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Abstract
Given distinct prime numbers q and r, we construct a semidirect product CR
with R C CR, where C is a cyclic group of order q, and R is an extraspecial r-group,
such that C centralizes R ′, and R is minimal among the extraspecial normal sub-
groups of CR. We also calculate the automorphism group of CR, and we investigate
certain situations in which an automorphism fixes a nontrivial element of R/R ′.
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1 Introduction

Extraspecial groups play a useful role in the theory of finite
groups (see [1, Chapter 2, Section 8], [6, III(13.10)], [8, IX(2.6)]). This
is particularly true for questions which involve representation theo-
ry [11, Theorems 3.5, 4.4, 7.3 and 8.4], and in many cases one is led
to investigate a subgroup CR with R C CR, where C is cyclic, R is
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third author has been supported by Proyecto MTM2014-54707-C3-1-P Ministerio
de Economía y Competitividad, Spain
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extraspecial and [R,C] = R, [R ′,C] = 1. In this paper, we consider the
case when C is of prime order, and R is minimal among the extraspe-
cial normal subgroups of CR. We use the theory of Galois fields to
give an explicit construction of such groups CR, and to derive some
of their properties. The construction was motivated by the proof of
a result about the injectors for certain Fitting classes in a finite solv-
able group [3], and some of our results are designed to be used in
this proof.

The layout of the paper is as follows. In the remainder of this sec-
tion we state some known results which will be used later, and in Sec-
tion 2 we construct the groups CR. In Section 3 we show that CR is
unique (up to isomorphism), and in Section 4 we find the automor-
phism group of CR. Finally in Section 5 we prove some results about
automorphisms fixing a nontrivial element of R/R ′, which are used
in our application [3].
Notation — If n is a natural number, let Cn be the cyclic (mul-
tiplicative) group of order n, and let Zn = Z/nZ be the additive
group of integers modulo n. If also r is a prime number, let Frn be
the Galois field of order rn, and write F+

rn and F×rn for the additive
and multiplicative groups of Frn respectively. Then F+

rn is elemen-
tary abelian of order rn, and F×rn

∼= Crn−1.

Lemma 1.1

(a) [5, B (9.3.b) and (9.8.c)] Let W be a module which is C-faithful
and FrC-irreducible, where C is a finite abelian group (and r is
a prime number). Then C = 〈c〉 ∼= Cn is cyclic with r - n,
and dimFrW = k where k is the order of r modulo n.

(b) [5, B (9.8.b)] More explicitly, assuming the hypotheses and conclu-
sions of (a), there exist an Fr-isomorphism θ : W → F+

rk
, and

an element γ which is a primitive n-th root of 1 in F×
rk

, such
that (ξc)θ = γξθ (ξ ∈W). Thus C permutes the set W − 0 semireg-
ularly.

(c) With the notation of (b), form the FrkC-module W1 = Frk⊗ FrW.
Then there is an Frk-basis {ξ0, ξ1, . . . , ξk−1} of W1 such that
ξic = γ

riξi (i ∈ Zk).

Proof — The statements (a) and (b) are proved in the given refer-
ences.
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(c) Let
χ(x) = xk −αk−1x

k−1 − . . .−α1x−α0

be the minimum polynomial of γ over Fr, and take vectors vi ∈ W
such that vθi = γi (0 6 i < k). Then {v0, v1, . . . , vk−1} is an Fr-basis
of W, and the matrix of c with respect to this basis is the companion
matrix

M =


0 1

0 1
. . . . . .

0 1
α0 α1 · · · αk−2 αk−1


Moreover χ(x) is the characteristic polynomial of M, so γ is an eigen-
value for the action of c on W. Hence the other eigenvalues are the
images γr

i
(i ∈ Zk) under the Galois group of Frk over Fr. We get

the result by choosing eigenvectors ξi ∈W1 with eigenvalue γr
i
. ut

Lemma 1.2 Let r be a prime number.

(a) [5, B (12.9)] If k is a natural number, then there is an affine
semilinear group B0C0W with C0 C B0C0, W C B0C0W and
B0 ∩C0 = B0C0 ∩W = 1, where

B0 = 〈b0〉 ∼= Ck, C0 = 〈c0〉 ∼= Crk−1, c
b0
0 = cr0.

Also W = F+
rk

is a module which is B0C0-faithful and FrC0-ir-
reducible, and there is a generator γ0 of F×

rk
such that

ωb0 = ωr, ωc0 = γ0ω (ω ∈W).

(b) [5, B (12.4)] Suppose n is a natural number with r - n, and let k
be the order of r modulo n. Let CW be a semidirect product with
W C CW and C ∩W = 1, such that C ∼= Cn and W is a mod-
ule which is C-faithful and FrC-irreducible. Then CW is unique
(up to isomorphism), and |W| = rk. Hence CW can be embedded in

the group C0W constructed in (a), with C = C
(rk−1)/n
0 . Moreover

if Θ0 = Aut(CW) and Ψ0 = NΘ0(C), then B0C0 6 Ψ0.

(c) [6, II (3.11)] Using the notation of (b), Θ0 = Ψ0W is a semidirect
product, with W C Θ0 and Ψ0 ∩W = 1. Also Ψ0 = B0C0.
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(d) [10, (2.35)] If L 6 B0C0 with CW(L) 6= 0, then L 6 Bc0 for some
element c ∈ C0. Moreover W has an Fr-basis which is permuted
regularly by B0.

Proof — (a) This is proved in the given reference.
(b) The uniqueness is a consequence of Lemma 1.1(b) (and is gen-
eralized in the given reference), while the other statements follow
from (a).
(c) Clearly C is a Hall r ′-subgroup of CW, and CW C Θ0, so Frat-
tini’s argument shows that Θ0 = Ψ0 ·CW = Ψ0W [6, I (7.8)]. Also

Ψ0 ∩W = NW(C) = CW(C) = 1.

To prove the last equation, suppose φ ∈ Ψ0; because of (b) it suffices
to deduce that φ ∈ B0C0. As in Lemma 1.1(b) W = F+

rk
, and the

notation can be chosen so that

γ = γ
(rk−1)/n
0 , λc

i
= γiλ (λ ∈ Frk , i ∈ Zn).

Now φ preserves the addition in W, so

(λ+ µ)φ = λφ + µφ, (αλ)φ = αλφ (λ,µ ∈ Frk , α ∈ Fr).

If 1φ = γs0, then 1φc
−s
0 = γ−s0 1φ = 1. Since c−s0 ∈ C0, we can re-

place φ by φc−s0 , and arrange that 1φ = 1. Since Cφ = C, there is an
integer h such that cφ = ch. Suppose λ, µ ∈ Frk , and note
that Fr[γ] = Frk , so λ =

∑
i∈Zk

αiγ
i with αi ∈ Fr. Now

γiφ = 1c
iφ = 1φc

ih
= 1c

ih
= γih,

λφ =

∑
i∈Zk

αiγ
i

φ =
∑
i∈Zk

αiγ
iφ =

∑
i∈Zk

αiγ
ih,

(λµ)φ =

∑
i∈Zk

αiγ
iµ

φ =

∑
i∈Zk

αiµ
ci

φ =
∑
i∈Zk

αiµ
ciφ

=
∑
i∈Zk

αiµ
φcih =

∑
i∈Zk

αiγ
ihµφ = λφµφ,

which proves that φ ∈ Aut Frk = B0.
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(d) Choose an element δ ∈ CW(L) − 0, and suppose δ = γt0. Then
L 6 CB0C0(γ

t
0) = CB0C0(1)

ct0 = Bc0, where c = ct0. Finally the given
reference shows that Frk has a normal Fr-basis {λ0, λ1, . . . , λk−1},
with λi = λr

i

0 . Then λib0 = λi+1 (i ∈ Zk). ut
Remark — In Sections 2, 3, 4 and 5 we prove results corresponding
to Lemma 1.2 (a), (b), (c) and (d) respectively, when the elementary
abelian groupW is replaced by an extraspecial group R. The construc-
tions in Section 2 are inspired by Lemma 1.3, and use Lemma 1.4.

Definitions — (a) Let X be a (right) FG-module, where F is a field
and G is a group. Then the dual FG-module is defined to be the vector
space X∗ = HomF(X, F), with action

ξ(λg) = (ξg−1)λ (ξ ∈ X, λ ∈ X∗, g ∈ G).

(b) Let Q be a finite group which acts on an extraspecial r-group R
(where r is a prime number) and take

Z = Z(R) = R ′ ∼= Cr.

Then R will be called extraspecially Q-irreducible if it satisfies the fol-
lowing conditions:

(i) [R,Q] = R;

(ii) [Z,Q] = 1;

(iii) there is no extraspecial subgroup R0 such that Z < R0 < R and
R0 C QR.

Lemma 1.3 ([2, Lemma 14], [7, Satz 2]) LetQ be a finite r ′-group which
acts on an extraspecial r-group R (where r is a prime number). Take

Z = 〈z〉 = Z(R) = R ′ ∼= Cr,

and form the FrQ-module W = R/Z. Suppose [R,Q] = R and [Z,Q] = 1.

(a) Then R can be written as a central product R = R1 ◦ R2 ◦ . . . ◦ Rn
of extraspecially Q-irreducible groups Ri, with R ′i = Ri ∩ Rj = Z
and [Ri,Rj] = 1 when i 6= j.

(b) If R is extraspecially Q-irreducible, then W satisfies one of the follow-
ing conclusions:
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(i) W is FrQ-irreducible, and if r 6= 2 then Rr = 1;

(ii) W = X1 ⊕ X2 where X1 and X2 are FrQ-irreducible, with
X1 = X∗2, and if Di/Z = Xi then D ′i = Dri = 1 (i = 1, 2).
Moreover if di ∈ Di, with Zd1 = λ ∈ X∗2 and Zd2=ξ∈X2,
then the notation can be chosen so that [d2,d1] = zξλ.

Proof — (a) Note thatW is completely FrQ-reducible by Maschke’s
theorem [5, A (11.5)], so this is proved in the first reference.

(b) The required facts are proved in the first reference, except for the
statements that Rr = 1 when r 6= 2 in case (i), and that Dri = 1 in
case (ii). If r 6= 2 in case (i), then there is an FrQ-homomorphism

θ :W → Z

defined by taking (Zd)θ = dr (d ∈ R). But [W,Q] = W, so W has no
quotient module centralized by Q, whereas [Z,Q] = 1, and hence θ
must be the zero homomorphism. Similarly in case (ii) D ′i = 1, so
there are FrQ-homomorphisms θi : Xi −→ Z defined by ta-
king (Zdi)

θi = dri (di ∈ Di). As before [Xi,Q] = Xi, so θi is the zero
homomorphism (i = 1, 2). ut

Lemma 1.4 ([5, A (20.6)], [9, §1A]) SupposeW and Z are additive abelian
groups, and let f : W ×W → Z be a biadditive map. Put E = W × Z, and
define a binary operation on E by taking

(ω, λ)(ζ,µ) = (ω+ ζ, λ+ µ+ f(ω, ζ)) (ω, ζ ∈W, λ,µ ∈ Z).

Then E is a group, with

(ω, λ)n =
(
nω,nλ+ 1

2n(n− 1)f(ω,ω)
)

(n ∈ Z),
[(ω, λ), (ζ,µ)] = (0, f(ω, ζ) − f(ζ,ω)).

Proof — The operation is associative, with

(ω, λ)(ζ,µ)(η,ν) =
= (ω+ ζ+ η, λ+ µ+ ν+ f(ω, ζ) + f(ω, η) + f(ζ, η)).

Also (0, 0) is the identity, and (ω, λ)−1 = (−ω,−λ + f(ω,ω)). The
required formulae follow from these facts. ut
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2 Constructions

In this section we prove results corresponding to Lemma 1.2(a), when
the elementary abelian group W is replaced by an extraspecial
group R. The constructions are inspired by Lemma 1.3, and use Lem-
ma 1.4.
Definitions — (a) Suppose n is an even number, and consider the
group C∞ = 〈c0, c1〉 with defining relations

c40 = cn1 = 1, c20 = c
n/2
1

and c
c0
1 = c−11 . Then C∞ will be called a quasiquaternion group.

Put C1 = 〈c1〉, and note that 〈c0〉 ∼= C4, C1 ∼= Cn, C1 C C∞
and |C∞| = 2n. If further n=n0n1 where n0 is a power of 2 and 2 - n1,
then 〈c0〉Cn11 is a (generalized) quaternion group of order 2n0 (or
cyclic of order 4 when n0 = 2), and Cn01

∼= Cn1 with

〈c0〉Cn11 ·C
n0
1 = C∞ and 〈c0〉Cn11 ∩C

n0
1 = 1.

Moreover the element y = c20 = c
n/2
1 is the unique involution in C∞

[6, III (8.2.b)].

(b) Suppose E is a finite r-group (where r is a prime number).
If [d,E] = E ′ for every element d ∈ E− E ′, then E is called a Cami-
na r-group [4, Section 1]. Note that if further Er 6 E ′ = Z(E) and Z<E ′

with |E ′/Z| = r, then E/Z is extraspecial [5, A (20.3)].

Lemma 2.1 Suppose r is an odd prime number, and k is a natural number.
Then there is a group BC∞R such that C∞ C BC∞, R C BC∞R, and
B∩C∞ = BC∞ ∩ R = 1, where C∞ = 〈c0, c1〉 is a quasiquaternion group
of order 2(rk − 1), and

B = 〈b〉 ∼= Ck, 〈c0〉 ∼= C4, C1 = 〈c1〉 ∼= Crk−1,

c20 = c
(rk−1)/2
1 , cb0 = c0, cb1 = cr1, c

c0
1 = c−11 .

Also R = D1D2 is an extraspecial r-group such that

Z = Z(R) = R ′ = D1 ∩D2 ∼= Cr,

Rr = D ′i = 1 and |Di| = rk+1 (i = 1, 2). Moreover if W = R/Z and
Xi = Di/Z are regarded as additive abelian groups, then X1 and X2 are
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modules which are BC1-faithful and FrC1-irreducible, and

Xib = Xic1 = Xi, Xic0 = X3−i (i = 1, 2), Z = Z(BC∞R).
Proof — Take

X1 = X2 = Z1 = F+
rk

, W = X1 ⊕X2,
f(ξ1 ⊕ ξ2, η1 ⊕ η2) = ξ2η1 ∈ Z1 (ξi, ηi ∈ Xi),

and define E =W ×Z1 as in Lemma 1.4. Put

Yi = {(ξ, λ) : ξ ∈ Xi, λ ∈ Z1} (i = 1, 2),

and identify Z1 with the subgroup {(0, λ) : λ ∈ Z1}. Then

(ξ1 ⊕ ξ2, λ)r = (0, 0),
[(ξ1 ⊕ ξ2, λ), (η⊕ 0,µ)] = (0, ξ2η),
[(ξ1 ⊕ ξ2, λ), (0⊕ η,µ)] = (0,−ξ1η).

Hence [d,E] = Z1 for every element d ∈ E − Z1, so E is a Cami-
na r-group with E ′ = Z1, and Er = Y ′i = 1 (i = 1, 2). Let γ1 be a
generator of F×

rk
, and take

(ξ1 ⊕ ξ2, λ)b = (ξr1 ⊕ ξ
r
2, λr),

(ξ1 ⊕ ξ2, λ)c0 = (ξ2 ⊕ (−ξ1), λ− ξ1ξ2),
(ξ1 ⊕ ξ2, λ)c1 = ((γ1ξ1)⊕ (γ−11 ξ2), λ),
B = 〈b〉, C∞ = 〈c0, c1〉, C1 = 〈c1〉.

Then

b, c0, c1 ∈ AutE, bk = c40 = cr
k−1
1 = 1, c20 = c

(rk−1)/2
1 ,

cb0 = c0, cb1 = cr1, c
c0
1 = c−11 ,

Xib = Xic1 = Xi, Xic0 = X3−i (i = 1, 2), Z1 = Z(C∞E),
and X1, X2 are modules which are BC1-faithful and FrC1-irreducible.

Let {λ0, λ1, . . . , λk−1} be a normal Fr-basis of Frk , with λi = λr
i

0
(i ∈ Zk) [10, (2.35)]. Then Z1 = F+

rk
has a corresponding basis which

is permuted regularly by B. Consider an element

λ =
∑
i∈Zk

αiλi ∈ Z1
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with αi ∈ Fr, and define ρ : Z1 → Fr by taking

ρ(λ) =
∑
i∈Zk

αi.

Put Z0 = Ker ρ, R = E/Z0, Di = Yi/Z0 and Z = Z1/Z0. Then

Z0 = [Z1,B] C BC∞E,

so BC∞R has the required properties. ut
Remark — Let τ0 : F+

rk
→ F+

r be the Fr-linear trace map, with

τ0(µ) =
∑
i∈Zk

µr
i
.

Using the above notation for λ and ρ, we get

τ0(λ) =
∑
i∈Zk

αiτ0(λi) =
∑
i∈Zk

αiτ0(λ0) = ρ(λ)τ0(λ0).

Thus ρ(λ) = τ0(λ)/τ0(λ0), so ρ is a constant multiple of τ0.

Lemma 2.2 Suppose k is a natural number. Then there is a group BC∞R
such that C∞ C BC∞, R C BC∞R, and B ∩ C∞ = BC∞ ∩ R = 1, where
C∞ = 〈c0, c1〉 is a dihedral group of order 2(2k − 1), and

B = 〈b〉 ' Ck, 〈c0〉 ' C2, C1 = 〈c1〉 ' C2k−1,
cb0 = c0, cb1 = c21, c

c0
1 = c−11 .

Also R = D1D2 is an extraspecial 2-group with

Z = Z(R) = R ′ = D1 ∩D2 ' C2,

D2i = D ′i = 1, |Di| = 2k+1 (i = 1, 2). Moreover if W = R/Z and
Xi = Di/Z are regarded as additive abelian groups, then X1 and X2 are
modules which are BC1-faithful and F2C1-irreducible, and

Xib = Xic1 = Xi, Xic0 = X3−i (i = 1, 2), Z = Z(BC∞R).
Proof — We can copy the proof of Lemma 2.1 as follows. Take

X1 = X2 = Z1 = F+
2k

, W = X1 ⊕X2,
f(ξ1 ⊕ ξ2, η1 ⊕ η2) = ξ2η1 ∈ Z1 (ξi, ηi ∈ Xi),
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and define E =W ×Z1 as in Lemma 1.4. Put
Yi = {(ξ, λ) : ξ ∈ Xi, λ ∈ Z1} (i = 1, 2),

and identify Z1 with the subgroup {(0, λ) : λ ∈ Z1}. Then

(ξ1 ⊕ ξ2, λ)2 = (0, ξ1ξ2),
(ξ⊕ 0, λ)2 = (0⊕ ξ, λ)2 = (0, 0)

[(ξ1 ⊕ ξ2, λ), (η⊕ 0,µ)] = (0, ξ2η),
[(ξ1 ⊕ ξ2, λ), (0⊕ η,µ)] = (0, ξ1η).

Hence [d,E] = Z1 for every element d ∈ E − Z1, so E is a Cami-
na 2-group with E ′ = Z1, and Y2i = Y ′i = 1 (i = 1, 2). Let γ1 be a
generator of F×

2k
, and take

(ξ1 ⊕ ξ2, λ)b = (ξ21 ⊕ ξ
2
2, λ2),

(ξ1 ⊕ ξ2, λ)c0 = (ξ2 ⊕ ξ1, λ+ ξ1ξ2),
(ξ1 ⊕ ξ2, λ)c1 = ((γ1ξ1)⊕ (γ−11 ξ2), λ),
B = 〈b〉, C∞ = 〈c0, c1〉, C1 = 〈c1〉.

Then

b, c0, c1 ∈ AutE, bk = c20 = c2
k−1
1 = 1,

cb0 = c0, cb1 = c21, c
c0
1 = c−11 ,

Xib = Xic1 = Xi, Xic0 = X3−i (i = 1, 2), Z1 = Z(C∞E),
and X1, X2 are modules which are BC1-faithful and F2C1-irreducible.

Let {λ0, λ1, . . . , λk−1} be a normal F2-basis of F2k , with λi = λ2
i

0
(i ∈ Zk) [10, (2.35)]. Then Z1 = F+

2k
has a corresponding basis which

is permuted regularly by B. Consider an element

λ =
∑
i∈Zk

αiλi ∈ Z1

with αi ∈ F2, and define ρ : Z1 → F2 by taking

ρ(λ) =
∑
i∈Zk

αi.

Put Z0 = Ker ρ, R = E/Z0, Di = Yi/Z0 and Z = Z1/Z0. Then
Z0 = [Z1,B] C BC∞E, so BC∞R has the required properties. ut
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Remark As in Lemma 2.1, let τ0 : F+
2k
→ F+

2 be the trace map, with

τ0(µ) =
∑
i∈Zk

µ2
i
.

Using the above notation for λ and ρ, we get ρ(λ) = τ0(λ)/τ0(λ0),
so ρ is a constant multiple of τ0.

Definition Suppose r is an odd prime number, and k is an even
number, and consider the group B∞ = 〈b1, c1〉 with defining rela-
tions b2k1 = cr

k/2+1
1 = 1,

bk1 = c
(rk/2+1)/2
1 and cb11 = cr1.

Then B∞ will be called a hyperquaternion group. Put

B = 〈b1〉 ' C2k and C1 = 〈c1〉 ' Crk/2+1,

and observe that C1 C B∞ and |B∞| = k(rk/2 + 1). Also

c
b
k/2
1
1 = cr

k/2

1 = c−11 ,

so C∞ = 〈bk/21 , c1〉 is a quasiquaternion group. If 2 - k/2 then
B = B4 ×Bk/2, so B∞ = B4C∞ with B4 ∩C∞ = 1. On the other hand,
if 2 k/2 then rk/2 ≡ 1 modulo 4, so

2 - (rk/2 + 1)/2 and C1 = C
(rk/2+1)/2
1 ×C21,

and therefore B∞ = BC21 with B ∩ C21 = 1. In both cases, the ele-

ment y = bk1 = c
(rk/2+1)/2
1 is the unique involution in B∞.

Lemma 2.3 Suppose r is an odd prime number, and k is an even num-
ber. Then there is a group B∞R such that R C B∞R and B∞ ∩ R = 1,
where B∞ = 〈b1, c1〉 is a hyperquaternion group of order k(rk/2+ 1), with

B = 〈b1〉 ' C2k, C1 = 〈c1〉 ' Crk/2+1,

bk1 = c
(rk/2+1)/2
1 , c

b1
1 = cr1.

Also R is an extraspecial r-group with Z = Z(R) = R ′ ' Cr, Rr = 1
and |R| = rk+1. Moreover if W = R/Z is regarded as an additive abelian
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group, then W is a module which is B∞C1-faithful and FrC1-irreducible,
and Z = Z(B∞R).
Proof — Define Frk/2-homomorphisms σ, τ : F+

rk
→ F+

rk
by the

equations σ(ω) = ω−ωr
k/2

, τ(ω) = ω+ωr
k/2

(ω ∈ Frk), and take

W = F+
rk

, Z1 = Imgσ = Ker τ,

f(ω, ζ) = 1
2σ(ωζ

rk/2) ∈ Z1 (ω, ζ ∈W).

Define E = W × Z1 as in Lemma 1.4, and identify Z1 with the sub-
group {(0, λ) : λ ∈ Z1}. Then

(ω, λ)r = (0, 0), [(ω, λ), (ζ,µ)] = (0,σ(ωζr
k/2

)).

Hence [d,E] = Z1 for every element d ∈ E − Z1, so E is a Cami-
na r-group with E ′ = Z1, and Er = 1. Let γ0 be a generator of F×

rk
,

and suppose r1 is an odd number; in the present proof we can
take r1 = 1, but in the proof of Theorem 5.4 it will be conve-
nient to choose a different value for r1. Note that if λ ∈ Z1, then

τ(λr) = τ(λ)r = 0 and τ(γr
k/2+1
0 λ) = γr

k/2+1
0 τ(λ) = 0,

so λr and γr
k/2+1
0 λ are both in Ker τ = Z1. We can therefore define

(ω, λ)b = (ωr, λr), (ω, λ)c0 = (γ0ω,γr
k/2+1
0 λ) (ω ∈W, λ ∈ Z1),

b1 = bc
r1(r−1)/2
0 , c1 = cr

k/2−1
0 , B∞ = 〈b1, c1〉, C1 = 〈c1〉,

γ1 = γr
k/2−1
0 , δ = γ

−r1(r
k/2+1)/2

0 .

Then b, c0 ∈ AutE and

γr
k−1
0 = 1, bk = cr

k−1
0 = 1, cb0 = cb10 = cr0,

γr
k/2+1
1 = 1, (ω, λ)c1 = (γ1ω, λ), cr

k/2+1
1 = 1, c

b1
1 = cr1,

bi1 = bic
r1(r

i−1)/2
0 (i > 0),

bk1 = bkc
r1(r

k−1)/2
0 = (c

(rk/2+1)/2
1 )r1 = c

(rk/2+1)/2
1 ,

δr
k/2

= γ
−r1(r

k+rk/2)/2
0 = γ

−r1(r
k−1)/2

0 δ = (−1)r1δ = −δ, δ ∈ Z1,

Z1 = Z(C1E),
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and W is a module which is B∞C1-faithful and FrC1-irreducible,
while Z1 = Frk/2δ is the 1-dimensional Frk/2-subspace of Frk span-
ned by δ.

Let {λ0, λ1, . . . , λ(k/2)−1} be a normal Fr-basis of Frk/2 with λi=λr
i

0

(i ∈ Zk/2) [10, (2.35)], and take λ ′i = λiδ ∈ Z1 (i ∈ Zk/2). Then
{λ ′0, λ ′1, . . . , λ ′(k/2)−1} is an Fr-basis of Z1, and

(0, λ ′i)
b = (0, λriδ

r)c
r1(r−1)/2
0 = (0, λi+1δrγ

r1(r−1)(r
k/2+1)/2

0 )

= (0, λi+1δrδ−(r−1)) = (0, λ ′i+1) (i ∈ Zk/2),

so {λ ′0, λ ′1, . . . , λ ′(k/2)−1} is permuted regularly by B/Bk/2. Consider
an element λ =

∑
i∈Zk/2

αiλ
′
i ∈ Z1 with αi ∈ Fr, and define

ρ : Z1 → Fr by taking
ρ(λ) =

∑
i∈Zk/2

αi.

Put Z0 = Ker ρ, R = E/Z0 and Z = Z1/Z0. Then Z0 = [Z1,B] C B∞E,
so B∞R has the required properties. ut

Remark As in Lemma 2.1, let τ0 : Frk/2 → Fr be the trace map,
with

τ0(µ) =
∑
i∈Zk/2

µr
i
,

and define an Fr-linear map τ1 : Z1 → Fr by taking τ1(λ) = τ0(λδ−1)
(λ ∈ Z1). Using above notation for λ and ρ, we get

τ1(λ) =
∑
i∈Zk/2

αiτ1(λ
′
i) =

∑
i∈Zk/2

αiτ0(λi) = ρ(λ)τ0(λ0),

so ρ(λ) = τ1(λ)/τ0(λ0), and hence ρ is a constant multiple of τ1.

Lemma 2.4 Suppose k is an even number. Then there is a group BC1R
such that

C1 C BC1, R C BC1R and B∩C1 = BC1 ∩ R = 1,

with |BC1| = k(2
k/2 + 1), where

B = 〈b〉 ' Ck, C1 = 〈c1〉 ' C2k/2+1, cb1 = c21.
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Also R is an extraspecial 2-group with Z = Z(R)=R ′ ' C2 and |R| = 2k+1.
Moreover if W = R/Z is regarded as an additive abelian group, then W is
a module which is BC1-faithful and F2C1-irreducible and Z = Z(BC1R).

Proof — Define the F2k/2-linear trace map τ : F+
2k
→ F+

2k/2
by

taking
τ(ω) = ω+ω2

k/2
(ω ∈ F2k),

and note that τ is epimorphic [10, (2.23.iii)]. Choose ε ∈ F2k
with τ(ε) = 1, and take

W = F+
2k

, Z1 = Img τ = Ker τ = F+
2k/2

,

f(ω, ζ) = τ(εωζ2
k/2

) ∈ Z1 (ω, ζ ∈W).

Define E = W × Z1 as in Lemma 1.4, and identify Z1 with the sub-
group {(0, λ) : λ ∈ Z1}. Then

(ω, λ)2 = (0, τ(ε)ω2
k/2+1) = (0,ω2

k/2+1),

[(ω, λ), (ζ,µ)] = (0, τ(εωζ2
k/2

+ εω2
k/2
ζ))

= (0, τ(εωζ2
k/2

+ ε2
k/2
ωζ2

k/2
)) = (0, τ(ωζ2

k/2
)).

Hence [d,E] = Z1 for every element d ∈ E − Z1, so E is a Cami-
na 2-group with E ′ = Z1. Let γ0 be a generator of F×

2k
, and put

ε1 = ε2
k/2+1, γ1 = γ2

k/2−1
0 ,

with
ε2 + ε+ ε1 = ε2 + (ε+ ε2

k/2
)ε+ ε2

k/2+1 = 0.

Suppose (ω, λ)b = (ω2, λ2 + f ′(ω)), and note that b ∈ AutE pro-
vided

f ′(ω+ ζ) + f ′(ω) + f ′(ζ) = ε1τ(ωζ
2k/2)2

= ε1(ω
2ζ2·2

k/2
+ω2·2

k/2
ζ2).

We therefore take f ′(ω) = ε1ω
2(2k/2+1), and define

(ω, λ)b = (ω2, λ2 + ε1ω2(2
k/2+1)), (ω, λ)c1 = (γ1ω, λ),

B = 〈b〉, C1 = 〈c1〉.
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Then b, c1 ∈ AutE and

(ω, λ)b
j
= (ω2

j
, λ2

j
+
∑j−1
i=0ε

2i

1 ω
2j(2k/2+1)) (j ∈ Zk),

ε2
i

1 = ε2
i+(k/2)

1 , γ2
k/2+1
1 = 1, bk = c2

k/2+1
1 = 1, cb1 = c21,

Z1 = Z(C1E),

and W is a module which is BC1-faithful and F2C1-irreducible.
Let

{λ0, λ1, . . . , λ(k/2)−1}

be a normal F2-basis of F2k/2 with λi=λ2
i

0 (i ∈ Zk/2) [10, (2.35)].
Then Z1 = F+

2k/2
has a corresponding basis which is permuted regu-

larly by B/Bk/2. Finally consider an element

λ =
∑
i∈Zk/2

αiλi ∈ Z1

with αi ∈ F2, and define ρ : Z1 → F2 by taking

ρ(λ) =
∑
i∈Zk/2

αi.

Put Z0 = Ker ρ, R = E/Z0 and Z = Z1/Z0. Then Z0 = [Z1,B]C BC1E,
so BC1R has the required properties. ut

Remark As in Lemma 2.1, let τ0 : F+
2k/2

→ F+
2 be the trace map,

with τ0(µ) =
∑
i∈Zk/2

µ2
i
. Using the above notation for λ and ρ, we

get ρ(λ) = τ0(λ)/τ0(λ0), so ρ is a constant multiple of τ0.

3 Uniqueness

In this section we prove results corresponding to Lemma 1.2(b), when
the elementary abelian group W is replaced by an extraspecial
group R.

Lemma 3.1 Suppose r is a prime number, and n is a natural number
with r - n, and let k be the order of r modulo n. Let CR be a group,
with R C CR and C ∩ R = 1, where C ' Cn and R is a C-faithful extra-
special r-group. Put Z = Z(R) = R ′ ' Cr, and assume that R satisfies
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the conditions in Lemma 1.3(b - ii), with [R,C] = R and [Z,C] = 1 (but R
need not be extraspecially C-irreducible). Then CR is unique (up to isomor-
phism), and |R| = r2k+1.
Proof — The conditions in Lemma 1.3(b - ii) imply that CR can be
constructed as follows. Let CX2 be the group described in Lem-
ma 1.1(b) (so X2 is a module which is C-faithful and FrC-irreducible),
and take X1 = X∗2 and Z = F+

r . Note that D ′i = Dri = [Z,C] = 1,
and that Di is completely FrC-reducible by Maschke’s theorem [5,
A (11.5)]. Hence Di = Xi ×Z, with binary operation

(ξ,α)(η,β) = (ξ+ η,α+β),

and action

(ξ,α)c = (ξc,α)(ξ, η ∈ Xi,α,β ∈ Z, c ∈ C, i = 1, 2).

Suppose (λ,γ), (µ, δ) ∈ D1, and (ξ,α), (η,β) ∈ D2, and c ∈ C.
If d1 = (λ,γ), d2 = (ξ,α) and z = (0, 1) ∈ D2, then

[(ξ,α), (λ,γ)] = [d2,d1] = zξλ = (0, 1)ξλ = (0, ξλ),

(ξ,α)(λ,γ) = (ξ,α)[(ξ,α), (λ,γ)] = (ξ,α)(0, ξλ)
= (ξ,α+ ξλ),

((ξ,α)(η,β))(λ,γ) = (ξ+ η,α+β)(λ,γ) = (ξ+ η,α+β+ ξλ+ ηλ)

= (ξ,α+ ξλ)(η,β+ ηλ) = (ξ,α)(λ,γ)(η,β)(λ,γ),

(ξ,α)(λ,γ)(µ,δ) = (ξ,α+ ξλ)(µ,δ) = (ξ,α+ ξλ+ ξµ)

= (ξ,α)(λ+µ,γ+δ),

(ξ,α)(λ,γ)c = (ξ,α+ ξλ)c = (ξc,α+ (ξc)(λc))

= (ξc,α)(λc,γ) = (ξ,α)c(λ,γ)c .

Finally if R = D1D2 = X1X2Z (with D1 ∩D2 = Z), then CR has the
required properties. Moreover CX2 is unique by Lemma 1.2(b), and
hence CR is also unique (up to isomorphism). ut

Lemma 3.2 Suppose q and r are distinct prime numbers, and let k be the
order of r modulo q. Let CR be a group with R C CR and C ∩ R = 1,
where C ' Cq and R is a C-faithful extraspecial r-group. Put

Z = Z(R) = R ′ ' Cr,
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and assume that R is extraspecially C-irreducible, with [R,C] = R
and [Z,C] = 1. Put

Γ = Aut(CR), Θ = CΓ (Z) and Ψ = NΘ(C),

and suppose 2 - k.

(a) The group CR is unique (up to isomorphism), and R is of type (ii) in
Lemma 1.3(b) with |R| = r2k+1.

(b) If r 6= 2, then BC∞ 6 Ψ, where BC∞R is the group constructed in
Lemma 2.1.

(c) If r = 2, then BC∞ 6 Ψ, where BC∞R is the group constructed in
Lemma 2.2.

Proof — Note that 2 dimFr(R/Z) (because R is extraspecial),
but 2 - k, so it is clear that R is not of type (i). Then (a) is a con-
sequence of Lemma 3.1, while (b) and (c) follow from Lemmas 2.1

and 2.2 respectively, with C = C
(rk−1)/q
1 ' Cq. ut

Proposition 3.3 Suppose r is a prime number, and k is an even number.
Then there is a group C1R with R C C1R and C1 ∩ R = 1, where

C1 = 〈c1〉 ' Crk/2+1.

Also R = D1D2 = R1 ◦ R2 is an extraspecial r-group, with

Z = Z(R) = R ′ = D1 ∩D2 = R1 ∩ R2 ' Cr,

Dri = D ′i = [R1,R2] = 1, Ri is extraspecial and |Di| = |Ri| = rk+1

(i = 1, 2). Moreover if W = R/Z, Xi = Di/Z and Wi = Ri/Z are
regarded as additive abelian groups, then Xi and Wi are modules
which are C1-faithful and FrC1-irreducible (i = 1, 2) with

W = X1 ⊕X2 =W1 ⊕W2, X1 ' X∗2 and Z = Z(C1R).

Proof — First suppose r 6= 2, and define Frk/2-homomorphisms
σ, τ : F+

rk
→ F+

rk
by the equations

σ(ω) = ω−ωr
k/2

, τ(ω) = ω+ωr
k/2

(ω ∈ Frk).
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Take

W1 =W2 = F+
rk

, W =W1 ⊕W2, Z1 = Imgσ = Ker τ,
X1 = {ω⊕ω : ω ∈W1}, X2 = {ω⊕ (−ω) : ω ∈W1},

f(ω1 ⊕ω2, ζ1 ⊕ ζ2) = 1
2σ(ω1ζ

rk/2

1 −ω2ζ
rk/2

2 ) ∈ Z1

with ωi, ζi ∈Wi. Define E =W ×Z1 as in Lemma 1.4, put

Ei = {(ω, λ) : ω ∈Wi, λ ∈ Z1} and Yi = {(ξ, λ) : ξ ∈ Xi, λ ∈ Z1}

(i = 1, 2), and identify Z1 with the subgroup {(0, λ) : λ ∈ Z1}. Then

(ω1 ⊕ω2, λ)r = (0, 0),

[(ω1 ⊕ω2, λ), (ζ1 ⊕ ζ2,µ)] = (0,σ(ω1ζr
k/2

1 −ω2ζ
rk/2

2 )),
[(ω⊕ 0, λ), (0⊕ ζ,µ)] = (0, 0),
[(ω⊕ω, λ), (ζ⊕ ζ,µ)] = (0, 0),
[(ω⊕ (−ω), λ), (ζ⊕ (−ζ),µ)] = (0, 0),

[(ω1 ⊕ω2, λ), (ζ⊕ 0,µ)] = (0,σ(ω1ζr
k/2

)),

[(ω1 ⊕ω2, λ), (0⊕ ζ,µ)] = (0,−σ(ω2ζr
k/2

)),

[(ω⊕ω, λ), (ζ⊕ (−ζ),µ)] = (0, 2σ(ωζr
k/2

)).

As in Section 2, we get [d, E] = [di, Ei] = Z1 for all elements
d ∈ E−Z1 and di ∈ Ei −Z1 (i = 1, 2). Hence E, E1 and E2 are Cami-
na r-groups with

E ′ = E ′i = [Y1, Y2] = Z1 and Er = [E1,E2] = Y ′i = 1.

Let γ0 be a generator of F×
rk

, define

γ1 = γr
k/2−1
0 ,

(ω1 ⊕ω2, λ)c1 = ((γ1ω1)⊕ (γ1ω2), λ) (ωi ∈Wi, λ ∈ Z1),

and note that Wi and Xi are modules which are C1–faithful and
FrC1-irreducible. Choose Z0 < Z1 with |Z1/Z0| = r, and take

R = E/Z0, Ri = Ei/Z0, Di = Yi/Z0 and Z = Z1/Z0.

Then D ′i = 1 (i = 1, 2) and [D1,D2] = Z, and hence X1 ' X∗2, so C1R
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has the required properties.
Next suppose r = 2, and define the F2k/2-linear trace map

τ : F+
2k
→ F+

2k/2

by the equation τ(ω) = ω+ω2
k/2

(ω ∈ F2k). Choose ε ∈ F2k with
τ(ε) = 1 [10, (2.23.iii)], and let γ0 be a generator of F×

2k
. Take

W1 =W2 = F+
2k

, W =W1 ⊕W2,

Z1 = Img τ = Ker τ = F+
2k/2

, γ1 = γ2
k/2−1
0 ,

X1 = {ω⊕ω : ω ∈W1}, X2 = {ω⊕ (γ1ω) : ω ∈W1},
f(ω1 ⊕ω2, ζ1 ⊕ ζ2) = τ(εω1ζ2

k/2

1 + εω2ζ
2k/2

2 ) ∈ Z1

with ωi, ζi ∈Wi. Define E =W ×Z1 as in Lemma 1.4, put

Ei = {(ω, λ) : ω ∈Wi, λ ∈ Z1} and Yi = {(ξ, λ) : ξ ∈ Xi, λ ∈ Z1}

(i = 1, 2), and identify Z1 with the subgroup {(0, λ) : λ ∈ Z1}. Then

(ω1 ⊕ω2, λ)2 = (0,ω2
k/2+1
1 +ω2

k/2+1
2 ),

(ω⊕ω, λ)2 = (ω⊕ (γ1ω), λ)2 = (0, 0),
[(ω1 ⊕ω2, λ), (ζ1 ⊕ ζ2,µ)] = (0, τ(ω1ζ2

k/2

1 +ω2ζ
2k/2

2 )),
[(ω⊕ 0, λ), (0⊕ ζ,µ)] = (0, 0),
[(ω⊕ω, λ), (ζ⊕ ζ,µ)] = (0, 0),
[(ω⊕ (γ1ω), λ), (ζ⊕ (γ1ζ),µ)] = (0, 0),
[(ω1 ⊕ω2, λ), (ζ⊕ 0,µ)] = (0, τ(ω1ζ2

k/2
)),

[(ω1 ⊕ω2, λ), (0⊕ ζ,µ)] = (0, τ(ω2ζ2
k/2

)),
[(ω⊕ω, λ), (ζ⊕ (γ1ζ),µ)] = (0, τ((1+ γ−11 )ωζ2

k/2
)).

As in Section 2, we get [d,E]=[di,Ei]=Z1 for all elements d ∈ E−Z1
and di ∈ Ei −Z1 (i = 1, 2). Hence E, E1 and E2 are Camina 2-groups
with

E ′ = E ′i = [Y1, Y2] = Z1 and [E1,E2] = Y2i = Y ′i = 1.

Define

(ω1 ⊕ω2, λ)c1 = ((γ1ω1)⊕ (γ1ω2), λ) (ωi ∈Wi, λ ∈ Z1),

and note that Wi and Xi are modules which are C1-faithful and
F2C1-irreducible. Choose Z0<Z1 with |Z1/Z0|=2, and take R=E/Z0,
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Ri = Ei/Z0, Di = Yi/Z0 and Z = Z1/Z0. As before D2i = D ′i = 1
(i = 1, 2) and [D1,D2] = Z, and hence X1 ' X∗2, so C1R has the
required properties. ut

Notation — Write qt ‖ n to mean that qt n but qt+1 - n (where n
and t are natural numbers, and q is a prime number).

Proposition 3.4 Suppose q and r are distinct prime numbers, and let k
be the order of r modulo q. Suppose CR is a group with R C CR and
C ∩ R = 1, where C ' Cq, and R is a C-faithful extraspecial r-group. Put
Z = Z(R) = R ′ ' Cr, and assume that R is extraspecially C-irreducible,
with [R,C] = R and [Z,C] = 1. Put Γ = Aut(CR) and Θ = CΓ (Z),
Ψ = NΘ(C), and suppose 2 k.

(a) The group CR is unique (up to isomorphism), and R is of type (i)
in Lemma 1.3(b) with |R| = rk+1.

(b) If r 6= 2, then B∞ 6 Ψ, where B∞R is the group constructed in Lem-
ma 2.3.

(c) If r = 2, then BC1 6 Ψ, where BC1R is the group constructed
in Lemma 2.4.

Proof — (a) Note that q 6= 2 and q - rk/2− 1, and hence q rk/2+ 1.
First suppose R is of type (ii) in Lemma 1.3(b). Let C1R be the group

constructed in Proposition 3.3, and take C = C
(rk/2+1)/q
1 ' Cq.

Then R = D1D2 satisfies the conditions in Lemma 1.3(b - ii), so CR
is the unique such group by Lemma 3.1. But R = R1 ◦ R2 is extraspe-
cially C-reducible, which contradicts the hypothesis. This shows
that R must be of type (i), and it remains to prove the uniqueness.
Put

∆ = AutR, Λ = C∆(Z), W = R/Z, Ω = CΛ(W).

Then Lemmas 2.3 and 2.4 imply that there is a group C2R such
that qt ‖ rk/2 + 1 and

C2 = C
(rk/2+1)/qt

1 ' Cqt , C = Cq
t−1

2 ' Cq, C2 6 Λ.

First suppose r 6= 2. Then Rr = 1 by Lemma 1.3(b - i), and hence
Ω = W and Λ/Ω ' Spk(r) ([5, A (20.8)], [12, Theorem 1(a)]). More-
over

|Λ| = rkr(k/2)
2
(r2 − 1)(r4 − 1) . . . (rk − 1),
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and therefore qt ‖ |Λ|. Thus C2 ∈ SylqΛ, and it follows from Sylow’s
theorem that Λ has a unique conjugacy class of subgroups of order q.
Now suppose C0R0 is any group with R0 C C0R0 and C0 ∩ R0 = 1,
where C0 ' Cq and R0 is an extraspecially C0-irreducible r-group of
type (i), such that [R0,C0] = R0 and [R ′0,C0] = 1. Then

∣∣R0/R0 ′∣∣ = rk
by Lemma 1.1(a), so |R0| = rk+1. Also Rr0 = 1, so R0 can be identi-
fied with R. Hence C0 is identified with a subgroup of Λ, so C0 is
conjugate to C in Λ, and C0R0 ' CR.

Next suppose r = 2. Then Ω = W and Λ/Ω ' O±k (r) ([5, A (20.8)],
[12, Theorem 1(c)]), and hence

|Λ| = 2k2(k/2)
2−(k/2)+1(22 − 1)(24 − 1) . . . (2k−2 − 1)(2k/2 ∓ 1).

Therefore C2 ∈ SylqΛ (and Λ/Ω = O−
k (r)), and the result follows, as

before.
The statements (b) and (c) are consequences of Lemmas 2.3 and 2.4

respectively. ut

4 Automorphisms

In this section we prove results corresponding to Lemma 1.2(c), when
the elementary abelian group W is replaced by an extraspecial
group R. Throughout the section, we assume the following hypothe-
sis.

Hypothesis Suppose q and r are distinct prime numbers, and let k be the
order of r modulo q. Take CR as in Lemma 3.2 if 2 - k, and as in Proposi-
tion 3.4 if 2 k, and put

Z = Z(CR) = R ′ ' Cr,
Γ = Aut(CR), Θ = CΓ (Z), Ψ = NΘ(C),
W = R/Z, Θ0 = Aut(CW), Ψ0 = NΘ0(C).

Given an element θ ∈ Θ, define a homomorphism π : Θ→ Θ0 by taking θπ

to be the induced automorphism of CW = CR/Z.

Lemma 4.1 Assume the above Hypothesis. Then:

(a) Θ C Γ and Γ/Θ ' Cr−1;

(b) Θ=ΨW is a semidirect product, with W C Θ and Ψ∩W=1;
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(c) the restricted map πΨ : Ψ→ Ψ0 is monomorphic.

Proof — (a) Let α and z be generators of F×r and Z respectively.
Clearly Θ C Γ , and Γ/Θ 6 AutZ ' Cr−1, so it suffices to find an
element a ∈ Γ such that za = zα. If r = 2, then α = 1 and Γ = Θ, so
the result is clear, and we may therefore assume that r 6= 2.

First suppose 2 - k, and use the notation of Lemma 2.1. Defi-
ne a ∈ AutE by taking (ξ1 ⊕ ξ2, λ)a = (ξ1 ⊕ (αξ2),αλ), and note
that ca1 = c1, so a ∈ Aut(CE). Moreover ρ(αλ) = αρ(λ) (λ ∈ Z1),
so a normalizes Z0. Hence a induces the required automorphism
of Z1/Z0 = Z, and in this case Γ = AΘ is a semidirect product,
with A = 〈a〉 ' Cr−1 and A∩Θ = 1.

Next suppose 2 k, and use the notation of Lemma 2.3. Define

a = c
(rk/2−1)/(r−1)
0 and γ1 = γ

(rk/2−1)/(r−1)
0 .

Then we can take α = γr
k/2+1
1 , and we get (ω, λ)a = (γ1ω,αλ), with

ca1 = c1 and a ∈ Aut(CE). Also ρ(αλ) = αρ(λ) (λ ∈ Z1), so a normal-
izes Z0. Hence a induces the required automorphism of Z.
(b) Clearly C is a Hall r ′-subgroup of CW, and CW C Θ, so Frattini’s
argument shows that Θ = Ψ ·CW = ΨW [5, I (6.3.b)]. Also Ψ ∩W =
NW(C) = CW(C) = 1.
(c) Put

Ψ1 = KerπΨ = NΘ(C)∩CΓ (CR/Z),

and note that [C,Ψ1] 6 C ∩ Z = 1. Given elements θ1 ∈ Ψ1
and ξ = Zx ∈W, we can therefore define a map λ ∈ HomFrC(W,Z)
by taking ξ λ = [x, θ1] = x−1 xθ1 . But HomFrC(W, Z) = 0, and hen-
ce λ = 0, so θ1 = 1. ut

Lemma 4.2 If q = 2, then k = 1 and |R| = r3, W = X1 ⊕ X2, where the
modules X1 and X2 are FrC-isomorphic to each other. Moreover Ψ=SL2(r).
Proof — Clearly k = 1, so R is of type (ii) by Lemma 3.2(a). In
fact C = 〈c〉 ' C2 and R = 〈d1,d2〉, with R ′ 6= Rr = 1, |R| = r3

and dci = d
−1
i (i = 1, 2). Hence Ψ = Sp2(r) = SL2(r) [5, A (20.8)]. ut

Theorem 4.3 Suppose 2 - k.

(a) If q 6= 2 and r 6= 2, then Ψ = BC∞ as in Lemma 2.1.

(b) If r = 2, then Ψ = BC∞ as in Lemma 2.2.
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Proof — We can prove (a) and (b) together, as follows. Note that R
is of type (ii) by Lemma 3.2(a), and BC∞ 6 Ψ by Lemma 3.2(b)
and (c). Conversely suppose θ ∈ Ψ; we must deduce that θ ∈ BC∞.

Let γ = γ
(rk−1)/q
0 be a primitive q-th root of 1 in F×

rk
, where γ0 is a

generator of F×
rk

. As in Lemma 1.1(c), the eigenvalues for the action

of c on X2 are γ,γr,γr
2
, . . . ,γr

k−1
(in Frk), and hence the eigenvalues

for the action of c on X1 = X∗2 are

γ−1,γ−r,γ−r
2
, . . . ,γ−r

k−1

[8, VII (8.2)]. If X1 and X2 are Fr-isomorphic, then

{γr
i
: i ∈ Zk} = {γ−r

i
: i ∈ Zk},

so there is an integer t ∈ Zk such that γ = γ−r
t
. Then γr

t+1 = 1,
so q rt + 1. Thus q (rt − 1)(rt + 1) = r2t − 1, and hence k 2t.
But 2 - k, so k t, which implies that t = 0. Therefore γ = γ−1,
so γ2=1. This contradicts the fact that q 6= 2, and proves that X1 6' X2.
It follows that X1 and X2 are the FrC1-homogeneous components
of W [5, B (3.4)], so Ψ permutes the set {X1,X2}, and we put

Ψ2 = NΨ(X2) = NΨ(X1).

If Xθ1 = X2, then Xθc01 = X1, so we can replace θ by θc0 if necessary,
and arrange that θ ∈ Ψ2.

As in Lemma 1.2(b), put Θ1 = Aut(CX1) and Ψ1 = NΘ1(C). As
in the Hypothesis, given an element θ2 ∈ Ψ2, define a homomor-
phism π2 : Ψ2 → Ψ1 by taking θπ22 to be the induced automorphism
of CX2. Note that

Kerπ2 6 CΨ2(X2) = CΨ2(X
∗
2) = CΨ2(X1) = CΨ2(W) = 1

by Lemma 4.1 (c), so π2 is monomorphic. Now BC1 6 Ψ2 by Lem-
ma 3.2 (b) and (c), and B0C0 = Ψ1 by Lemma 1.2(c). Using the
definitions of b and c1 in the proof of Lemmas 2.1 and 2.2, we
get (BC1)

π2 = B0C0 = Ψ1, so π2 is also epimorphic. Thus π2 is an
isomorphism, and therefore θ ∈ Ψ2 = BC1. ut
Theorem 4.4 [6, II (9.23)] Suppose 2 k.

(a) If r 6= 2, then Ψ = B∞ as in Lemma 2.3.
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(b) If r = 2, then Ψ = BC1 as in Lemma 2.4.

Proof — As in Theorem 4.3, we can prove (a) and (b) together,
as follows. Note that R is of type (i) by Proposition 3.4(a), and as
in Lemma 1.2(b) put Θ0 = Aut(CW) and Ψ0 = NΘ0(C). As in the Hy-
pothesis, given an element θ ∈ Ψ, define a homomorphism π : Ψ→ Ψ0
by taking θπ to be the induced automorphism of CW = CR/Z. In
case (a) we define B as in the proof of Lemma 2.3, and in both cases,
we get BC1 6 Ψ by Proposition 3.4 (b) and (c). Also B0C0 = Ψ0
by Lemma 1.2(c), and it follows from the definition of B in the proof
of Lemmas 2.3 and 2.4 that BπC0 = B0C0. Hence

Bπ 6 Ψπ 6 Ψ0 = B0C0 = BπC0,

so
Ψπ = Bπ(Ψπ ∩C0).

Also there is a nonsingular symplectic form f0(u, v) on W which is
preserved by Ψπ. Put W1 = Frk ⊗ FrW, and let f1 be the induced
symplectic form on W1, determined by taking

f1(λ⊗ u,µ⊗ v) = λµf0(u, v) (λ,µ ∈ Frk , u, v ∈W).

By Lemma 1.1(c) there exist an Frk-basis {ξ0, ξ1, . . . , ξk−1} of W1,
and a generator γ0 of F×

rk
, such that ξic0 = γr

i

0 ξi (i ∈ Zk). Then

ξic = γr
i
ξi where γ = γ

(rk−1)/q
0 is a primitive q-th root of 1, and

hence

f1(ξ0, ξi) = f1(ξ0c, ξic) = f1(γξ0,γr
i
ξi) = γ

ri+1f1(ξ0, ξi).

If 0 < i < k/2 then q - r2i − 1 = (ri − 1)(ri + 1), so γr
i+1 6= 1,

and similarly if k/2 < i < k then q - r2(k−i) − 1=(rk−i − 1)(rk−i + 1),
so γr

i+1 = γr
i(1+rk−i) 6= 1. It follows that f1(ξ0, ξi) = 0when i 6= k/2,

and therefore f1(ξ0, ξk/2) 6= 0 (because f1 is nonsingular). Now sup-
pose ci0 ∈ Ψ

π ∩C0, and note that

f1(ξ0, ξk/2) = f1(ξ0c
i
0, ξk/2c

i
0) = f1(γ

i
0ξ0,γir

k/2

0 ξk/2)

= γ
i(rk/2+1)
0 f1(ξ0, ξk/2),

and therefore rk/2 − 1 i. Using the definition of C1 in the proof
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of Lemmas 2.3 and 2.4, we deduce that ci0 ∈ C
rk/2−1
0 = Cπ1 . This

shows that Ψπ ∩C0 = Cπ1 , so

Ψπ = Bπ(Ψπ ∩C0) = (BC1)
π.

But π is monomorphic by Lemma 4.1(c), so it follows that Ψ = BC1.
This completes the proof in case (b), while in case (a) we
get Ψ = BC1 = B∞. ut

5 Fixed points and regular submodules

In this section we prove results corresponding to Lemma 1.2 (d),
when the elementary abelian group W is replaced by an extraspe-
cial group R. These results can be used in proving the permutability
of the injectors for certain Fitting classes in a finite solvable group [3].

Lemma 5.1 Suppose r is a prime number, and k is a natural number.
Let B0C0W be the group described in Lemma 1.2(a), and choose a gen-
erator γ0 of F×

rk
.

(a) Suppose h k, and let Π = {Frhγ
i
0 : i ∈ Zrk−1} be the set of 1-dimen-

sional Frh-subspaces of Frk . Then Π induces a partition of F×
rk

, with

Frhγ∩Frhδ =

{
Frhγ when γ ∈ Frhδ

0 when γ 6∈ Frhδ

and Π is permuted by B0C0.

(b) Suppose r 6= 2 and 2 k, and take Π = {Frk/2γ
i
0 : i ∈ Zrk−1},

Π0 = {Frk/2γ
i
0 : 2 i}, Π1 = {Frk/2γ

i
0 : 2 - i} and c1 = cr

k/2−1
0 ,

C1 = 〈c1〉 ' Crk/2+1. Then Π0 and Π1 are the C1-orbits in Π, with
Π0 ∪Π1 = Π and Π0 ∩Π1 = ∅.

(c) Suppose r = 2 and 2 k, and take Π = {F2k/2γ
i
0 : i ∈ Z2k−1}

and c1 = c2
k/2−1
0 , C1 = 〈c1〉 ' C2k/2+1. Then C1 permutes Π

regularly.

Proof — (a) This follows from Lemma 1.2(a).
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(b) Note that Frk/2γ
i
0c1 = Frk/2γ

i+(rk/2−1)
0 with 2 rk/2 − 1, so C1

stabilizes Π0 and Π1, and it remains to show that C1 permutes Π0
and Π1 transitively. Now the stabilizer in C0 of each Frk/2-subspa-

ce Frk/2γ
i
0 is C2 = Cr

k/2+1
0 ' Crk/2−1, and the highest common

factor of |C1| and |C2| is (rk/2 + 1, rk/2 − 1) = 2. Hence the stabi-

lizer in C1 of Frk/2γ
i
0 is C1 ∩ C2 = 〈γ(r

k−1)/2
0 〉 ' C2 (i ∈ Zrk−1),

so the C1-orbits in Π are of size (rk/2 + 1)/2. Since |Π| = rk/2 + 1
and |Π0| = |Π1| = (rk/2 + 1)/2, this proves the result.
(c) As before the stabilizer in C0 of F2k/2 is

C2 = C2
k/2+1
0 ' C2k/2−1,

but in this case the highest common factor of |C1| and |C2|

is (2k/2 + 1, 2k/2 − 1) = 1. Hence the stabilizer in C1 of F2 k/2

is C1 ∩C2 = 1, while |C1| = |Π| = 2k/2+ 1, so this proves the result. ut

Theorem 5.2 Suppose r is a prime number, and k is a natural number,
and let BC∞R be the group described in Lemma 2.1, with R = D1D2
and Xi = Di/R ′ (i = 1, 2).

(a) If L 6 BC∞ and CX1(L) 6= 0, then there is an element c ∈ C1 such
that L 6 Bc.

(b) There are d0,d1, . . . ,dk−1 ∈ D1 and e0, e1, . . . , ek−1∈D2 such
that R can be written as a central product

R = E0 ◦ E1 ◦ . . . ◦ Ek−1,

with |Ei| = r3, Eri = 1, E ′i = Z, and [Ei,Ej] = 1 when i 6= j,
where Ei = 〈di, ei〉 and dbi = di+1, ebi = ei+1 (i ∈ Zk).

Proof — With the notation of Lemma 2.1, take W = X1 ⊕ X2
with X1 = X2 = F+

rk
, and Z = F+

r , and define f0 : W ×W → Z by
taking f0(ξ1 ⊕ ξ2, η1 ⊕ η2) = ρ(ξ2η1) (ξi, ηi ∈ Xi). If also α,β ∈ Z,
then as in Lemma 1.4, R =W ×Z with

(ξ1 ⊕ ξ2,α)(η1 ⊕ η2,β) = ((ξ1 + η1)⊕ (ξ2 + η2),α+β+ ρ(ξ2η1)),
(ξ1 ⊕ ξ2,α)r = (0, 0),

[(ξ1 ⊕ ξ2,α), (η1 ⊕ η2,β)] = (0, ρ(ξ2η1 − ξ1η2)).
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(a) Note that L stabilizes X1, so L 6 NBC∞(X1) = BC1. But BC1X1 is
the affine semilinear group described in Lemma 1.2(a), so the result
follows from Lemma 1.2(d).
(b) Given ξ ∈ X1 and η ∈ X2, define an Fr-bilinear map

f1 : X1 ×X2 → Z

by taking f1(ξ, η) = −ρ(ξη). Then

[(ξ⊕ 0, 0), (0⊕ η, 0)] = (0, f1(ξ, η)),

and f1 is nonsingular, so X1 ' X∗2. Now let {λ0, λ1, . . . , λk−1} be a
normal Fr-basis of X1, with λi = λr

i

0 = λb
i

0 . Then there is a vec-
tor µ0 ∈ X2 such that

f1(λi,µ0) =

{
1 when i = 0
0 when i 6= 0

Taking µi = µr
i

0 and di = (λi ⊕ 0, 0), ei = (0⊕ µi, 0) (i ∈ Zk), we get

f1(λi,µj) =

{
1 when i = j
0 when i 6= j

[di, ej] =

{
(0, 1) when i = j
(0, 0) when i 6= j

and dbi = di+1, ebi = ei+1 (i ∈ Zk). ut
Notation — Write D8 for the dihedral group of order 8.

Theorem 5.3 Suppose k is a natural number, and let BC∞R be the group
described in Lemma 2.2, with R = D1D2 and Xi = Di/R ′ (i = 1, 2).

(a) If L 6 BC∞ and CX1(L) 6= 0, then there is an element c ∈ C1 such
that L 6 Bc.

(b) There are d0,d1, . . . ,dk−1 ∈ D1 and e0, e1, . . . , ek−1∈D2 such
that R can be written as a central product

R = E0 ◦ E1 ◦ . . . ◦ Ek−1,

where Ei = 〈di, ei〉 ' D8, [Ei,Ej] = 1 when i 6= j, and dbi = di+1,
ebi = ei+1 (i ∈ Zk).

Proof — We can copy the proof of Theorem 5.2 as follows. With
the notation of Lemma 2.2, put X1 =X2= F+

2k
, W = X1 ⊕X2, Z = F+

2 ,
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and define f0 :W ×W → Z by taking

f0(ξ1 ⊕ ξ2, η1 ⊕ η2) = ρ(ξ2η1) (ξi, ηi ∈ Xi).

If also α,β ∈ Z, then as in Lemma 1.4, R =W ×Z with

(ξ1 ⊕ ξ2,α)(η1 ⊕ η2,β) = ((ξ1 + η1)⊕ (ξ2 + η2),α+β+ ρ(ξ2η1)),
(ξ1 ⊕ ξ2,α)2 = (0, ρ(ξ1ξ2)),

[(ξ1 ⊕ ξ2,α), (η1 ⊕ η2,β)] = (0, ρ(ξ2η1 + ξ1η2)).

(a) Note that L 6 NBC∞(X0) = BC1. But BC1X1 is the affine semilin-
ear group described in Lemma 1.2(a), so the result follows from Lem-
ma 1.2(d).
(b) Given ξ ∈ X1 and η ∈ X2, define an F2-bilinear map

f1 : X1 ×X2 → Z

by taking f1(ξ, η) = ρ(ξη). Then

[(ξ⊕ 0, 0), (0⊕ η, 0)] = (0, f1(ξ, η)),

and f1 is nonsingular, so X1 ' X∗2. Now let {λ0, λ1, . . . , λk−1} be a
normal F2-basis of X1, with λi = λ2

i

0 = λb
i

0 . Then there is a vec-
tor µ0 ∈ X2 such that

f1(λi,µ0) =

{
1 when i = 0
0 when i 6= 0

Taking µi = µ2
i

0 , di = (λi ⊕ 0, 0) and ei = (0⊕ µi, 0) (i ∈ Zk), we get

f1(λi,µj) =

{
1 when i = j
0 when i 6= j

[di, ej] =

{
(0, 1) when i = j
(0, 0) when i 6= j

and dbi = di+1, ebi = ei+1 (i ∈ Zk). ut

Theorem 5.4 Suppose r is an odd prime number, and k = k0k1 is an even
number, where k0 is a power of 2 and 2 - k1. Let B∞R be the group described
in Lemma 2.3 and its proof.

(a) There are subgroups D1,D2 6 R with D1D2 = R, D1 ∩D2 = Z,
D ′i = 1 and |Di| = r

(k/2)+1. Moreover if W = R/Z and Xi = Di/Z



Extraspecially irreducible groups 59

are regarded as additive abelian groups, then W = X1 ⊕X2
and Xib

2k0
1 = Xi (i = 1, 2).

(b) If L 6 B∞ and CW(L) 6= 0, then there is an element c ∈ C1 such
that L 6 (B2k0)c.

(c) There are d0,d1, . . . ,d(k/2)−1 ∈D1 and e0, e1, . . . , e(k/2)−1∈D2
such that R = E0 ◦ E1 ◦ . . . ◦ E(k/2)−1 can be written as a central
product, with |Ei| = r

3, Eri = 1, E ′i = Z, and [Ei,Ej] = 1 when i 6= j,
where Ei = 〈di, ei〉 and

d
b
2k0
1
i = di+2k0 , e

b
2k0
1
i = ei+2k0 (i ∈ Zk/2).

Proof — (a) With the notation of Lemma 2.3, put W = F+
rk

, Z = F+
r ,

and define f0 :W ×W → Z by taking
f0(ω, ζ) = 1

2ρ(ωζ
rk/2 −ωr

k/2
ζ) (ω, ζ ∈W).

If also α,β ∈ Z, then as in Lemma 1.4, R =W ×Z with

(ω,α)(ζ,β) = (ω+ ζ,α+β+ f0(ω, ζ)),
(ζ,α)r = (0, 0),

[(ω,α), (ζ,β)] = (0, ρ(ωζr
k/2

−ωr
k/2
ζ)).

Now take

X1 = Img τ = Kerσ = {ω+ωr
k/2

: ω ∈ Frk}

= {ζ ∈ Frk : ζr
k/2

= ζ} = Frk/2 ,

X2 = Imgσ = Ker τ = {ω−ωr
k/2

: ω ∈ Frk}

= {ζ ∈ Frk : ζr
k/2

= −ζ},
Di = {(ξ,α) : ξ ∈ Xi, α ∈ Z} (i = 1, 2),

r1 =
rk − 1

rk0 − 1
= 1+ rk0 + r2k0 + . . .+ r(k1−1)k0 .

Then W = X1⊕X2, where X1 and X2 are 1-dimensional Frk/2-sub-
spaces of Frk , with Xib = Xi, and hence D1D2 = R,

D1 ∩D2 = Z, D ′i = 1 and |Di| = r
(k/2)+1 (i = 1, 2).
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Also 2 - r1 and

b
2k0
1 = b2k0c

r1(r
2k0−1)/2

0 = b2k0c
r1(r

k0−1)(rk0+1)/2
0

= b2k0c
(rk−1)(rk0+1)/2
0 = b2k0 ,

so Xib
2k0
1 = Xi (i = 1, 2).

(b) Note that the element y = bk1 = c
(rk/2+1)/2
1 is the unique in-

volution in B∞, with ωy = −ω (ω ∈ W). It follows that if 2 |L|,
then y ∈ L and CW(L) 6 CW(y) = 0. This proves that 2 - |L|,
while |B∞/Bk0C1| = k0 is a power of 2, so

L 6 Bk0C1 = (B2k0 ×Bk)C1 = B2k0C1.

Let γ0 be a generator of F×
rk

, and put δ = γr10 .

Take Π0 = {Frk/2γ
i
0 : 2 i} and Π1 = {Frk/2γ

i
0 : 2 - i}, and choose a

vector γ ∈ CW(L) − 0. Then Frk/2 ∈ Π0 and Frk/2δ ∈ Π1, and it fol-
lows from Lemma 5.1(b) that there exist elements λ ∈ Frk/2 ∪Frk/2δ
and c ∈ C1 such that λc = γ. Now b stabilizes Frk/2 , and moreover

δbk0 = γr1r
k0

0 = γ
r1(r

k0−1)+r1
0 = γr

k−1
0 γ

r1
0 = δ,

so bk0 also stabilizes Frk/2δ. On the other hand, the stabilizers in C1
of Frk/2 and Frk/2δ are both equal to C

(rk/2+1)/2
1 . It follows that

if 12(r
k/2 + 1) - j, then

Frk/2b
2ik0
1 c

j
1 = Frk/2b

2ik0c
j
1 = Frk/2c

j
1 6= Frk/2 ,

(Frk/2δ)b
2ik0
1 c

j
1 = (Frk/2δ)b

2ik0c
j
1 = (Frk/2δ)c

j
1 6= Frk/2δ,

and in particular b2ik01 c
j
1 6∈ CB2k0C1(λ). Thus

CB2k0C1
(λ) 6 B2k0C(rk/2+1)/2

1 = B2k0 ×C(rk/2+1)/2
1 ,

and hence

L 6 CB2k0C1(γ) = CB2k0C1(λ)
c 6 (B2k0)c ×C(rk/2+1)/2

1 .
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But 2 - |L|, while C(rk/2+1)/2
1 ' C2, and therefore L 6 (B2k0)c.

(c) If ξ ∈ X1, η ∈ X2, define an Fr-bilinear map f1 : X1 × X2 → Z by
taking f1(ξ, η) = −2ρ(ξη). Then [(ξ, 0), (η, 0)] = (0, f1(ξ, η)), and f1
is nonsingular, so X1 ' X∗2. Now let {λ0, λ1, . . . , λ(k/2)−1} be a nor-

mal Fr-basis of X1 = Frk/2 , with λi = λr
i

0 . Then there is a vec-
tor µ0 ∈ X2 such that

f1(λi,µ0) =

{
1 when i = 0
0 when i 6= 0

Taking µi = µr
i

0 and di = (λi, 0), ei = (µi, 0) (i ∈ Zk/2), we get

f1(λi,µj) =

{
1 when i = j
0 when i 6= j

[di, ej] =

{
(0, 1) when i = j
(0, 0) when i 6= j

Also dbi = di+1 and ebi = ei+1, so

d
b
2k0
1
i = di+2k0 and e

b
2k0
1
i = ei+2k0

for all i ∈ Zk/2. ut

Lemma 5.5 Suppose k = k0k1 is an even number, where k0 is a power
of 2 and 2 - k1. Let BC1R be the group described in Lemma 2.4.

(a) There are subgroups D1,D2 6 R with

D1D2 = R,D1 ∩D2 = Z,D ′i = 1 and |Di| = 2
(k/2)+1.

Moreover if W = R/Z and Xi = Di/Z are regarded as additive
abelian groups, then W = X1 ⊕X2 and Xibk0 = Xi (i = 1, 2).

(b) If P 6 L 6 BC1 with 2 - |P| and CW(P) = CW(L) 6= 0, then there is
an element c ∈ C1 such that L 6 (Bk0)c.

(c) There are d0,d1, . . . ,d(k/2)−1 ∈D1 and e0, e1, . . . , e(k/2)−1 ∈D2
such that R = E0 ◦ E1 ◦ . . . ◦ E(k/2)−1, can be written as a central
product, with |Ei| = 23, E2i 6 E

′
i = Z, and [Ti,Ej] = 1 when i 6= j,

where Ei = 〈di, ei〉 and db
k0

i = di+k0 ,

eb
k0

i = ei+k0 (i ∈ Zk/2).
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Proof — (a) With the notation of Lemma 2.4, put W = F+
2k

, Z = F+
2 ,

and define f0 :W ×W → Z by taking

f0(ω, ζ) = ρ(εωζ2
k/2

+ ε2
k/2
ω2

k/2
ζ) (ω, ζ ∈W).

If also α,β ∈ Z, then as in Lemma 1.4, R =W ×Z with

(ω,α)(ζ,β) = (ω+ ζ,α+β+ f0(ω, ζ)),

(ω,α)2 = (0, ρ(ω2
k/2+1)),

[(ω,α), (ζ,β)] = (0, ρ(ωζ2
k/2

+ω2
k/2
ζ)).

Note that F2k0 6 F2k but F2k0 � F2k/2 [10, (2.3)], and choose an
element δ ∈ F2k0 − F2k/2 . Take

X1 = Img τ = Ker τ = F2k/2 , X2 = F2k/2δ,
Di = {(ξ,α) : ξ ∈ Xi, α ∈ Z} (i = 1, 2).

Then W = X1 ⊕ X2, where X1 and X2 are 1-dimensional F2k/2-sub-
spaces of F2k , with X1b = X1, X2bk0 = X2 (because δ ∈ F2k0 ). Hence
D1D2 = R, D1 ∩D2 = Z, D ′i = 1 and |Di| = 2

(k/2)+1 for i = 1, 2.
(b) Take Π = {F2k/2γ

i
0 : i ∈ Z2k−1} (where γ0 is a generator of F×

2k
),

and choose a vector γ ∈ CW(L) − 0. By Lemma 5.1(c), there are ele-
ments λ ∈ F2k/2 and c ∈ C1 such that λc = γ. Now B stabilizes F2k/2 ,
and C1 permutes Π regularly, so if 2k/2 + 1 - j, then

F2k/2b
ic
j
1 = F2k/2c

j
1 6= F2k/2 ,

and in particular bicj1 6∈ CBC1(λ). Thus

P 6 CBC1(λc) = CBC1(λ)
c 6 Bc = (Bk0)c × (Bk1)c,

so P 6 (Bk0)c (because 2 - |P|). Hence

CW(Lc
−1
) = CW(Pc

−1
) > CW(Bk0) = F2k0 ,

and therefore L 6 CBC1(F2k0 )
c = (Bk0)c.

(c) If ξ ∈ X1, η ∈ X2, define an F2-bilinear map f1 : X1 × X2 → Z by
taking

f1(ξ, η) = ρ(ξη2
k/2

+ ξ2
k/2
η).
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Then [(ξ, 0), (η, 0)] = (0, f1(ξ, η)), and f1 is nonsingular, so X2'X∗1.
Now let {λ0, λ1, . . . , λ(k/2)−1} be a normal F2-basis of X1 = F2k/2 ,

with λi = λ2
i

0 . Since X2 ' X∗1, there is a unique dual F2-ba-
sis {µ0,µ1, . . . ,µ(k/2)−1} of X2, such that

f1(λi,µj) =

{
1 when i = j
0 when i 6= j

Moreover b ∈ AutR, and so

f1(λi,µjbk0) = f1(λi−k0b
k0 ,µjbk0) = f1(λi−k0 ,µj)

=

{
1 when i = j+ k0
0 when i 6= j+ k0

with µjb
k0 ∈ X2, and hence µjb

k0 = µj+k0 (j ∈ Zk/2). Now
put di = (λi, 0), ei = (µi, 0) (0 6 i < k0/2), and define the ele-
ments

dk0/2,d(k0/2)+1, . . . ,d(k/2)−1 and ek0/2, e(k0/2)+1, . . . , e(k/2)−1

by taking

di+jk0 = d
bjk0
i =

(
λi+jk0 , ρ(

∑jk0−1
l=0 ε2

l

1 λ
2k/2+1
i+jk0

)
)

,

ei+jk0 = e
bjk0
i =

(
µi+jk0 , ρ(

∑jk0−1
l=0 ε2

l

1 µ
2k/2+1
i+jk0

)
)

,

where 0 6 i < k0/2, 1 6 j < k1 and i + jk0 ∈ Zk/2. Note that
if 0 6 j < (k1 + 1)/2 then (2j)k0/2 6 i + jk0 < (2j + 1)k0/2, while
if (k1 + 1)/2 6 j < k1, then taking j ′ = j− (k1 + 1)/2, we get

i+ jk0 ≡ i+ (2j ′ + 1)k0/2 (mod k/2)

and
(2j ′ + 1)k0/2 6 i+ (2j ′ + 1)k0/2 < 2(j

′ + 1)k0/2.

Also

[di, ej] =

{
(0, 1) when i = j
(0, 0) when i 6= j

and db
k0

i = di+k0 and eb
k0

i = ei+k0 (i ∈ Zk/2). ut
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