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Abstract

For each prime number p with 3 | p− 1, we construct a group of order 3p5, whose
automorphism group is a complete group of order 3p6.
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1 Introduction

Several papers in the literature deal with the construction of com-
plete groups of odd order ([2],[12],[13]). There are infinitely many
such groups ([4],[8]), but the smallest hitherto published example
seems to be one of order 5 · 312 constructed by Heineken [6]. We
shall prove the following result.

Theorem Let p be a prime number with 3 | p− 1. Then there is a group H
with trivial centre Z(H) = 1, and automorphism group G = AutH, such
that H has order |H| = 3p5, G has order |G| = 3p6, and G is complete.
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Remark (a) The group G is supersoluble, so this demonstrates the
pertinence of Heineken’s remark [6] that: “It remains to review su-
persoluble groups”.

(b) In [5] Hegarty and MacHale pose some questions:

(i) What is the smallest order of a non-nilpotent group with an
automorphism group of odd order?

(ii) What is the smallest order of a non-nilpotent automorphism
group of odd order?

(iii) What is the smallest possible order of a complete group of odd
order?

We conjecture that when p = 7, the group H constructed here of
order 3 · 75 provides an answer to (i), and we also conjecture that the
group G of order 3 · 76 answers (ii). Moreover the second author has
proved [3] that the answer to (iii) is indeed 3 · 76.

(c) Clearly the key to the Theorem is the Sylow p-subgroup of H,
so its properties are of interest. Let p be an odd prime number, and
suppose Q is a nontrivial p-group, with order |Q| = pn 6= 1 and
nilpotency class c. Define Φ = QpQ ′ to be the Frattini subgroup
of Q.

The arguments of Heineken and Liebeck [7, Sections 4 and 5] show
that if either n ∈ {1, 2, 3, 4}, or n = 5 and c ∈ {1, 2}, then there exist an
automorphism θ ∈ AutQ, and a nontrivial element g ∈ Q−Φ, such
that gθ = g−1. In this case θ has even order, so 2 |AutQ|, and Q is
an unlikely candidate for involvement in a complete group of odd
order.

Next write Fp for the field of order p, and let k be an element in
the multiplicative group F×p = Fp − 0. Define P = 〈x, x1〉 to be the
group with defining relations (1) below. The first author has proved
that if n = 5 and c ∈ {3, 4}, then again Q has an automorphism which
inverts an element of Q−Φ, except when p > 5 and Q = P for some
value of k [1, Theorems 2 and 3]. On the other hand [1, Theorem 4]

|AutP| =

{
p6 when p > 5 and 3 - p− 1
3p6 when 3 | p− 1

Taking p = 7, we get |AutP| = 3 · 76, so AutP is an alternative conjec-
tural answer to the question (ii) above (but is not complete).
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Finally let k0 be a primitive (p − 1)-th root of 1 modulo p2, and

put y = xk
i
0 and y1 = x

k2i0
1 . Then x = yk

−i
0 and x1 = y

k−2i0
1 ,

so P = 〈y,y1〉, and using (1), together with Lemma (f) below, we
get the relations

yp = yp
2

1 = [yp1 ,y] = 1

y
k3i0 kp

1 = [y1,y,y1] = [y1,y,y,y].

If p > 5 and 3 - p− 1, then F×p = 〈k30〉, and hence the groups P are
isomorphic to each other for all values of k. Similarly if 3 | p− 1, then

F×p = 〈k30〉 ∪ 〈k
3
0〉k0 ∪ 〈k

3
0〉k

2
0,

and hence each group P is isomorphic to one of the 3 groups got by
taking k = 1, k0 and k20. Moreover, the list compiled by James [10]
indicates that no two of these 3 groups are isomorphic to each other.

Construction — As above, let p be a prime number with p > 5, and
choose an element k ∈ F×p = Fp − 0. Take P = 〈x, x1〉 with defining
relations

xp = x
p2

1 = [xp1 , x] = 1,
x
kp
1 = [x1, x, x1] = [x1, x, x, x]

}
(1)

Write Pi for the i-th term of the lower central series of P, and make
the inductive definition

xi = [xi−1, x] (i > 2).

Applying Jacobi’s identity in the Lie ring
⊕
i>1 Pi/Pi+1 [9, III Auf-

gabe 8 (3), page 268], and working modulo P5, we get

1 ≡ [x1, x, [x1, x]] · [x, [x1, x], x1] · [x1, x, x1, x]
≡ 1 · [x1, x, x, x1]−1 · [x1, x, x1, x] (mod P5).

Using the relations (1), together with this congruence, we deduce
that

P = 〈x, x1〉P2,
P2 = 〈[x1, x]〉P3 = 〈x2〉P3,
P3 = 〈[x1, x, x], [x1, x, x1]〉P4 = 〈[x1, x, x]〉P4 = 〈x3〉P4,
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P4 = 〈[x1, x, x, x], [x1, x, x, x1]〉P5 = 〈[x1, x, x, x], [x1, x, x1, x]〉P5
= 〈[x1, x, x, x]〉P5 = 〈x4〉P5,

P5 = 〈[x1, x, x, x, x], [x1, x, x, x, x1]〉P6 = P6.

Since P ′/P3 is cyclic, this implies that P ′′ 6 [P ′,P3] 6 P5 = 1. More-
over Ppi 6 Pi+1 (i > 1), so P is a group of maximal class [9, III (14.1)].
We shall use the following well known results.

Proposition (Rose [11, Corollary 1.2(iii)]) Let H be a finite group
with Z(H) = 1, and suppose H 6 G 6 AutH. Let π be a set of prime
numbers, and suppose H = Oπ(G) is the smallest normal subgroup of G
such that G/H is a π-group. Then AutG = NAutH(G).

Lemma Suppose P is a group with P ′′ = 1, and put P∗ = P/P ′.
Let ∗ : P → P∗ be the natural homomorphism, and form the group ring ZP∗.
Suppose that r1, r2, . . . , rn are natural numbers and y1,y2, . . . ,yn are
elements of P, and take vi = y∗i − 1 ∈ ZP∗ (1 6 i 6 n).

(a) Then P ′ can be regarded as a ZP∗-module.

(b) If P = 〈x, x1〉, then P ′ = {[x1, x]S : S ∈ ZP∗}.

(c) If z ∈ P ′ and S ∈ ZP∗, then

[zS,y1,y2, . . . ,yn] = [z,y1,y2, . . . ,yn]S.

(d) If r is a natural number, it follows that [yr1,y2] = [y1,y2]S1 and
[y1,yr2] = [y1,y2]S2 , with

Si = 1+ yi + y
2
i + . . .+ y

r−1
i (i=1, 2).

(e) If n > 2, then [yr11 ,yr22 , . . . ,yrnn ] = [y1,y2, . . . ,yn]S1S2...Sn , with

Si =

ri∑
s=1

(
ri
s

)
vs−1i (1 6 i 6 n).

(f) If n > 2, and [y1,y2, . . . ,yn] is in the centre Z(P), then

[yr11 ,yr22 , . . . ,yrnn ] = [y1,y2, . . . ,yn]r1r2...rn .

Proof — (a) This holds because P ′ 6 CP(P ′).
(b) This follows from (a), since P ′ is the normal subgroup of P gener-
ated by [x1, x].
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(c) Using (a) we get

[zS,y1,y2, . . . ,yn] = zSv1v2...vn = zv1v2...vnS

= [z,y1,y2, . . . ,yn]S.

(d) This can be proved inductively, using the fact that if r > 2, then

[yr1,y2] = [y1,y2]
yr−11 [yr−11 ,y2],

[y1,yr2] = [y1,yr−12 ][y1,y2]
yr−12 .

(e) Using (c) and (d) we get the required equation, where

Si = 1+ yi + y
2
i + . . .+ y

ri−1
i =

y
ri
i − 1

yi − 1

=
(1+ vi)

ri − 1

vi
=

ri∑
s=1

(
ri
s

)
vs−1i .

(f) This is a consequence of (e). ut

2 Proofs

Construction — Use the notation of the construction above, and
as in the Lemma, take

u = x∗ − 1 ∈ ZP∗ = Z(P/P ′).
Note that if i ∈ {2, 3, 4} and i+ j > 5, then xi = xu

i−2

2 and xu
j

i = 1.
Using Lemma (e), we get

1 = [x3, xp] = [x3, x]p = [x2, x]pu = xp4 ,

1 = [x2, xp] = [x2, x]p+p(p−1)u/2 = [x2, x]p = [x1, x]pu = xp3 ,

1 = [x1, xp] = [x1, x]p+p(p−1)u/2+p(p−1)(p−2)u
2/6 = [x1, x]p = xp2 ,

so Pp2 = 〈xp2 , xp3 , xp4 〉 = 1. As in Lemma (a), it follows that P ′ can be
regarded as an FpP

∗-module.
Now the relations (1) imply that P can be constructed as follows.

Write Cn for the cyclic group of order n, and let X0 = 〈x1, x2〉 be
a nonabelian group of order p3 and exponent p2, with 〈x1〉 ' Cp2 ,

〈x2〉 ' Cp and xx21 = x
1−kp
1 . Take X3 = 〈x3〉 ' Cp, and form the di-

rect productM = X0×X3. Put x4=[x2, x1]=x
kp
1 , andN = 〈x2, x3, x4〉.
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Next take X = 〈x〉, and make x act on the elements xi by tak-
ing xxi = xixi+1 (i = 1, 2, 3). Using a well known relation in groups
of class 2 [9, III (1.3.b)], we get

(x1x2)
kp = xkp1 x

kp
2 [x2, x1]

kp(kp−1)/2 = xkp1 ,

(xx1)
p2 = (x1x2)

p2 = 1,
(xxj )

p = (xjxj+1)
p = 1 (j = 2, 3),

[xx2, xx1] = [x2x3, x1x2] = [x2, x1] = x
kp
1 = (x1x2)

kp = (xx1)
kp,

[xx3, xxi ] = [x3x4, xixi+1] = 1 (i = 1, 2).

This shows that x preserves the relations of M, so x ∈ AutM, and we
form the corresponding semidirect product L = XM.

Then L ′′ = N ′ = 1, and N is an Fp(L/L
′)-module, as in Lem-

ma (a). Let ∗ : L → L/L ′ be the natural homomorphism, and
take u = x∗ − 1 ∈ FpL

∗. Now

xx4 = (x1x2)
kp = xkp1 = x4,

and hence xu
j

i+1 = 1 when i ∈ {1, 2, 3} and j > 3. Applying Lemma (e),
we get

[xi, xp] = x
p+p(p−1)u/2+p(p−1)(p−2)u2/6
i+1 = 1 (i = 1, 2, 3)

because p > 5. Thus X ' Cp, so P = L, and therefore |P| = p5.
Now suppose 3 | p− 1 and let k1 be a primitive cube root of 1 mod-

ulo p2. Take A = 〈a〉 ' C3, and make a act on x and x1 by taking

xa = xk1 , xa1 = x
k21
1 .

Using the relations (1), together with Lemma (f) (and copying the
calculation at the end of Remark (c) above), we get

(xa1 )
kp = (xkp1 )k

2
1 ,

[xa1 , xa, xa1 ] = [x
k21
1 , xk1 , xk

2
1
1 ] = [x1, x, x1]

k21 ,

[xa1 , xa, xa, xa] = [x
k21
1 , xk1 , xk1 , xh] = [x1, x, x, x]k

2
1 ,

and hence (xa1 )
kp = [xa1 , xa, xa1 ] = [xa1 , xa, xa, xa]. It is also clear
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that (xa)p = (xa1 )
p2 = [(xa1 )

p, xa] = 1, so a preserves the relations (1).
Thus a ∈ AutP, and we form the corresponding semidirect prod-
uct H = AP, with

|H| = |A| · |P| = 3p5.

Next take the additive abelian groups

U = 〈x〉P ′/P ′, Ui = 〈xi〉Pi+1/Pi+1 (i = 1, 2, 3, 4).

LetWi=Fpwi be a 1-dimensional vector space over Fp, and makeWi
a (right) FpA-module by taking

wia = ki1wi (i = 0, 1, 2).

Since xa1 = x
k21
1 , we can use induction to show that

xai = [xi−1, x]a ≡ [x
ki1
i−1, xk1 ] ≡ xk

i+1
1
i (mod Pi+1) (i = 2, 3, 4),

and hence

P/P ′ = U⊕U1 'W1 ⊕W2
Pi/Pi+1 = Ui 'Wi−2 (i = 2, 3, 4)

}
(2)

Finally put
G = AutH, Γ = CG(H/P

′).

Proof of the Theorem — It follows from (2) that

Z(H) = 1, H = InnH 6 G,

where InnH is the group of inner automorphisms of H. We next cal-
culate the automorphism group G/Γ induced on H/P ′, and we claim
that

G/Γ = Inn(H/P ′) = H/P ′. (3)

To prove this, suppose θ ∈ G. By Sylow’s theorem, there is an ele-
ment g ∈ H such that Aθ = Ag, and replacing θ by θg−1, we may
assume that Aθ = A. Then θ acts on P/P ′, and permutes the set
of FpA-submodules {U,U1}; more precisely, either aθ = a and θ sta-
bilises U and U1, or else aθ = a2 and θ interchanges U and U1.
But 〈x1〉P ′ = Ω1(P) is the subgroup generated by the elements of
order p in P, which is a characteristic subgroup of P, so the first
alternative must apply. Moreover there are integers r, s and ele-
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ments y, z ∈ P ′, such that xθ = xry and xθ1 = xs1z. Then the rela-
tions (1) imply that s ≡ rs2 ≡ r3s (mod p), and hence r3 ≡ rs ≡ 1
(mod p) [1, page 303]. This means that θ acts on P/P ′ in the same
way as an element of A, which completes the proof of (3).

It follows from (2) that H∩ Γ = P ′, and using (3) we get

G/Γ = H/P ′ = H/H∩ Γ ' HΓ/Γ , G = HΓ ,
G/P ′ = HΓ/P ′ = (H/P ′)× (Γ/P ′), G/H ' Γ/P ′.

But P ′ = Φ(H) is the Frattini subgroup of H, and hence Γ is a p-group
[9, III (3.18)], so G/H is a p-group. Also P = [P,A], and therefore
H = 〈AH〉 = Op(G). Now the Proposition implies that G is complete,
and it remains to find |G|.

To do this, we investigate Γ . Since AP ′ C AΓ , it follows from Frat-
tini’s argument [9, I (7.8)] that

AΓ = AP ′NAΓ (A) = AP
′NΓ (A) = AP

′CΓ (A),
Γ = P ′CΓ (A),

so it suffices to study CΓ (A). Now P ′ is elementary abelian,
and Maschke’s theorem [9, I (17.7)] implies that

P ′ = Z0 × P3 = Z0 ×Z1 ×Z2,

where Zi is normalised byA, and is FpA-isomorphic toWi (i=0, 1, 2).
Then Z0 = CP ′(A) 6 CΓ (A). Moreover there is an automor-
phism γ1 ∈ CΓ (A) defined by the equations

aγ1 = a, xγ1 = x, x
γ1
1 = x1+kp1 = x1x4,

with Γ1 = 〈γ1〉 ' Cp and [P ′, Γ1] = P ′ ∩ Γ1 = 1. We claim that

CΓ (A) = Z0Γ1 ' Cp ×Cp. (4)

Clearly Z0Γ1 6 CΓ (A). To prove the opposite inclusion, suppo-
se γ ∈ CΓ (A), and consider the map δ : P → P ′ defined by taking

yδ = [y,γ] = y−1yγ (y ∈ P).

If y1, y2 ∈ P then

(y1y2)
δ = [y1y2,γ] = [y1,γ]y2 [y2,γ]
≡ [y1,γ][y2,γ] = yδ1y

δ
2 (mod P3),
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yaδ1 = [ya1 ,γ] = [y1,γ]a = yδa1 ,

and hence δ induces an FpA-homomorphism P/P ′→ P ′/P3. But (2)
implies that P/P ′ ' W1 ⊕W2 and P ′/P3 ' W0, so the only such
homomorphism is the zero map, and therefore Pδ 6 P3.

Then the same calculation shows that δ induces an FpA-homo-
morphism δ1 : P/P ′ → P3/P4. Now (2) implies that

P/P ′ = U⊕U1,
with

HomFpA(U1,P3/P4) = HomFpA(W2,W1) = 0,

and therefore

δ1 ∈ HomFpA(U,P3/P4) = EndFpAW1 = Fp

[9, V (4.3)]. But it follows from (1) that [x1, x2] = x−14 ∈ P4, and
[x, x2] = x−13 ∈ x−13 P4. Hence there exist an integer r, and an ele-
ment z ∈ Z0, such that

(yP ′)δ1 = [y,γ]P4 = [y, xr2]P4 = [y, z]P4 (y ∈ P).

Replacing γ by γz−1, we may assume that Pδ 6 P4.
Finally we now get δ ∈ HomFpA(P/P

′,P4), and a similar argument
shows that there is an integer s such that

yδ = [y,γ] = [y,γs1] (y ∈ P).

This means that γ = γs1 ∈ Γ1, which completes the proof of (4). There-
fore

G = HΓ = HCΓ (A) = HΓ1, |G| = |H| · |Γ1| = 3p6. ut

Remark We can describe Z0 = CP ′(A) more explicitly as follows.
As in Lemma (b), the elements of P ′ can be written as expressions of
the form xS2 , where S is in the group algebra FpP

∗. As before, put

u = x∗ − 1, u1 = x∗1 − 1,

and note that the equations (1) imply that the group algebra can be
replaced by the quotient got by imposing the relations

u1 = u2, u3 = uu1 = u21 = 0. (5)
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We seek generators zi for the subgroups Zi.

Since xa4 = x
k21
4 , we can take z2 = x4, with Z2 = 〈z2〉. Using (5)

and Lemma (e), we get xa3 = [x
k21
1 , xk1 , xk1 ] = xS3 = xuS2 , where

S = k21

(
k1 +

(
k1
2

)
u

)2
= k21

(
k21 + 2k1

(
k1
2

)
u

)
= k1 + k1(k1 − 1)u,

so xa3 = xk13 x
k21−k1
4 . Put

z1 = x3x
−1
4 , with

{
[z1, x] = x4 = z2
[z1, x1] = 1

Then za1 = xk13 x
k21−k1
4 ·x−k

2
1

4 = xk13 x
−k1
4 = zk11 , and therefore Z1 = 〈z1〉.

Using (5) and Lemma (e) again, we get xa2 = [x
k21
1 , xk1 ] = xT2 , where

T =

(
k21 +

(
k21
2

)
u1

)(
k1 +

(
k1
2

)
u+

(
k1
3

)
u2
)

= 1+
k1 − 1

2
u+

(k1 − 1)(k1 − 2)

6
u2 +

k21 − 1

2
u1

= 1+
k1 − 1

2
u+

4k21 − 3k1 − 1

6
u2,

so xa2 = x2x
(k1−1)/2
3 x

(4k21−3k1−1)/6
4 . Put

z0 = x2x
−1/2
3 x

−1/6
4 , with

{
[z0, x] = x3x

−1/2
4 = z1z

1/2
2

[z0, x1] = x4 = z2

Then

za0 = x2x
(k1−1)/2
3 x

(4k21−3k1−1)/6
4 · x−k1/23 x

−(k21−k1)/2
4 · x−k

2
1/6

4

= x2x
−1/2
3 x

−1/6
4 = z0,

and hence Z0 = 〈z0〉.
Finally let γ0 be the inner automorphism induced by z−10 .

Then CΓ (A) = 〈γ0,γ1〉, with

xγ0 = x[x, z−10 ] = xz1z
1/2
2 ,



Complete groups of order 3p6 11

x
γ0
1 = x1[x1, z−10 ] = x1z2.

Using a well known relation [9, III (1.3.b)], we get

(xr)γ0 = (xz1z
1/2
2 )r = xrzr1[z1, x]r(r−1)/2 · zr/22 = xrzr1z

r2/2
2 ,

(xr1)
γ0 = (x1z2)

r = xr1z
r
2.

These exponents correspond to the matrix entries in the (more elabo-
rate) examples constructed by Heineken [6].

R E F E R E N C E S

[1] M.J. Curran: “Automorphisms of certain p-groups (p odd)”,
Bull. Austral. Math. Soc. 38 (1988), 299–305.

[2] R.S. Dark: “A complete group of odd order”, Math. Proc. Cam-
bridge Philos. Soc. 77 (1975), 21–28.

[3] R.S. Dark: “The least odd order of a nontrivial complete group”,
preprint.

[4] B. Hartley – D.J.S. Robinson: “On finite complete groups”,
Arch. Math. (Basel) 35 (1980), 67–74.

[5] P. Hegarty – D. MacHale: “Minimal odd order automorphism
groups”, J. Group Theory 13 (2010), 243–255.

[6] H. Heineken: “Examples of complete groups of odd order”,
Bull. Greek Math. Soc. 38 (1996), 69–77.

[7] H. Heineken – H. Liebeck: “On p-groups with odd order auto-
morphism groups”, Arch. Math. (Basel) 24 (1973), 465–471.

[8] M.V. Horoševski: “On complete groups of odd order”, Algebra
i Logika 13 (1974), 63–76.

[9] B. Huppert: “Endliche Gruppen I”, Springer, Berlin (1967).

[10] R. James: “The groups of order p6 (p an odd prime)”, Math.
Comp. 34 (1980), 613–637.



12 M. John Curran – Rex S. Dark

[11] J. Rose: “Automorphism groups of groups with trivial centre”,
Proc. London Math. Soc. (3) 31 (1975), 167–193.

[12] B. Schuhmann: “On the minimum length of the chief series of
finite, complete, solvable groups of odd order”, J. Algebra 90

(1984), 285–293.

[13] P. Soules: “On supersolvable complete groups of small odd or-
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