B)] = (0, p(E2n1 — E1mM2)).
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(a) Note that L stabilizes X7, so L < Ngc_ (X7) = BCy. But BC1Xj is
the affine semilinear group described in Lemma 1.2(a), so the result
follows from Lemma 1.2(d).

(b) Given & € X; and n € X3, define an FF,-bilinear map

f1: Xy xXpg =2 Z
by taking f1(&,1n) = —p(&n). Then
[(£©0,0), (0@®m,0)] = (0,f1(&,m)),

and fy is nonsingular, so X5 ~ X5. Now let {Ag,A1,...,Ax_1} be a

normal [F.-basis of X7, with A\; = )\5i = ?\gi. Then there is a vec-
tor po € X3 such that

1 wheni=0

F1{Au ko) = {O when i # 0

Taking pi = u and di = (A ©0,0), e; = (0@ ;,0) (i € Zy), we get

1 wheni=j (0,1) wheni=j
f](}\iluj):{o wheni#;’ [di'ej]:{(0,0) wheni;«é;

and d? :di_,_],e? =eiy 1 (1€ Zy). O
NotaTtioN — Write IDg for the dihedral group of order 8.

Theorem 5.3 Suppose k is a natural number, and let BCoR be the group
described in Lemma 2.2, with R = D1Dj and X; = D; /R’ (i=1,2).

(@) If L < BCy and Cx, (L) # O, then there is an element c € Cy such
that L < B€.

(b) There are do,dq,...,dx—1 € Dy and eg,eq,...,ex—1€D2 such
that R can be written as a central product

R=EpoEjo...0E_1,
where B = (di, e;) ~ Dg, [Ei, Ej] = 1 when i #j, and d? = di1,
el =ej11 (i€ Zy).
ProorF — We can copy the proof of Theorem 5.2 as follows. With

the notation of Lemma 2.2, put X; =X, = ]F;rk, W=X10X,, L= IFEL,
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and define fo : W x W — Z by taking

fo(&1 @ &,m1 ®n2) = p(Eam)  (&i,mi € X4).

If also &, 3 € Z, then as in Lemma 1.4, R =W x Z with

(E1 @&, )1 @&n2,B) = ((&1 +m1) @ (&2 +m2), x4+ B+ p(E2m1)),
(&1 @&z, 002 = (0,p(E182)),
(&1 @ &2, 00), (M1 DM2, B)] = (0, p(E2n + E1M2)).

(a) Note that L < Ngc_ (Xo) = BCy. But BC1Xj is the affine semilin-
ear group described in Lemma 1.2(a), so the result follows from Lem-
ma 1.2(d).

(b) Given ¢ € X7 and 1 € X3, define an [F,-bilinear map

f] : X] X Xz —Z
by taking f1(&,1) = p(&n). Then
[(£€0,0), (0&m,0)] = (0,f1(&m)),

and f; is nonsingular, so X7 ~ X5. Now let {Ao,A1,...,A_1} be a
normal IF,-basis of Xj, with A; = ?\%l = ?\gl. Then there is a vec-
tor o € X5 such that

1 wheni=0
f] (}\UHO):{O Whenl#o

Taking p; = u%i, di =(A1®0,0)and e; = (0 pi,0) (i € Zy), we get

1 wheni=j 0,1) wheni=j
f1 (i) = {0 when i ;é; di, ¢ = {E0,0% when i 7&;

and d}’ :di+1,e? =ei (1€ Zy). O

Theorem 5.4 Suppose v is an odd prime number, and k = kokq is an even
number, where ko is a power of 2 and 2 1 Kq. Let BooR be the group described
in Lemma 2.3 and its proof.

(a) There are subgroups D1,D; < Rwith D1D; =R, D1ND,; = Z,
D! =1and |D{| = r*/2)¥1. Moreover if W = R/Z and X; = D;/Z
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are regarded as additive abelian groups, then W = Xj @ X3
and XibT 0 = X; (1=1,2).

(b) If L < B and Cyw/(L) # O, then there is an element ¢ € Cq such
that L < (BZko)e,

(c) There are do,dy,...,d(x/2)—1 € D7 and eg,eq,..., € 2)—1€D2
such that R = Ego By o...0E,2)_1 can be written as a central
product, with |E{| = r3, El =1, E =Z, and [E;, E5] =1 when i #j,
where i = (dy, eq) and

b2k0 2kg
1 1 _ :
d =dij2k,, €' =e€it2k, (1€ Zy)2)

Proor — (a) With the notation of Lemma 2.3, put W = ]ij, Z =T,
and define fy : W x W — Z by taking

folw, Q) = zp(wérm 0 (w,ew).
If also &, 3 € Z, then as in Lemma 1.4, R =W x Z with

k/2
wT

(w, ) (¢, B) = (w+ o+ B+ folw, ),
(¢, 00" =(0,0),
[(w, ), (¢,B)] = (0, plaw™ — ™).
Now take
X7 = ImgT:KerG:{w—i-wrk/z:wEIFTk}
= {CeF« —C} Fox/2,
X = Img(f:Ker't:{w—u.)T /ZZLUEIFrk}

[CeF.: """ =—g,

Di = {(§):&€eXy, e} (i=1,2),

k
e N R (SR L
1 Ko 1 .

Then W = X;®X;, where X; and X, are 1-dimensional IF /,-sub-
spaces of IF «, with X;b = X;, and hence D1D; =R

DiND;=2Z, D{=1 and [Dij=r*2*1 (i=1,2).
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Also 2t 17 and
p2ko = p2koc] (r¥o—1)/2 _ p2koc] (rko—1)(rko+1)/2

— bZKOC(()Tk_1 )(Tk0+1 )/2 — bZko,

50 X{b3¥0 = X; (i=1,2).

/2
(b) Note that the element y = b* = c%rk /2 4 the unique in-
volution in By, with wy = —w (w € W). It follows that if 2 ‘ L],

then y € L and Cw(L) < Cwl(y) = 0. This proves that 2 { |L],
while |Bso /B0 Cq| = kg is a power of 2, so

L < B*oC; = (B%k0 x B¥)Cq = B2ko(;.

Let yo be a generator of IFTXk, and put d = yg‘ .

Take Ty = {]Frk/zy}) 12 ‘ itand Ty = {]Frk/zy}) : 2 11}, and choose a
vector y € Cy/(L) —0. Then [F x> € Tly and F /26 € TTy, and it fol-
lows from Lemma 5.1(b) that there exist elements A € IF_y /2 UF /28
and c € Cy such that Ac =y. Now b stabilizes [F /2, and moreover

k, ko __
5bk0 :'Yg]T 0 :'yg] (rfo—T)+m :y(r)ka}/g] = 6,

so bko also stabilizes IFx/28. On the other hand, the stabilizers in C;

x/2
of F /2 and F x>0 are both equal to CST /2 It follows that

if 3(r%/241)tj, then
Prk/zbiikoc).] = IFrk/zbZikOCj] = IF‘Tk/zc% 75 IFTk/z,
(IF,1,28)b7™0C) = (F 28)b2t0c) = (F_i/268)c) # F 28,

and in particular b%iko cj1 ¢ Cgaxg c (A). Thus

k/2 k)2
Cpanoe, (A) < BZRoC{T T H1/2 —p2ko o {7412

4

and hence

k/2
L < Cpaxoe, (¥) = Chang e, (VE < (BZRo)e e 7172,
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But 2 1 [L|, while Cgrk/ZH /2 C,, and therefore L < (B2ko)¢,

(c) If & € X3, 11 € X3, define an FF,-bilinear map fq : X x X2 — Z by
taking f1(&,m) = —2p(&n). Then [(E,0), (n,0)] = (0,f;(&,n)), and fy
is nonsingular, so X7 =~ X35. Now let {Ag,A1,...,A(x/2)_1} be a nor-

mal [F;-basis of X = F x,2, with A\; = 7\51. Then there is a vec-
tor po € X5 such that

1 wheni=0

F1{Au ko) = {O when i # 0

Taking i = and di = (A,0), e; = (1,0) (i € Zy ), we get

1 wheni=j (0,1) wheni=j
f1(AL, ) = { ] [di, 5] = { )

0 wheni#j (0,0) wheni#j
Also d}f =dj;1 and eib =ejs1, SO

p2ko 2kg
1 _ 1 _
d;' =dijak,and e;! =eiox,

forallie Zy ;. O

Lemma 5.5 Suppose k = koky is an even number, where ko is a power
of 2and 2 { kq. Let BCR be the group described in Lemma 2.4.

(a) There are subgroups D1,D, < R with
DiD; =R,D1ND2=2ZD!=1 and |Dy =22+
Moreover if W = R/Z and X; = D;/Z are regarded as additive
abelian groups, then W = Xy @ X, and Xibko =X; i=1,2).

(b) If P < L < BCy with 2{|Pland Cy (P) = Cw/(L) # 0, then there is
an element ¢ € Cq such that L < (B*0)¢,

(c) There are do,dq,...,d(/2)—1 €Dq and eg,e1,...,ex/2)—1 €D2
such that R = EgoEqo...0E(/2)_1, can be written as a central
product, with |E;| = 23, Ei2 < E{ =7Z and [Ty, §5] = 1 when 1 #j,
where i = (dy, eq) and d?ko = diqk,,

ko .
P =eik, (€Zy))
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PrOOF — (a) With the notation of Lemma 2.4, put W = ]F;rk, Z=TF7,
and define fy : W x W — Z by taking

folw, 0) = plewt®”* + 2 w?* () (w,cew).
If also &, 3 € Z, then as in Lemma 1.4, R =W x Z with

(w, x)(C,B)=(w+ a4+ p+folw, ),
(w, )2 = (0, p(w?*+1Y),

[(w, ), (¢, B)] = (0, pw®* + w?*¢)).

Note that F,x, < Fyx but F,k, £ Fyk2 [10, (2.3)], and choose an
element 6 € IF,k, —IF,x/2. Take

X1 =Imgt=Kert=F,2, Xy =IF,.29,
Di ={(&a): £ €Xi, xeZ} (i=1,2).

Then W = X; @ X3, where X; and X; are 1-dimensional IF,x/,-sub-
spaces of IF,x, with X1b = X3, X,bko = X, (because & € IF,x,)- Hence
DiD; =R, D1ND; =2, D{=1and |Di| =22+ fori=1,2.

(b) Take TT = {]sz/zyé :1 € Zyx_1} (Where v is a generator of ]F;k),
and choose a vector y € Cy/(L) —0. By Lemma 5.1(c), there are ele-
ments A € IF,y,2 and ¢ € Cy such that Ac =y. Now B stabilizes IF,x,2,
and C; permutes Tl regularly, so if 2K/2 41 1j, then

]sz/zbiCj] = ]sz/zC% # Fyx 2,
and in particular bic% ¢ Cgc, (A). Thus
P < Cie,(Ac) = Cpc, (N < B = (BX0)¢ x (BM1)€,

so P < (Bk0)¢ (because 2 1|P]). Hence

—1

Cw(l® ) = Cw(P ) = Cw(BX) =F,u,,

and therefore L < Cgc, (F,k, )¢ = (Bko)e,
(c) If & € X3, 1 € X,, define an [F,-bilinear map fy : X7 x X, — Z by

taking

zk/Z 2k/2

f1(&m) =p(En"" +& ).
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Then [(E,0),(n,0)] = (0,f1(&,n)), and fy is nonsingular, so X; ~Xj.
Now let {Ag,A1,...,A(x/2)—1} be a normal [F>-basis of X; = Ty,

with A, = ?\(2)1. Since X; ~ X7, there is a unique dual F;-ba-
sis {0, K1, - -+, K(k/2)—1} of X2, such that

1 wheni=j
fl(}\lruj):{o Whenl#)

Moreover b € AutR, and so

1A, 15550) = 1 (A1, b0, b 0) = 1Ay, 1)
~J1 wheni=j+ko
|0 wheni#j+ko

with p.jbko € Xz, and hence ujbko = Wtk G € Zy,2). Now
put di = (Ai,0),ei = (1,0) (0 < 1 < ko/2), and define the ele-
ments

Aio /2, A(kg/2)417+ -+ Q(ky2)—1 and ey /2, €01y /2) 4171 €(k/2)—
by taking
b = = 5 ),
eiiito =2 = (it LS 3 AN,
where 0 < 1 < ko/2, 1 < j < kg and i+jko € Zy,,. Note that

if 0<j<(ky+1)/2 then (2j)ko/2 < i+jko < (2j+ 1)ko/2, while
if (k1 +1)/2 <j <Ky, then taking j’ =j — (k1 +1)/2, we get

i+iko =i+ (2’ +1)ko/2 (mod k/2)

and
(2j" +Dko/2 <i+(2) +1ko/2 <2 + ko /2.

o (0,1) wheni=j
[dl'e]]_{(0,0) when i # j

Also

k k .
and d? ¢ = diyx, and e}” ° = eitk, (LE€Zy,2) O
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