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Abstract
All groups in this paper are finite. Let G be a group. Maximal subgroups of G are
used to establish several new characterisations of soluble PST -groups.
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1 Introduction and statement of results

All groups in this paper are finite.

There are many articles in the literature (for instance, [1],[5],[3],[6]
to name just the four classical ones) where global information about
a group G is obtained by assuming that some members of relevant
families of subgroups of G are either normal or satisfy a sufficiently
strongly embedding property extending normality. In many cases,
the subgroups are the normal subgroups of G, and the embedding
assumptions are that they are permutable or S-permutable in G.

Recall that a subgroup H of a group G is said to permute with a
subgroup K of G if HK is a subgroup of G. H is said to be permutable
(respectively, S-permutable) in G if H permutes with all subgroups
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(respectively, Sylow subgroups) of G. Examples of permutable sub-
groups include the normal subgroups of G. Non-Dedekind modular
groups and non-modular nilpotent groups show that S-permutability,
permutability and normality are quite different subgroup embed-
ding properties. However, according to a result of Kegel [12], ev-
ery S-permutable subgroup of G is always subnormal.

A group G is a PST -group if every subnormal subgroup of G
is S-permutable in G. In the same way classes of PT -groups
and T -groups are defined, in which every subnormal subgroup is
permutable or normal respectively. Since normal subgroups are per-
mutable and obviously permutable subgroups are S-permutable then
it follows that T is a proper subclass of PT and PT is a proper subclass
of PST . Soluble PST , PT and T -groups were studied and characterised
by Agrawal [1], Zacher [15] and Gaschütz [10] respectively.

Theorem 1

1. A soluble group G is a PST -group if and only if the nilpotent resid-
ual L of G is an abelian Hall subgroup of G on which G acts by
conjugation as power automorphisms.

2. A soluble PST -group G is a PT -group (respectively T -group) if and
only if G/L is a modular (respectively Dedekind) group.

Note that if G is a soluble T , PT or PST -group then every subgroup
and every quotient of G inherits the same properties.

We mention that in [5, Chapter 2] many of the beautiful results on
these classes of groups are presented.

Subgroup embedding properties closely related to permutability
and S-permutability are semipermutability and S-semipermutability
introduced by Chen in [8]: a subgroup X of a group G is said to
be semipermutable (respectively, S-semipermutable) in G provided that
it permutes with every subgroup (respectively, Sylow subgroup) K
of G such that gcd (|X| , |K|) = 1. A semipermutable subgroup of a
group need not be subnormal. For example a 2-Sylow subgroup of
the non-abelian group of order 6 is semipermutable but not subnor-
mal.

Note that a subnormal semipermutable (respectively, S-semi-
permutable) subgroup of a group G must be normalised by every
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subgroup (respectively, Sylow subgroup) P of G such that
gcd(|X|,|P|)=1. This observation was the basis for Beidleman
and Ragland [7] to introduce the following subgroup embedding
properties.

A subgroup X of a group G is said to be seminormal (respective-
ly, S-seminormal)1 in G if it is normalised by every subgroup (respec-
tively, Sylow subgroup) K of G such that gcd (|X| , |K|) = 1.

By [7, Theorem 1.2], a subgroup of a group is seminormal if and
only if it is S-seminormal. Furthermore, seminormal subgroups are
not necessarily subnormal: it is enough to consider a non-subnormal
subgroup H of a group G such that π(H) = π(G). The following result
is an interesting characterisation of soluble PST -groups.

Theorem 2 ([7]) Let G be a soluble group. Then the following statements
are pairwise equivalent:

1. G is a PST -group.

2. All the subnormal subgroups of G are seminormal in G.

3. All the subnormal subgroups of G are semipermutable in G.

4. All the subnormal subgroups of G are S-semipermutable in G.

Definition 3 Let G be a group. Then

1. G is called an S(n)NM-group if every non-seminormal sub-
group of G is contained in a non-normal maximal subgroup
of G.

2. G is called an S(s)NM-group if every non-S-semipermutable
subgroup of G is contained in a non-normal maximal subgroup
of G.

3. G is called a P(s)NM-group if every non-semipermutable sub-
group of G is contained in a non-normal maximal subgroup
of G.

The following three theorems provide some new and different
characterisations of soluble PST -groups.

1 Note that the term seminormal has different meanings in the literature
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Theorem A A group G is a soluble PST -group if and only if every sub-
group of G is an S(s)NM-group.

Theorem B A group G is a soluble PST -group if and only if every sub-
group of G is an S(n)NM-group.

Theorem C A group G is a soluble PST -group if and only if every sub-
group of G is a P(s)NM-group.

Robinson [13] introduced classes of groups in which cyclic subnor-
mal subgroups are S-permutable, permutable or normal.

Definition 4 A group G is called a PSTc-group if every cyclic sub-
normal subgroup of G is S-permutable in G.

Similarly, classes PTc and Tc are defined, by requiring cyclic sub-
normal subgroups to be permutable or normal respectively. Robin-
son [13] provided characterisations for both soluble and insoluble
cases. Here we mention only the soluble case.

Theorem 5 ([13]) Let G be a group and F = F(G), the Fitting subgroup
of G.

1. G is a soluble PSTc-group if and only if there is a normal sub-
group L such that,

a) L is abelian and G/L is nilpotent.

b) p′-elements of G induce power automorphisms in the Sy-
low p-subgroup Lp of L for all primes p.

c) π(L)∩ π(F/L) = ∅

2. A soluble PSTc-group is supersoluble.

3. A soluble group G is a PTc (Tc)-group if and only if G is a solu-
ble PSTc-group such that all the elements of G induce power automor-
phisms in L and F/L is a modular (Dedekind) group, where L is the
subgroup described in 1.

Note that the important distinction between soluble PST -groups
and soluble PSTc-groups is that the nilpotent residual is a Hall sub-
group of the Fitting subgroup whereas the nilpotent residual of a sol-
uble PST -group is a Hall subgroup of the entire group. In fact, Robin-
son in [13] showed that the sets of primes π(L) and π(G/L) can have
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a large intersection, even when G is a soluble Tc-group.
It is clear that a soluble PSTc-group such that the nilpotent residual
is a Hall subgroup of G is a PST -group. Also, note that the class
of all soluble PSTc-group is much different than the class of solu-
ble PST -group as the following theorem shows.

Theorem 6 ([13]) Let G be a group. Then

1. If every subgroup of G is a PSTc-group, then G is a soluble PST -group.

2. If every quotient of G is a soluble PSTc-group, then G is a solu-
ble PST -group.

In addition, a PSTc-group is a PTc (Tc)-group if all of its Sylow
subgroups are modular (Dedekind) respectively [13].

There are similar connections as in Theorems 2 and 5 with
classes PSTc, PTc and Tc as seen in the next two theorems.

Theorem 7 ([4]) Let G be a soluble group. Then the following statements
are pairwise equivalent:

1. G is a PSTc-group.

2. All the cyclic subnormal subgroups of G are seminormal in G.

3. All the cyclic subnormal subgroups of G are semipermutable in G.

4. All the cyclic subnormal subgroups of G are S-semipermutable in G.

Theorem 8 ([4]) Let G be a soluble group with abelian nilpotent resid-
ual L. Then:

1. G is a PTc (Tc)-group if and only if every cyclic subnormal subgroup
of G is seminormal in G, all the elements of G induce power automor-
phisms in L, and F/L is a modular (Dedekind) group.

2. G is a PTc (Tc)-group if and only if every cyclic subnormal subgroup
of G is semipermutable in G, all the elements of G induce power auto-
morphisms in L, and F/L is a modular (Dedekind) group.

3. G is a PTc (Tc)-group if and only if every cyclic subnormal subgroup
of G is S-semipermutable in G, all the elements of G induce power
automorphisms in L, and F/L is a modular (Dedekind) group.
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4. G is a PTc (Tc)-group if and only if G is an PSTc-group such that
all the elements of G induce power automorphisms in L, and F/L is a
modular (Dedekind) group.

Definition 9 Let G be a group.

1. G is called a S(n)NMc-group if every cyclic non-seminormal
subgroup of G is contained in a non-normal maximal subgroup
of G.

2. G is called an S(s)NMc-group if every cyclic non-S-semiper-
mutable subgroup of G is contained in a non-normal maximal
subgroup of G.

3. G is called a P(s)NMc-group if every cyclic non-semipermutable
subgroup of G is contained in a non-normal maximal subgroup
of G.

We now list three theorems that are similar to Theorems A, B
and C; however we only consider certain subgroups of a group which
are contained in non-normal maximal subgroups.

Theorem D Let G be a group. Then

1. If every subgroup of G is an S(n)NMc-group, then G is a solu-
ble PSTc-group and so G is a soluble PST -group.

2. If every subgroup of G is a PSTc-group, thenG is an S(n)NMc-group
and hence a soluble PST -group.

Theorem E Let G be a group. Then

1. If every subgroup of G is an S(s)NMc-group, then G is a solu-
ble PSTc-group and so G is a soluble PST -group.

2. If every subgroup of G is a PSTc-group, then G is an S(s)NMc-group
and a soluble PST -group.

Theorem F Let G be a group. Then

1. If every subgroup of G is a P(s)NMc-group, then G is a solu-
ble PSTc-group and so is a soluble PST -group.

2. If every subgroup of G is a PSTc-group, then G is a P(s)NMc-group
and a soluble PST -group.
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2 Preliminaries

The lemmas encountered here are used in the proofs of the main
theorems of this paper.

Lemma 10 ([5, Theorem 2.1.8, p. 57])

1. Let G be a soluble group and let L be the nilpotent residual of G. Then
G is a PST -group if and only if L is an abelian Hall subgroup of G
and G acts by conjugation on L as a group of power automorphisms.

2. A soluble group is a PST -group if and only if every subnormal sub-
group of G is S-permutable (seminormal, semipermutable in G).

Lemma 11 ([14, Theorem 13.3.7, p. 399]) Let N be a minimal normal
subgroup of a group G. Then N normalizes all the subnormal subgroups
of G.

Lemma 12 ([9, Theorem 5.9, p. 238; 14, Theorem 9.2.9, p. 265])
A finite soluble group is generated by its system normalizers.

Lemma 13 ([14, Theorem 9.2.7, p. 264]) Let G be a finite soluble
group and let L be the nilpotent residual of G. If L is abelian and D is a
system normalizer of G, then G = LoD, that is, G is a semidirect product
of L by D.

Lemma 14 ([2, Corollary 1.3.3, p. 9]) Let the finite group G = AB be
the product of two subgroups A and B. Then for each prime p there exist
Sylow p-groupsA0 ofA and B0 of B such thatA0B0 is a Sylow p-subgroup
of G.

3 Proof of the theorems

Proof of Theorem A — Let G be a group. Assume that G is a sol-
uble PST -group, let L be the nilpotent residual of G, and let D be
a system normalizer of G. By Lemma 10 L is an abelian Hall sub-
group of G and G acts by conjugation on L as a group of power
automorphisms. Moreover, by Lemma 13 G = LoD, the semidirect
product of L by D. We prove that G is an S(s)NM-group by induction
on |G|. Let A be a non-S-semipermutable subgroup of G. Then L 6= 1
and A ∩ L / G. Also A/A∩ L is a non-S-semipermutable subgroup
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of G/A∩ L. Now A∩ L = 1, for otherwise, by induction, A/A∩ L
would be contained in a non-normal maximal subgroup M/A∩ L
of G/A∩ L. Then M would be a non-normal maximal subgroup of G
containing A. This would mean that G is an S(s)NM-group.
Hence A∩ L = 1. Since L and D are Hall subgroups we may as-
sume A 6 D. Let M be a maximal subgroup of G containing D. As-
sume that M / G, then Dg 6 M for all g ∈ G and so DG 6 M.
But DG = G by Lemma 12 so that M is non-normal. Thus A 6 M
and hence, G is an S(s)NM-group. Now applying [5, 2.1.9] we have
every subgroup H of G is a soluble PST -group. Hence, by the argu-
ment above H is an S(s)NM-group.

Now assume that every subgroup of G is an S(s)NM-group but G
is not a soluble PST -group. Let G be the counterexample of least
order. Then every proper subgroup of G is a soluble PST -group. Thus
every proper subgroup of G is supersoluble and hence G is a soluble
group. Since G is not a PST -group there is a subnormal subgroup H
which is not S-semipermutable in G. Let M be a maximal normal
subgroup of G such that H 6 M. Now G is an S(s)NM-group so
there is a non-normal maximal subgroup L of G such that H 6 L.
Note that G = LM and both L and M are soluble PST -subgroups
of G. There is a Sylow p-subgroup P of G such that the gcd (p, |H|) = 1
and H does not permute with P.

By Lemma 14 there is a Sylo w p-subgroup A of L and a Sylow
p-subgroup B ofM such that AB is a subgroup of G and AB∈Sylp(G).
Note that H permutes with A and B so H permutes with AB = Q.
There is an element x ∈ G such that Px = Q. The properties of G as
stated in the Theorem are inherited by quotients, so if N is a minimal
normal subgroup of G contained in M, then (HN)P/N = P(HN)/N is
a subgroup of G/N. Hence P permutes with HN.

If (HN)P is a proper subgroup of G, then, by the hypothesis of
the theorem, HP = PH, which is a contradiction. Hence, G = (HN)P.
By Lemma 11 N normalizes H and so H /HN. Since G = HNP, there
is an element a ∈ P and b ∈ HN such that x = ab. Thus, Hb = H

or Hb
−1

= H and H permutes with Pb so HP = PH, a final contradic-
tion. �

Proof of Theorem B — First assume that G is a soluble PST -group.
As in the proof of Theorem A we prove that G is an S(n)NM-group
in the same way we showed that G is an S(s)NM-group in the proof
of Theorem A. As in that proof, we use the fact that every subgroup
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of G is a soluble PST -group to prove that every subgroup of G is
an S(n)NM-group.
Conversely, assume that every subgroup of G is an S(n)NM-group
but G is not a soluble PST -group and let G be such a group of
smallest order. As in the proof of Theorem A, G is soluble and
by Lemma 10, Part 2, there is a subnormal subgroup H of G which is
not seminormal in G. There is a normal maximal subgroup M of G
and a maximal subgroup L of G such that G = LM and H 6 L ∩M.
Now L and M are soluble PST -groups so that L (respectively, M)
contains a Sylow p-subgroup A (respectively, B) such that AB is
a Sylow subgroup of G. (Note this proof follows that of the proof
of Theorem A). There is a Sylow p-subgroup P of G which does
not normalize H but H is normalized by AB. So there is an x ∈ G
such that Px = Q = AB. As in the proof of Theorem A a minimal
normal subgroup N of G normalizes H and P normalizes HN in G.
Also G = HNP.
Then there is an element a∈P and an element b∈HN such that x=ab
and Hb

−1
= H is normalized by Pb. This is the final contradiction. ut

Proof of Theorem C — To obtain a proof of Theorem C just
replace S-semipermutable in the proof of Theorem A by semiper-
mutable and we obtain the desired proof. ut

Proof of Theorem D — Suppose that every subgroup of the
group G is an S(n)NMc-group but G is not a soluble PSTc-group
and we assume G is a counterexample of least order to the result.
Then G is not a soluble PSTc-group but every proper subgroup of G
is a soluble PSTc-group. By Theorem 5 (2) every proper subgroup
of G is supersoluble and hence G is soluble.
By Theorem 7 (2) there is a cyclic subnormal subgroup Hwhich is not
seminormal in G. Hence there is a Sylow p-subgroup P such that P
does not normalize H. As in the proof of Theorem A there exists a
normal maximal subgroup L of G and a non-normal maximal sub-
group M of G such that G = LM and H 6 L ∩M. Since L and M
are S(n)NMc-subgroups of G, it follows from Lemma 13 that there
are Sylow p-subgroups A of L and B of M such that AB is a Sy-
low p-subgroup of G and both A and B normalize H. There is an
element x ∈ G such that Px = AB. Let Q = AB.
Consider a minimal normal subgroup N of G with N 6 L. We now
consider the quotient G/N of G. Since the properties of G, as enun-
ciated in the statement of the theorem, are inherited by quotients
of S(n)NMc, the minimality of G implies HN/N in G/N is normal-
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ized by PN/N. Hence, P normalizes HN.
Also by Lemma 11 N normalizes H in HN. If HNP is a proper sub-
group of G, then P normalizes H, which is a contradiction.
Thus HNP = G. Let x = ab where b ∈ HN and a ∈ P, then Hb = H
and Px = Pb. Hence

Hb
−1

= H and
(
Pb
)b−1

= P

normalizes H, a final contradiction.
Hence, G is a soluble PSTc-group. Now let X be a subgroup of G.
Then every subgroup of X is an S(n)NMc-group so that our proof
can be applied to X to show that X is a soluble PSTc-group. By The-
orem 6 (1) G is a soluble PST -group. This completes the proof
of part (1) of Theorem D.
If every subgroup of G is a PSTc-group, then by Theorem 6 (1) G
is a soluble PST -group. To show that every subgroup of G is
an S(n)NMc-group follows from the necessity part of the proof
of Theorem A. ut

Proof of Theorem E — In the proof of Theorem E replace in Theo-
rem D seminormal subgroup with S-semipermutable subgroup. Also
replace S(n)NMc by S(s)NMc. ut

Proof of Theorem F — In the proof of Theorem F replace in The-
orem D seminormal subgroup with semipermutable subgroup. Also
replace S(n)NMc by P(s)NMc. ut
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