

Advances in Group Theory and Applications
(C) 2016 AGTA - www.advgrouptheory.com/journal 2 (2016), pp. 1-12

ISSN: 2499-1287 DOI: $10.4399 / 97888548970141$

Complete Groups of Order $3 \mathbf{p}^{6}$

M. John Curran - Rex S. Dark
(Received Jan. 22, 2016; Accepted Feb. 19, 2016 - Communicated by M.R. Dixon)

Gewidmet Herrn Professor Dr. Hermann Heineken
zu seinem 8o. Geburtstag

Abstract

For each prime number p with $3 \mid p-1$, we construct a group of order $3 p^{5}$, whose automorphism group is a complete group of order $3 p^{6}$.

Mathematics Subject Classification (2010): 20D45
Keywords: finite group; complete group

1 Introduction

Several papers in the literature deal with the construction of complete groups of odd order ([2],[12],[13]). There are infinitely many such groups ([4],[8]), but the smallest hitherto published example seems to be one of order $5 \cdot 3^{12}$ constructed by Heineken [6]. We shall prove the following result.

Theorem Let p be a prime number with $3 \mid \mathrm{p}-1$. Then there is a group H with trivial centre $\mathbb{Z}(\mathrm{H})=1$, and automorphism group $\mathrm{G}=$ Aut H , such that H has order $|\mathrm{H}|=3 \mathrm{p}^{5}, \mathrm{G}$ has order $|\mathrm{G}|=3 \mathrm{p}^{6}$, and G is complete.

Remark (a) The group G is supersoluble, so this demonstrates the pertinence of Heineken's remark [6] that: "It remains to review supersoluble groups".
(b) In [5] Hegarty and MacHale pose some questions:
(i) What is the smallest order of a non-nilpotent group with an automorphism group of odd order?
(ii) What is the smallest order of a non-nilpotent automorphism group of odd order?
(iii) What is the smallest possible order of a complete group of odd order?

We conjecture that when $p=7$, the group H constructed here of order $3 \cdot 7^{5}$ provides an answer to (i), and we also conjecture that the group G of order $3 \cdot 7^{6}$ answers (ii). Moreover the second author has proved [3] that the answer to (iii) is indeed $3 \cdot 7^{6}$.
(c) Clearly the key to the Theorem is the Sylow p-subgroup of H , so its properties are of interest. Let p be an odd prime number, and suppose Q is a nontrivial p-group, with order $|Q|=p^{n} \neq 1$ and nilpotency class c. Define $\Phi=\mathrm{Q}^{\mathfrak{p}} \mathrm{Q}^{\prime}$ to be the Frattini subgroup of Q .

The arguments of Heineken and Liebeck [7, Sections 4 and 5] show that if either $n \in\{1,2,3,4\}$, or $n=5$ and $c \in\{1,2\}$, then there exist an automorphism $\theta \in$ Aut Q, and a nontrivial element $g \in Q-\Phi$, such that $g^{\theta}=g^{-1}$. In this case θ has even order, so $2||A u t Q|$, and Q is an unlikely candidate for involvement in a complete group of odd order.

Next write \mathbb{F}_{p} for the field of order p, and let k be an element in the multiplicative group $\mathbb{F}_{p}^{\times}=\mathbb{F}_{p}-0$. Define $P=\left\langle x, x_{1}\right\rangle$ to be the group with defining relations (1) below. The first author has proved that if $n=5$ and $c \in\{3,4\}$, then again Q has an automorphism which inverts an element of $Q-\Phi$, except when $p \geqslant 5$ and $Q=P$ for some value of k [1, Theorems 2 and 3]. On the other hand [1, Theorem 4]

$$
\mid \text { Aut } P \left\lvert\,= \begin{cases}p^{6} & \text { when } p \geqslant 5 \text { and } 3 \nmid p-1 \\ 3 p^{6} & \text { when } 3 \mid p-1\end{cases}\right.
$$

Taking $p=7$, we get $|A u t P|=3 \cdot 7^{6}$, so Aut P is an alternative conjectural answer to the question (ii) above (but is not complete).

Finally let k_{0} be a primitive ($p-1$)-th root of 1 modulo p^{2}, and put $y=x^{k_{0}^{i}}$ and $y_{1}=x_{1}^{k_{0}^{2 i}}$. Then $x=y^{k_{0}^{-i}}$ and $x_{1}=y_{1}^{k_{0}^{-2 i}}$, so $P=\left\langle y, y_{1}\right\rangle$, and using (1), together with Lemma (f) below, we get the relations

$$
\begin{gathered}
y^{p}=y_{1}^{p^{2}}=\left[y_{1}^{p}, y\right]=1 \\
y_{1}^{k_{0}^{3 i} k p}=\left[y_{1}, y, y_{1}\right]=\left[y_{1}, y, y, y\right] .
\end{gathered}
$$

If $p \geqslant 5$ and $3 \nmid p-1$, then $\mathbb{F}_{p}^{\times}=\left\langle\mathrm{k}_{0}^{3}\right\rangle$, and hence the groups P are isomorphic to each other for all values of k. Similarly if $3 \mid p-1$, then

$$
\mathbb{F}_{p}^{\times}=\left\langle k_{0}^{3}\right\rangle \cup\left\langle k_{0}^{3}\right\rangle k_{0} \cup\left\langle k_{0}^{3}\right\rangle k_{0}^{2},
$$

and hence each group P is isomorphic to one of the 3 groups got by taking $k=1, k_{0}$ and k_{0}^{2}. Moreover, the list compiled by James [10] indicates that no two of these 3 groups are isomorphic to each other. Construction - As above, let p be a prime number with $p \geqslant 5$, and choose an element $k \in \mathbb{F}_{\mathfrak{p}}^{\times}=\mathbb{F}_{\mathfrak{p}}-0$. Take $P=\left\langle x, x_{1}\right\rangle$ with defining relations

$$
\left.\begin{array}{rl}
x^{p} & =x_{1}^{p^{2}}=\left[x_{1}^{p}, x\right]=1, \tag{1}\\
x_{1}^{k p} & =\left[x_{1}, x, x_{1}\right]=\left[x_{1}, x, x, x\right]
\end{array}\right\}
$$

Write P_{i} for the i-th term of the lower central series of P, and make the inductive definition

$$
x_{i}=\left[x_{i-1}, x\right] \quad(i \geqslant 2) .
$$

Applying Jacobi's identity in the Lie ring $\bigoplus_{i \geqslant 1} P_{i} / P_{i+1}$ [9, III Aufgabe 8 (3), page 268], and working modulo P_{5}, we get

$$
\begin{aligned}
1 & \equiv\left[x_{1}, x,\left[x_{1}, x\right]\right] \cdot\left[x,\left[x_{1}, x\right], x_{1}\right] \cdot\left[x_{1}, x, x_{1}, x\right] \\
& \equiv 1 \cdot\left[x_{1}, x, x, x_{1}\right]^{-1} \cdot\left[x_{1}, x, x_{1}, x\right] \quad\left(\bmod P_{5}\right) .
\end{aligned}
$$

Using the relations (1), together with this congruence, we deduce that

$$
\begin{aligned}
& \mathrm{P}=\left\langle x, x_{1}\right\rangle \mathrm{P}_{2}, \\
& \mathrm{P}_{2}=\left\langle\left[\mathrm{x}_{1}, x\right]\right\rangle \mathrm{P}_{3}=\left\langle x_{2}\right\rangle \mathrm{P}_{3}, \\
& \mathrm{P}_{3}=\left\langle\left[\mathrm{x}_{1}, x, x\right],\left[x_{1}, x, x_{1}\right]\right\rangle \mathrm{P}_{4}=\left\langle\left[x_{1}, x, x\right]\right\rangle \mathrm{P}_{4}=\left\langle x_{3}\right\rangle \mathrm{P}_{4},
\end{aligned}
$$

$$
\begin{aligned}
P_{4} & =\left\langle\left[x_{1}, x, x, x\right],\left[x_{1}, x, x, x_{1}\right]\right\rangle P_{5}=\left\langle\left[x_{1}, x, x, x\right],\left[x_{1}, x, x_{1}, x\right]\right\rangle P_{5} \\
& =\left\langle\left[x_{1}, x, x, x\right]\right\rangle P_{5}=\left\langle x_{4}\right\rangle P_{5} \\
P_{5} & =\left\langle\left[x_{1}, x, x, x, x\right],\left[x_{1}, x, x, x, x_{1}\right]\right\rangle P_{6}=P_{6} .
\end{aligned}
$$

Since $\mathrm{P}^{\prime} / \mathrm{P}_{3}$ is cyclic, this implies that $\mathrm{P}^{\prime \prime} \leqslant\left[\mathrm{P}^{\prime}, \mathrm{P}_{3}\right] \leqslant \mathrm{P}_{5}=1$. Moreover $P_{i}^{p} \leqslant P_{i+1}(i \geqslant 1)$, so P is a group of maximal class [9, III (14.1)]. We shall use the following well known results.

Proposition (Rose [11, Corollary 1.2(iii)]) Let H be a finite group with $\mathrm{Z}(\mathrm{H})=1$, and suppose $\mathrm{H} \leqslant \mathrm{G} \leqslant$ Aut H . Let π be a set of prime numbers, and suppose $\mathrm{H}=\mathrm{O}^{\pi}(\mathrm{G})$ is the smallest normal subgroup of G such that G / H is a π-group. Then Aut $\mathrm{G}=\mathrm{N}_{\text {Aut }} \mathrm{H}(\mathrm{G})$.

Lemma Suppose P is a group with $\mathrm{P}^{\prime \prime}=1$, and put $\mathrm{P}^{*}=\mathrm{P} / \mathrm{P}^{\prime}$. Let $*: \mathrm{P} \rightarrow \mathrm{P}^{*}$ be the natural homomorphism, and form the group ring $\mathbb{Z} \mathrm{P}^{*}$. Suppose that $r_{1}, r_{2}, \ldots, r_{n}$ are natural numbers and $y_{1}, y_{2}, \ldots, y_{n}$ are elements of P , and take $\nu_{i}=y_{i}^{*}-1 \in \mathbb{Z} \mathrm{P}^{*}(1 \leqslant i \leqslant n)$.
(a) Then P^{\prime} can be regarded as a $\mathbb{Z} \mathrm{P}^{*}$-module.
(b) If $P=\left\langle x, x_{1}\right\rangle$, then $P^{\prime}=\left\{\left[x_{1}, x\right]^{S}: S \in \mathbb{Z} P^{*}\right\}$.
(c) If $z \in \mathrm{P}^{\prime}$ and $\mathrm{S} \in \mathbb{Z} \mathrm{P}^{*}$, then

$$
\left[z^{S}, y_{1}, y_{2}, \ldots, y_{n}\right]=\left[z, y_{1}, y_{2}, \ldots, y_{n}\right]^{S}
$$

(d) If r is a natural number, it follows that $\left[\mathrm{y}_{1}^{\mathrm{r}}, \mathrm{y}_{2}\right]=\left[\mathrm{y}_{1}, \mathrm{y}_{2}\right]^{\mathrm{S}_{1}}$ and $\left[y_{1}, y_{2}^{r}\right]=\left[y_{1}, y_{2}\right]^{s_{2}}$, with

$$
S_{i}=1+y_{i}+y_{i}^{2}+\ldots+y_{i}^{r-1} \quad(i=1,2)
$$

(e) If $n \geqslant 2$, then $\left[y_{1}^{r_{1}}, y_{2}^{r_{2}}, \ldots, y_{n}^{r_{n}}\right]=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{s_{1} s_{2} \ldots s_{n}}$, with

$$
S_{i}=\sum_{s=1}^{r_{i}}\binom{r_{i}}{s} v_{i}^{s-1} \quad(1 \leqslant \mathfrak{i} \leqslant n) .
$$

(f) If $\mathrm{n} \geqslant 2$, and $\left[\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right]$ is in the centre $\mathrm{Z}(\mathrm{P})$, then

$$
\left[y_{1}^{r_{1}}, y_{2}^{r_{2}}, \ldots, y_{n}^{r_{n}}\right]=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{r_{1} r_{2} \ldots r_{n}} .
$$

Proof - (a) This holds because $\mathrm{P}^{\prime} \leqslant \mathrm{C}_{\mathrm{P}}\left(\mathrm{P}^{\prime}\right)$.
(b) This follows from (a), since P^{\prime} is the normal subgroup of P generated by $\left[\mathrm{x}_{1}, \mathrm{x}\right]$.
(c) Using (a) we get

$$
\begin{aligned}
{\left[z^{\mathrm{S}}, y_{1}, y_{2}, \ldots, y_{n}\right] } & =z^{S v_{1} v_{2} \ldots v_{n}}=z^{v_{1} v_{2} \ldots v_{n} S} \\
& =\left[z, y_{1}, y_{2}, \ldots, y_{n}\right]^{\mathrm{S}} .
\end{aligned}
$$

(d) This can be proved inductively, using the fact that if $r \geqslant 2$, then

$$
\begin{aligned}
& {\left[y_{1}^{r}, y_{2}\right]=\left[y_{1}, y_{2}\right]^{y_{1}^{r-1}}\left[y_{1}^{r-1}, y_{2}\right],} \\
& {\left[y_{1}, y_{2}^{r}\right]=\left[y_{1}, y_{2}^{r-1}\right]\left[y_{1}, y_{2}\right]^{y_{2}^{r-1}} .}
\end{aligned}
$$

(e) Using (c) and (d) we get the required equation, where

$$
\begin{aligned}
S_{i} & =1+y_{i}+y_{i}^{2}+\ldots+y_{i}^{r_{i}-1}=\frac{y_{i}^{r_{i}}-1}{y_{i}-1} \\
& =\frac{\left(1+v_{i}\right)^{r_{i}}-1}{v_{i}}=\sum_{s=1}^{r_{i}}\binom{r_{i}}{s} v_{i}^{s-1} .
\end{aligned}
$$

(f) This is a consequence of (e).

2 Proofs

Construction - Use the notation of the construction above, and as in the Lemma, take

$$
u=x^{*}-1 \in \mathbb{Z} \mathrm{P}^{*}=\mathbb{Z}\left(\mathrm{P} / \mathrm{P}^{\prime}\right)
$$

Note that if $\mathfrak{i} \in\{2,3,4\}$ and $\mathfrak{i}+\mathfrak{j} \geqslant 5$, then $x_{i}=x_{2}^{\mathfrak{u}^{i-2}}$ and $x_{i}^{u^{j}}=1$. Using Lemma (e), we get

$$
\begin{aligned}
& 1=\left[x_{3}, x^{p}\right]=\left[x_{3}, x\right]^{p}=\left[x_{2}, x\right]^{p u}=x_{4}^{p}, \\
& 1=\left[x_{2}, x^{p}\right]=\left[x_{2}, x\right]^{p+p(p-1) u / 2}=\left[x_{2}, x\right]^{p}=\left[x_{1}, x\right]^{p u}=x_{3}^{p}, \\
& 1=\left[x_{1}, x^{p}\right]=\left[x_{1}, x\right]^{p+p(p-1) \mathfrak{u} / 2+\mathfrak{p}(p-1)(p-2) \mathfrak{u}^{2} / 6}=\left[x_{1}, x\right]^{p}=x_{2}^{p},
\end{aligned}
$$

so $P_{2}^{p}=\left\langle x_{2}^{p}, x_{3}^{p}, x_{4}^{p}\right\rangle=1$. As in Lemma (a), it follows that P^{\prime} can be regarded as an $\mathbb{F}_{\mathfrak{p}} P^{*}$-module.

Now the relations (1) imply that P can be constructed as follows. Write \mathbb{C}_{n} for the cyclic group of order n, and let $X_{0}=\left\langle x_{1}, x_{2}\right\rangle$ be a nonabelian group of order p^{3} and exponent p^{2}, with $\left\langle x_{1}\right\rangle \simeq \mathbb{C}_{p^{2}}$, $\left\langle x_{2}\right\rangle \simeq \mathbb{C}_{p}$ and $x_{1}^{x_{2}}=x_{1}^{1-k p}$. Take $X_{3}=\left\langle x_{3}\right\rangle \simeq \mathbb{C}_{p}$, and form the direct product $M=X_{0} \times X_{3}$. Put $x_{4}=\left[x_{2}, x_{1}\right]=x_{1}^{k p}$, and $N=\left\langle x_{2}, x_{3}, x_{4}\right\rangle$.

Next take $X=\langle\chi\rangle$, and make x act on the elements x_{i} by taking $x_{i}^{\chi}=x_{i} x_{i+1}(i=1,2,3)$. Using a well known relation in groups of class 2 [9, III (1.3.b)], we get

$$
\begin{gathered}
\left(x_{1} x_{2}\right)^{k p}=x_{1}^{k p} x_{2}^{k p}\left[x_{2}, x_{1}\right]^{k p(k p-1) / 2}=x_{1}^{k p}, \\
\left(x_{1}^{x}\right)^{p^{2}}=\left(x_{1} x_{2}\right)^{p^{2}}=1, \\
\left(x_{j}^{\chi}\right)^{p}=\left(x_{j} x_{j+1}\right)^{p}=1 \quad(j=2,3), \\
{\left[x_{2}^{x}, x_{1}^{x}\right]=\left[x_{2} x_{3}, x_{1} x_{2}\right]=\left[x_{2}, x_{1}\right]=x_{1}^{k p}=\left(x_{1} x_{2}\right)^{k p}=\left(x_{1}^{x}\right)^{k p},} \\
{\left[x_{3}^{\chi}, x_{i}^{x}\right]=\left[x_{3} x_{4}, x_{i} x_{i+1}\right]=1 \quad(i=1,2) .}
\end{gathered}
$$

This shows that x preserves the relations of M, so $x \in \operatorname{Aut} M$, and we form the corresponding semidirect product $\mathrm{L}=\mathrm{XM}$.

Then $\mathrm{L}^{\prime \prime}=\mathrm{N}^{\prime}=1$, and N is an $\mathbb{F}_{\mathfrak{p}}\left(\mathrm{L} / \mathrm{L}^{\prime}\right)$-module, as in Lemma (a). Let $*: \mathrm{L} \rightarrow \mathrm{L} / \mathrm{L}^{\prime}$ be the natural homomorphism, and take $u=x^{*}-1 \in \mathbb{F}_{\mathfrak{p}} L^{*}$. Now

$$
x_{4}^{x}=\left(x_{1} x_{2}\right)^{k p}=x_{1}^{k p}=x_{4},
$$

and hence $x_{i+1}^{\mathfrak{u}}=1$ when $\mathfrak{i} \in\{1,2,3\}$ and $\mathfrak{j} \geqslant 3$. Applying Lemma (e), we get

$$
\left[x_{i}, x^{p}\right]=x_{i+1}^{p+p(p-1) u / 2+p(p-1)(p-2) \mathfrak{u}^{2} / 6}=1 \quad(\mathfrak{i}=1,2,3)
$$

because $p \geqslant 5$. Thus $X \simeq \mathbb{C}_{p}$, so $P=L$, and therefore $|P|=p^{5}$.
Now suppose $3 \mid p-1$ and let k_{1} be a primitive cube root of 1 modulo p^{2}. Take $A=\langle a\rangle \simeq C_{3}$, and make a act on x and x_{1} by taking

$$
x^{a}=x^{k_{1}}, \quad x_{1}^{a}=x_{1}^{k_{1}^{2}} .
$$

Using the relations (1), together with Lemma (f) (and copying the calculation at the end of Remark (c) above), we get

$$
\begin{gathered}
\left(x_{1}^{a}\right)^{k p}=\left(x_{1}^{k p}\right)^{k_{1}^{2}} \\
{\left[x_{1}^{a}, x^{a}, x_{1}^{a}\right]=\left[x_{1}^{k_{1}^{2}}, x^{k_{1}}, x_{1}^{k_{1}^{2}}\right]=\left[x_{1}, x, x_{1}\right]^{k_{1}^{2}}} \\
{\left[x_{1}^{a}, x^{a}, x^{a}, x^{a}\right]=\left[x_{1}^{k_{1}^{2}}, x^{k_{1}}, x^{k_{1}}, x^{h}\right]=\left[x_{1}, x, x, x\right]^{k_{1}^{2}}}
\end{gathered}
$$

and hence $\left(x_{1}^{a}\right)^{k p}=\left[x_{1}^{a}, x^{a}, x_{1}^{a}\right]=\left[x_{1}^{a}, x^{a}, x^{a}, x^{a}\right]$. It is also clear
that $\left(x^{\mathfrak{a}}\right)^{\mathfrak{p}}=\left(x_{1}^{\mathfrak{a}}\right)^{p^{2}}=\left[\left(x_{1}^{\mathfrak{a}}\right)^{\mathfrak{p}}, x^{\mathfrak{a}}\right]=1$, so a preserves the relations (1). Thus $a \in$ Aut P, and we form the corresponding semidirect product $\mathrm{H}=\mathrm{AP}$, with

$$
|\mathrm{H}|=|\mathrm{A}| \cdot|\mathrm{P}|=3 \mathrm{p}^{5} .
$$

Next take the additive abelian groups

$$
U=\langle x\rangle P^{\prime} / P^{\prime}, \quad U_{i}=\left\langle x_{i}\right\rangle P_{i+1} / P_{i+1} \quad(i=1,2,3,4) .
$$

Let $W_{i}=\mathbb{F}_{p} w_{i}$ be a 1-dimensional vector space over $\mathbb{F}_{\mathfrak{p}}$, and make W_{i} a (right) $\mathbb{F}_{p} \mathcal{A}$-module by taking

$$
w_{i} a=k_{1}^{i} w_{i} \quad(i=0,1,2) .
$$

Since $x_{1}^{a}=x_{1}^{k_{1}^{2}}$, we can use induction to show that

$$
x_{i}^{a}=\left[x_{i-1}, x\right]^{a} \equiv\left[x_{i-1}^{k_{1}^{i}}, x^{k_{1}}\right] \equiv x_{i}^{k_{1}^{i+1}} \quad\left(\bmod P_{i+1}\right) \quad(i=2,3,4),
$$

and hence

$$
\left.\begin{array}{rl}
P / P^{\prime} & =\mathrm{u} \oplus \mathrm{U}_{1} \simeq \mathrm{~W}_{1} \oplus \mathrm{~W}_{2} \tag{2}\\
\mathrm{P}_{\mathrm{i}} / \mathrm{P}_{\mathrm{i}+1} & =\mathrm{u}_{\mathrm{i}} \simeq \mathrm{~W}_{\mathrm{i}-2} \quad(\mathrm{i}=2,3,4)
\end{array}\right\}
$$

Finally put

$$
\mathrm{G}=\operatorname{Aut} \mathrm{H}, \quad \Gamma=\mathrm{C}_{\mathrm{G}}\left(\mathrm{H} / \mathrm{P}^{\prime}\right) .
$$

Proof of the Theorem - It follows from (2) that

$$
Z(H)=1, \quad H=\operatorname{Inn} H \leqslant G,
$$

where Inn H is the group of inner automorphisms of H . We next calculate the automorphism group G / Γ induced on $\mathrm{H} / \mathrm{P}^{\prime}$, and we claim that

$$
\begin{equation*}
\mathrm{G} / \Gamma=\operatorname{Inn}\left(\mathrm{H} / \mathrm{P}^{\prime}\right)=\mathrm{H} / \mathrm{P}^{\prime} . \tag{3}
\end{equation*}
$$

To prove this, suppose $\theta \in G$. By Sylow's theorem, there is an element $g \in H$ such that $A^{\theta}=A^{g}$, and replacing θ by θg^{-1}, we may assume that $A^{\theta}=A$. Then θ acts on P / P^{\prime}, and permutes the set of $\mathbb{F}_{\mathfrak{p}} A$-submodules $\left\{U, U_{1}\right\}$; more precisely, either $a^{\theta}=a$ and θ stabilises U and U_{1}, or else $a^{\theta}=a^{2}$ and θ interchanges U and U_{1}. But $\left\langle\chi_{1}\right\rangle \mathrm{P}^{\prime}=\Omega_{1}(\mathrm{P})$ is the subgroup generated by the elements of order p in P, which is a characteristic subgroup of P, so the first alternative must apply. Moreover there are integers r, s and ele-
ments $y, z \in P^{\prime}$, such that $x^{\theta}=x^{r} y$ and $x_{1}^{\theta}=x_{1}^{s} z$. Then the relations (1) imply that $s \equiv r s^{2} \equiv r^{3} s(\bmod p)$, and hence $r^{3} \equiv r s \equiv 1$ $(\bmod p)$ [1, page 303]. This means that θ acts on P / P^{\prime} in the same way as an element of A, which completes the proof of (3).

It follows from (2) that $\mathrm{H} \cap \Gamma=\mathrm{P}^{\prime}$, and using (3) we get

$$
\begin{gathered}
\mathrm{G} / \Gamma=\mathrm{H} / \mathrm{P}^{\prime}=\mathrm{H} / \mathrm{H} \cap \Gamma \simeq \mathrm{H} \Gamma / \Gamma, \quad \mathrm{G}=\mathrm{H} \Gamma \\
\mathrm{G} / \mathrm{P}^{\prime}=\mathrm{H} \Gamma / \mathrm{P}^{\prime}=\left(\mathrm{H} / \mathrm{P}^{\prime}\right) \times\left(\Gamma / \mathrm{P}^{\prime}\right), \quad \mathrm{G} / \mathrm{H} \simeq \Gamma / \mathrm{P}^{\prime}
\end{gathered}
$$

But $\mathrm{P}^{\prime}=\Phi(\mathrm{H})$ is the Frattini subgroup of H, and hence Γ is a p-group [9, III (3.18)], so G / H is a p-group. Also $P=[P, A]$, and therefore $H=\left\langle A^{H}\right\rangle=O^{p}(G)$. Now the Proposition implies that G is complete, and it remains to find $|\mathrm{G}|$.

To do this, we investigate Γ. Since $A P^{\prime} \triangleleft А \Gamma$, it follows from Frattini's argument [9, I (7.8)] that

$$
\begin{gathered}
A \Gamma=A P^{\prime} N_{A \Gamma}(A)=A P^{\prime} N_{\Gamma}(A)=A P^{\prime} C_{\Gamma}(A), \\
\Gamma=P^{\prime} C_{\Gamma}(A),
\end{gathered}
$$

so it suffices to study $C_{\Gamma}(A)$. Now P^{\prime} is elementary abelian, and Maschke's theorem [9, I (17.7)] implies that

$$
P^{\prime}=Z_{0} \times P_{3}=Z_{0} \times Z_{1} \times Z_{2}
$$

where Z_{i} is normalised by A, and is $\mathbb{F}_{p} A$-isomorphic to $W_{i}(i=0,1,2)$. Then $Z_{0}=C_{P^{\prime}}(A) \leqslant C_{\Gamma}(A)$. Moreover there is an automorphism $\gamma_{1} \in C_{\Gamma}(A)$ defined by the equations

$$
a^{\gamma_{1}}=a, \quad x^{\gamma_{1}}=x, \quad x_{1}^{\gamma_{1}}=x_{1}^{1+k p}=x_{1} x_{4}
$$

with $\Gamma_{1}=\left\langle\gamma_{1}\right\rangle \simeq \mathbb{C}_{p}$ and $\left[\mathrm{P}^{\prime}, \Gamma_{1}\right]=\mathrm{P}^{\prime} \cap \Gamma_{1}=1$. We claim that

$$
\begin{equation*}
\mathrm{C}_{\Gamma}(A)=\mathrm{Z}_{0} \Gamma_{1} \simeq \mathbb{C}_{p} \times \mathbb{C}_{p} \tag{4}
\end{equation*}
$$

Clearly $Z_{0} \Gamma_{1} \leqslant C_{\Gamma}(A)$. To prove the opposite inclusion, suppose $\gamma \in C_{\Gamma}(A)$, and consider the map $\delta: P \rightarrow P^{\prime}$ defined by taking

$$
y^{\delta}=[y, \gamma]=y^{-1} y^{\gamma} \quad(y \in P)
$$

If $y_{1}, y_{2} \in P$ then

$$
\begin{aligned}
\left(y_{1} y_{2}\right)^{\delta} & =\left[y_{1} y_{2}, \gamma\right]=\left[y_{1}, \gamma\right]^{y_{2}}\left[y_{2}, \gamma\right] \\
& \equiv\left[y_{1}, \gamma\right]\left[y_{2}, \gamma\right]=y_{1}^{\delta} y_{2}^{\delta}\left(\bmod P_{3}\right)
\end{aligned}
$$

$$
y_{1}^{a \delta}=\left[y_{1}^{a}, \gamma\right]=\left[y_{1}, \gamma\right]^{a}=y_{1}^{\delta a},
$$

and hence δ induces an $\mathbb{F}_{\mathrm{p}} A$-homomorphism $\mathrm{P} / \mathrm{P}^{\prime} \rightarrow \mathrm{P}^{\prime} / \mathrm{P}_{3}$. But (2) implies that $P / P^{\prime} \simeq W_{1} \oplus W_{2}$ and $P^{\prime} / P_{3} \simeq W_{0}$, so the only such homomorphism is the zero map, and therefore $P^{\delta} \leqslant P_{3}$.

Then the same calculation shows that δ induces an $\mathbb{F}_{\mathfrak{p}} \mathcal{A}$-homomorphism $\delta_{1}: P / P^{\prime} \rightarrow P_{3} / P_{4}$. Now (2) implies that

$$
\mathrm{P} / \mathrm{P}^{\prime}=\mathrm{U} \oplus \mathrm{U}_{1},
$$

with

$$
\operatorname{Hom}_{\mathbb{F}_{\mathfrak{p}} A}\left(\mathrm{U}_{1}, \mathrm{P}_{3} / \mathrm{P}_{4}\right)=\operatorname{Hom}_{\mathbb{F}_{\mathfrak{p}} \mathcal{A}}\left(W_{2}, W_{1}\right)=0,
$$

and therefore

$$
\delta_{1} \in \operatorname{Hom}_{\mathbb{F}_{\mathfrak{p}} \mathcal{A}}\left(U, P_{3} / P_{4}\right)=\operatorname{End}_{\mathbb{F}_{\mathfrak{p}} \mathcal{A}} W_{1}=\mathbb{F}_{p}
$$

[9, $\mathrm{V}(4.3)]$. But it follows from (1) that $\left[x_{1}, x_{2}\right]=x_{4}^{-1} \in P_{4}$, and $\left[x, x_{2}\right]=x_{3}^{-1} \in x_{3}^{-1} P_{4}$. Hence there exist an integer r, and an element $z \in Z_{0}$, such that

$$
\left(y P^{\prime}\right)^{\delta_{1}}=[y, \gamma] \mathrm{P}_{4}=\left[y, x_{2}^{r}\right] \mathrm{P}_{4}=[y, z] \mathrm{P}_{4} \quad(y \in P) .
$$

Replacing γ by γz^{-1}, we may assume that $\mathrm{P}^{\delta} \leqslant \mathrm{P}_{4}$.
Finally we now get $\delta \in \operatorname{Hom}_{\mathbb{F}_{\mathfrak{p}} A}\left(P / P^{\prime}, P_{4}\right)$, and a similar argument shows that there is an integer s such that

$$
y^{\delta}=[y, \gamma]=\left[y, \gamma_{1}^{s}\right] \quad(y \in P)
$$

This means that $\gamma=\gamma_{1}^{\mathrm{s}} \in \Gamma_{1}$, which completes the proof of (4). Therefore

$$
\mathrm{G}=\mathrm{H} \Gamma=\mathrm{HC}_{\Gamma}(\mathrm{A})=\mathrm{H} \Gamma_{1}, \quad|\mathrm{G}|=|\mathrm{H}| \cdot\left|\Gamma_{1}\right|=3 \mathrm{p}^{6} .
$$

Remark We can describe $Z_{0}=C_{P^{\prime}}(A)$ more explicitly as follows. As in Lemma (b), the elements of P^{\prime} can be written as expressions of the form x_{2}^{S}, where S is in the group algebra $\mathbb{F}_{p} P^{*}$. As before, put

$$
\mathfrak{u}=x^{*}-1, \quad u_{1}=x_{1}^{*}-1,
$$

and note that the equations (1) imply that the group algebra can be replaced by the quotient got by imposing the relations

$$
\begin{equation*}
u_{1}=u^{2}, \quad u^{3}=u u_{1}=u_{1}^{2}=0 . \tag{5}
\end{equation*}
$$

We seek generators z_{i} for the subgroups Z_{i}.
Since $x_{4}^{a}=x_{4}^{k_{1}^{2}}$, we can take $z_{2}=x_{4}$, with $Z_{2}=\left\langle z_{2}\right\rangle$. Using (5) and Lemma (e), we get $x_{3}^{\mathrm{a}}=\left[x_{1}^{k_{1}^{2}}, x^{k_{1}}, x^{k_{1}}\right]=x_{3}^{S}=x_{2}^{u \mathrm{~S}}$, where

$$
\begin{gathered}
S=k_{1}^{2}\left(k_{1}+\binom{k_{1}}{2} u\right)^{2}=k_{1}^{2}\left(k_{1}^{2}+2 k_{1}\binom{k_{1}}{2} u\right) \\
=k_{1}+k_{1}\left(k_{1}-1\right) u,
\end{gathered}
$$

so $x_{3}^{a}=x_{3}^{k_{1}} x_{4}^{k_{1}^{2}-k_{1}}$. Put

$$
z_{1}=x_{3} x_{4}^{-1}, \quad \text { with } \quad\left\{\begin{array}{l}
{\left[z_{1}, x\right]=x_{4}=z_{2}} \\
{\left[z_{1}, x_{1}\right]=1}
\end{array}\right.
$$

Then $z_{1}^{a}=x_{3}^{k_{1}} x_{4}^{k_{1}^{2}-k_{1}} \cdot x_{4}^{-k_{1}^{2}}=x_{3}^{k_{1}} x_{4}^{-k_{1}}=z_{1}^{k_{1}}$, and therefore $Z_{1}=\left\langle z_{1}\right\rangle$.
Using (5) and Lemma (e) again, we get $x_{2}^{a}=\left[x_{1}^{k_{1}^{2}}, x^{k_{1}}\right]=x_{2}^{\top}$, where

$$
\begin{gathered}
T=\left(k_{1}^{2}+\binom{k_{1}^{2}}{2} u_{1}\right)\left(k_{1}+\binom{k_{1}}{2} u+\binom{k_{1}}{3} u^{2}\right) \\
=1+\frac{k_{1}-1}{2} u+\frac{\left(k_{1}-1\right)\left(k_{1}-2\right)}{6} u^{2}+\frac{k_{1}^{2}-1}{2} u_{1} \\
=1+\frac{k_{1}-1}{2} u+\frac{4 k_{1}^{2}-3 k_{1}-1}{6} u^{2}
\end{gathered}
$$

so $x_{2}^{a}=x_{2} x_{3}^{\left(k_{1}-1\right) / 2} x_{4}^{\left(4 k_{1}^{2}-3 k_{1}-1\right) / 6}$. Put

$$
z_{0}=x_{2} x_{3}^{-1 / 2} x_{4}^{-1 / 6}, \quad \text { with } \quad\left\{\begin{array}{l}
{\left[z_{0}, x\right]=x_{3} x_{4}^{-1 / 2}=z_{1} z_{2}^{1 / 2}} \\
{\left[z_{0}, x_{1}\right]=x_{4}=z_{2}}
\end{array}\right.
$$

Then

$$
\begin{gathered}
z_{0}^{a}=x_{2} x_{3}^{\left(k_{1}-1\right) / 2} x_{4}^{\left(4 k_{1}^{2}-3 k_{1}-1\right) / 6} \cdot x_{3}^{-k_{1} / 2} x_{4}^{-\left(k_{1}^{2}-k_{1}\right) / 2} \cdot x_{4}^{-k_{1}^{2} / 6} \\
=x_{2} x_{3}^{-1 / 2} x_{4}^{-1 / 6}=z_{0}
\end{gathered}
$$

and hence $Z_{0}=\left\langle z_{0}\right\rangle$.
Finally let γ_{0} be the inner automorphism induced by z_{0}^{-1}. Then $C_{\Gamma}(A)=\left\langle\gamma_{0}, \gamma_{1}\right\rangle$, with

$$
x^{\gamma_{0}}=x\left[x, z_{0}^{-1}\right]=x z_{1} z_{2}^{1 / 2},
$$

$$
x_{1}^{\gamma_{0}}=x_{1}\left[x_{1}, z_{0}^{-1}\right]=x_{1} z_{2} .
$$

Using a well known relation [9, III (1.3.b)], we get

$$
\begin{gathered}
\left(x^{r}\right)^{\gamma_{0}}=\left(x z_{1} z_{2}^{1 / 2}\right)^{r}=x^{r} z_{1}^{r}\left[z_{1}, x\right]^{r(r-1) / 2} \cdot z_{2}^{r / 2}=x^{r} z_{1}^{r} z_{2}^{r^{2} / 2} \\
\left(x_{1}^{r}\right)^{\gamma_{0}}=\left(x_{1} z_{2}\right)^{r}=x_{1}^{r} z_{2}^{r} .
\end{gathered}
$$

These exponents correspond to the matrix entries in the (more elaborate) examples constructed by Heineken [6].

REFERENCES

[1] M.J. Curran: "Automorphisms of certain p-groups (p odd)", Bull. Austral. Math. Soc. 38 (1988), 299-305.
[2] R.S. Dark: "A complete group of odd order", Math. Proc. Cambridge Philos. Soc. 77 (1975), 21-28.
[3] R.S. Dark: "The least odd order of a nontrivial complete group", preprint.
[4] B. Hartley - D.J.S. Robinson: "On finite complete groups", Arch. Math. (Basel) 35 (1980), 67-74.
[5] P. Hegarty - D. MacHale: "Minimal odd order automorphism groups", J. Group Theory 13 (2010), 243-255.
[6] H. Heineken: "Examples of complete groups of odd order", Bull. Greek Math. Soc. 38 (1996), 69-77.
[7] H. Heineken - H. Liebeck: "On p-groups with odd order automorphism groups", Arch. Math. (Basel) 24 (1973), 465-471.
[8] M.V. Horoševski: "On complete groups of odd order", Algebra i Logika 13 (1974), 63-76.
[9] B. Huppert: "Endliche Gruppen I", Springer, Berlin (1967).
[10] R. James: "The groups of order p^{6} (p an odd prime)", Math. Comp. 34 (1980), 613-637.
[11] J. Rose: "Automorphism groups of groups with trivial centre", Proc. London Math. Soc. (3) 31 (1975), 167-193.
[12] B. Schuhmann: "On the minimum length of the chief series of finite, complete, solvable groups of odd order", J. Algebra 90 (1984), 285-293.
[13] P. Soules: "On supersolvable complete groups of small odd order", An. Univ. Timişoara Ser. Mat.-Inform. 42 (2004), 105-113.

M. John Curran
Department of Mathematics and Statistics
University of Otago
P.O. Box 56, Dunedin (New Zealand)
e-mail: jcurran@maths.otago.ac.nz

Rex S. Dark
School of Mathematics, Statistics and Applied Mathematics National University of Ireland
University Road, Galway (Ireland)
e-mail: rex.dark@nuigalway.ie

