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“In re mathematica ars proponendi quaestionem pluris facienda
est quam solvendi’’

Georg Cantor

ADV Perspectives in Group Theory
– an open space –

ADV –2A

Among the most important group properties are periodicity (each el-
ement has finite order), simplicity (no proper nontrivial normal sub-
groups), and finite presentability by generators and relators. A pop-
ular property of modern Geometric Group Theory is intermediate
growth (between polynomial and exponential). Infinite finitely pre-
sented simple groups exist; for instance, the famous Higman-Thomp-
son groups have these properties. A more complicated situation oc-
curs when finite presentability is related with the other two proper-
ties.

The question about existence of finitely generated infinite periodic
groups is the core of one of the most important problems of algebra,
the Burnside Problem. Three branches of it were solved by E. Go-
lod (1964), P. Novikov and S. Adian (1967) and E. Zelmanov (1991).
A short survey on the Burnside Problem is [R. Grigorchuk and I. Ly-
senok: “Burnside Problem” in The Concise Handbook of Algebra,
Kluwer Academic Press (2002), 111–115]. No example of a finitely pre-
sented group answering the Burnside question is known.

Question 1 Is there a finitely presented infinite periodic group?

Let G be a finitely generated group with a system of generators
S = {s1, . . . , sn} and let γ(n) = |{g ∈ G : |g| = n}| be the corresponding
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growth function, where |g| is the length of g with respect to S and |E|
denotes the cardinality of the set E. The rate of growth of this func-
tion does not depend on the choice of generating system. In 1968,
J. Milnor raised the question: “Is it true that a growth of finitely gen-
erated group is either polynomial or exponential?” (see [“Problem 5603”,
Amer. Math. Monthly 75 (1968), 685–686]). The answer was given in
[R. Grigorchuk: “Degrees of growth of finitely generated groups and
the theory of invariant means”, Izv. Akad. Nauk SSSR Ser. Mat. 48

(1984), 939–985], where the first examples of groups of intermediate
growth were constructed. All of them turned out to be infinitely pre-
sented and at the moment no example of a finitely presented group
of intermediate growth is known.

Question 2 Is the growth of every finitely presented group either polyno-
mial or exponential?

All known examples of finitely presented groups (including Hig-
man-Thompson groups) satisfy the following impudent conjecture
(at least, it seems, there are no groups that look like potential coun-
terexamples to it).

Conjecture 1 Every finitely presented group either contains a free sub-
semigroup on two generators or it is virtually nilpotent.

Is this conjecture true? If it is, then the answer to the above ques-
tions is negative.

The groups of intermediate growth constructed by me are resid-
ually p-finite groups (i.e. groups approximated by finite p-groups).
I proved that if the growth of a residually p-finite group G is less than
the growth of the function e

√
n, then it is polynomial [R. Grigorchuk:

“On the Hilbert-Poincare series of the graded algebras associated to
groups”, Mat. Sb. 180 (1989), 207–225], and hence, by the famous re-
sult of M. Gromov, G is virtually nilpotent. Later, in a conversation
with A. Lubotzky and A. Mann, it was remarked that the same holds
for residually nilpotent groups.

Conjecture 2 If the growth of a finitely generated group G is bounded
from above by the function e

√
n, then G has polynomial growth and hence

it is virtually nilpotent.

Variations of this conjecture (called GAP Conjecture), and its con-
nection with the other GAP type conjectures in theory of random
walks and spectral theory of discrete Laplacian on groups, can be
found in [R. Grigorchuk: “Milnor’s problem on the growth of groups
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and its consequences” in Frontiers in Complex Dynamics, Princeton
Univ. Press, Princeton (2014), 705–773]. It would be nice to prove
the above conjecture for the class of residually solvable groups (in
particular for residually polycyclic groups), and for residually finite
groups.

Rostislav Grigorchuk

ADV –2B

A group class X is said to be countably recognizable if a group G is
an X-group whenever all its countable subgroups belong to X. Coun-
tably recognizable classes of groups were introduced and studied
by R. Baer in 1962, but already in the fifties the property of be-
ing hyperabelian and that of being hypercentral were proved to be
detectable from the behaviour of countable subgroups, respectively,
by Baer and S.N. Černikov.

It is well known that soluble groups, as well as nilpotent groups,
form a class of countable character, and many other relevant group
classes have been proved to be countably recognizable. We refer to
the introduction of [F. de Giovanni and M. Trombetti: “Countable
recognizability and nilpotency properties of groups”, Rend. Circ. Mat.
Palermo, to appear; DOI 10.1007/s12215-016-0261-y] for a recent and
complete account of this subject. In particular, it turns out that all
classes of generalized nilpotent groups exhibited in the diagrams
on pages 3 and 13 of [D.J.S. Robinson: “Finiteness Conditions and
Generalized Soluble Groups” (Part 2), Springer, Berlin (1972)] have
countable character, the only exception being the class of Gruenberg
groups. Similarly, most of the classes of generalized soluble groups
pictured in the diagram on page 80 of the same book have been
proved to be countably recognizable; in this case, the only exceptions
are the classes SN∗ and SJ. In fact, it is known that SN∗, the class of
groups admitting an ascending series with abelian factors, does not
have countable character, while for the class SJ the problem seems
still to be unsettled.
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Question Is the class SJ countably recognizable?

Recall here that a group is SJ if it has a subnormal series (of arbi-
trary order type) all of whose factors are abelian.

Francesco de Giovanni
Marco Trombetti

ADV –2C

Question Let G be a finite group acting on a vector space V and p a prime
divisor of |G| such that the centralizer CG(v) contains a Sylow p-subgroup
of G for any v ∈ V . What can be said about the structure of the group G?

This is a problem in the investigation on character degrees in
group theory. There are already a lot of significant developments
made on this question. For example, when G is p-solvable, O. Manz
and T.R. Wolf have developed a relatively complete theory (see their
monograph [“Representations of Solvable Groups”, Cambridge Uni-
versity Press, Cambridge (1993)] for an account on the subject); while,
when p divides |V | and G is an arbitrary finite group, readers are
referred to the paper [M. Giudici, M. Liebeck, C. Praeger, J. Saxl
and P. Tiep: “Arithmetic results on orbits of linear groups”, Trans.
Amer. Math. Soc. 368 (2016), 2415–2467].

Jiping Zhang

ADV –2D

Let p be a prime. We say that a group G has finite section p–rank
srp(G) = k if every elementary abelian p-section of G has order at
most pk and there exists an elementary abelian p–section A/B such
that |A/B| = pk. Moreover, a group G is said to have finite section
rank if srp(G) is finite for each prime p. There are some examples of
finitely generated residually finite p-groups which are infinite. On
the other hand, A.Yu. Ol’shanskiı̆ has constructed an infinite finitely
generated periodic group, whose Sylow subgroups are cyclic [“An
infinite group with subgroups of prime orders”, Izv. Akad. Nauk SSSR
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Ser. Mat. 44 (1980), 309–321]. This group is not residually finite, and
thus the following problem is interesting.

Question 1 Let G be a finitely generated periodic group of finite section
rank, and suppose that G is residually finite. Is G finite?

A slightly weakened variant of the above question is the following
one.

Question 2 Let G be a finitely generated periodic group, whose Sylow
p-subgroups are finite for every prime p, and suppose that G is residually
finite. Is G finite?

Our question can be even weakened in the following form.

Question 3 Let G be a finitely generated periodic group, whose Sylow
p-subgroups are finite and have bounded orders for every prime p, and sup-
pose that G is residually finite. Is G finite?

Leonid A. Kurdachenko

ADV –2E

Wreath products (including their variations such as verbal wreath
products, etc.) are the most popular operations used to study prod-
ucts of group varieties. Here is one of typical schemes of their ap-
plication. The product UV of varieties U and V consists of all ex-
tensions of groups A ∈ U by groups B ∈ V. In general, a prod-
uct variety is very hard to handle using this direct definition only.
By G. Birkhoff’s theorem, if W = var (G), that is, if the variety W is
generated by the group G, then W = QSC(G), i.e., all the groups of W
can be obtained as some homomorphic images of certain subgroups
of some Cartesian powers of G. Therefore, if we find such specific
groups A and B that the Cartesian wreath product AWrB gener-
ates UV, then by G. Birkhoff’s theorem UV = QSC(AWrB). B.H. Neu-
mann, H. Neumann, P.M. Neumann in [“Wreath products and vari-
eties of groups”, Math. Z. 80 (1962), 44–62] ask: “If the groups A, B
belong to the varieties U, V, respectively, then AWrB belongs to the prod-
uct variety UV. If A generates U and B generates V, then one might
hope that AWrB generates UV; but this is in general not the case”.
Then they bring examples where AWrB may or may not generate
UV = var (A) var (B). We tried to cover as wide as possible classes
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of groups A and B for which it is possible to detect, if AWrB gener-
ates var (A) var (B). And we have already classified the cases, when A
and B are arbitrary abelian groups [V.H. Mikaelian: “Metabelian va-
rieties of groups and wreath products of abelian groups”, J. Alge-
bra 313 (2007), 455–485], arbitrary finite groups [V.H. Mikaelian: “The
criterion of Shmel’kin and varieties generated by wreath products
of finite groups”, Algebra i Logika, to appear; see arXiv:1503.08474],
when A is any nilpotent group of restricted exponent and B is any
abelian group [V.H. Mikaelian: “A classification theorem for varieties
generated by wreath products of groups”; see arXiv:1607.02464].

Question For as wide as possible classes of groups A and B is it possible to
classify the cases when the equality var (AWrB) = var (A) var (B) holds
or does not hold?

Clearly, we assume new cases that were not covered in the litera-
ture earlier. By what we so far know, this is going to be a complicated
task even when both A and B are soluble.

Vahagn H. Mikaelian

ADV –2F

A subgroup A is called a supplemented subgroup in a group G, if
there is a proper subgroup B of G such that G = AB. If, in addi-
tion, A∩B = 〈e〉, then A is called a complemented subgroup of G. The
subgroup B is called a supplement (correspondingly, a complement)
of A in G. Complementation is one of the key concept in group the-
ory. It is enough to mention the famous theorem of complementabil-
ity of Philip Hall subgroups in finite soluble groups. Finite groups in
which every subgroup is complemented were introduced in [P. Hall:
“Complemented groups”, J. London Math. Soc. 12 (1937), 201–204],
and the structure of such (finite and infinite) groups was completely
described by N.V. Černikova (see, for instance, [“On the fundamental
theorem about completely factorizable groups” in Groups with Sys-
tems of Complemented Subgroups, Izdanie Inst. Mat. Akad. Nauk
Ukrain. SSR, Kiev (1971), 49–58]). Several papers written by many au-
thors were dedicated to study of complementability and groups with
different families of complemented subgroups. However, the follow-
ing natural topic is still open.
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Problem Investigate the groups in which for any subgroups A, B and C,
the fact that A is complemented (supplemented) in B and B is complemented
(supplemented) in C implies that A is complemented (supplemented) in C.

Igor Y. Subbotin

ADV –2G

If G is a free group, then of course G is locally graded, so certainly a
homomorphic image of a locally graded need not be locally graded:
we just need to take a free group F of free rank 2 and find a normal
subgroup R such that F/R is isomorphic to an infinite simple 2-ge-
nerator p-group all of whose proper subgroups are of prime order,
for a large enough prime p. On the other hand, H. Smith has shown
in [“On homomorphic images of locally graded groups”, Rend. Sem.
Mat. Padova 91 (1994), 53–60] that if G is locally graded and H is
a G-invariant subgroup of the hypercentre of G, then G/H is also
locally graded. More generally, it has been shown in [P. Longobar-
di, M. Maj and H. Smith: “A note on locally graded groups” Rend.
Sem. Mat. Padova 94 (1995), 275–277] that if G is locally graded and H
is a G-invariant subgroup of the Hirsch-Plotkin radical of G,
then G/H is locally graded, and indeed, if H is a normal radical sub-
group of G, then G/H is also locally graded. It is therefore of some
interest to find other cases of this phenomenon. The following prob-
lems are therefore quite natural.

Question 1 Let G be an infinite locally graded group. If H is a normal
locally soluble subgroup of G, then is G/H locally graded? If H is a normal
locally finite subgroup of G, then is G/H locally graded?

Question 2 If G is an infinite locally graded group, what types of normal
subgroups can be factored to still obtain a locally graded group?

Martyn Dixon
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ADV –2H

A group G with a lattice order is called a right `-group if

a 6 b =⇒ ac 6 bc

holds for a, b, c ∈ G. If the left-hand version of this implication
also holds, G is said to be an `-group. Totally ordered right `-groups
are also called right ordered groups (Paul Conrad, 1959). The Cay-
ley-Holland Theorem implies that every `-group is right orderable.

Question 1 Is every right `-group right orderable?

A forthcoming paper will show that the next question is a special
case of Question 1. Let X be an orthomodular lattice (e.g., the lattice
of closed subspaces of a Hilbert space or the projection lattice of
a von Neumann algebra), and let G be a group. A G-valued measure
on X is a function µ : X→ G which satisfies

µ(x∨ y) = µ(x) + µ(y)

for x,y ∈ X with x ⊥ y.

Question 2 Does any orthomodular lattice X admit an injective G-valued
measure µ : X→ G into a right-ordered group G?

Wolfgang Rump

ADV –2I

The notion of growth for finitely generated groups has been
thoroughly investigated since Milnor posed his famous problem
in [J. Milnor: “Problem 5603”, Amer. Math. Monthly 75 (1968), 685–
686], answered by Grigorchuk (there exist finitely generated groups
of intermediate growth), and by Gromov (a finitely generated group
has polynomial growth if and only if it is virtually nilpotent). This
classical notion was recently extended to endomorphisms φ : G −→ G
of arbitrary groups G in a natural way, by using the language of al-
gebraic entropy (see the work of D. Dikranjan and A. Giordano Bru-
no in [“Discrete dynamical systems in group theory”, Note Mat. 33
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(2013), 1–48] and [“Entropy on abelian groups”, Adv. Math. 298

(2016), 612–653]).
Let F(G) be the family of all non-empty finite subsets of G; the

growth function of φ with respect to F ∈ F(G) is γφ,F : N+ −→ N+

defined by n 7→ |F ·φ(F) ·φ2(F) · . . . ·φn−1(F)|. Then:

• φ has polynomial growth if γφ,F is polynomial for every F ∈ F(G);

• φ has exponential growth if there exists F ∈ F(G) such that γφ,F
is exponential;

• φ has intermediate growth if γφ,F is not exponential for eve-
ry F ∈ F(G) and there exists F ∈ F(G) such that γφ,F is inter-
mediate.

If G is a finitely generated group and φ = idG is the identity
map, then G has polynomial (respectively, exponential, intermedi-
ate) growth in the classical terminology if and only if idG has poly-
nomial (respectively, exponential, intermediate) growth according to
the above definition.

In the spirit of Milnor Problem, we propose the following open
problems.

Problem Characterize the groups admitting no endomorphism of interme-
diate growth.

The polynomial - exponential dichotomy holds for abelian groups
[D. Dikranjan and A. Giordano Bruno: “The Pinsker subgroup of an
algebraic flow”, J. Pure Appl. Algebra 216 (2012), 364–376], for locally
finite groups [A. Giordano Bruno and P. Spiga: “Growth of group
endomorphisms”, J. Group Theory, in press] and for locally virtually
solvable groups [A. Giordano Bruno and P. Spiga: “Milnor-Wolf The-
orem for the growth of endomorphisms of locally virtually soluble
groups”, in preparation].

Question Does there exist a finitely generated group of polynomial or ex-
ponential growth admitting an endomorphism of intermediate growth?

Dikran Dikranjan
Anna Giordano Bruno

Pablo Spiga
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ADV –2J

Let Fn denote the free group of rank n. We say that x ∈ Fn is a
primitive element of Fn if it is contained in a set of free generators
of Fn.

It is known that if n > 3, there exist normal subgroups N of Fn
such that Fn/N can be generated by fewer than n elements, even
though N contains no primitive elements of Fn. The first examples of
such N were obtained by G.A. Noskov [“Primitive elements in a free
group”, Mat. Zametki 30 (1981), 497–500]. Many more examples are
now known (see [M.J. Evans: “Nielsen equivalence classes and sta-
bility graphs of finitely generated groups” in Ischia Group Theory
2006, World Sci. Publ. (2007), 103–119] for a survey of these results).
However, there is a related question of considerable importance that
remains unanswered. First note that Aut(Fn) acts transitively on the
(set of) primitive elements of Fn, and so proper characteristic sub-
groups of Fn contain no primitive elements of Fn.

Question Let N be a proper characteristic subgroup of Fn. Can Fn/N be
generated by fewer than n elements?

The answer is unknown even if we impose the additional hypothe-
sis that N has finite index in Fn.

It is interesting to observe that if N is a fully invariant proper sub-
group of Fn, then it is verbal, and so Fn/N is the free group of rank n
in a variety of groups. Consequently Fn/N has an abelian image that
requires n generator and so Fn/N itself certainly requires n genera-
tors.

Martin Evans

ADV –2K

An old question of J.E. Roseblade [“On groups with all subgroups
subnormal”, J. Algebra 2 (1965), 402–412] asks whether it is true that
a group in which every n-generated subgroup is n-subnormal (i.e.
subnormal of defect at most n) is nilpotent (of class bounded by a
funtion of n).



Adv. Group Theory Appl. 2 (2016) 135

For n > 1 we say that a group G is CEn if

[g, x1, x2, . . . , xn] ∈ 〈x1, x2, . . . , xn〉

for every g, x1, x2, . . . , xn ∈ G (not necessarily distinct). Clearly, eve-
ry CEn-group is (n+ 1)-Engel, but not the converse: the wreath pro-
duct Cp oA, where Cp is a cyclic group of order the prime p and A an
infinite elementary abelian p-group, is (p+ 1)-Engel but it is not Cn
for any n > 1.

Question Is every CEn-group locally nilpotent?

The question is thus a weak form of that about local nilpotency
of bounded Engel groups. O the other hand, if we ask whether eve-
ry CEn-group is nilpotent (I do not know of any counterexamples)
we have a stronger version of Roseblade’s question.

Carlo Casolo

ADV –2L

Let R be a commutative ring with a unity, G a group and RG the
group ring of G over R. It is well known that one can associate a
normal subgroup of G with a two-sided associative ideal I of RG,
namely the set

{x ∈ G | x− 1 ∈ I}.

But the problem of identifying such a subgroup is in general quite
hard.

There has been a lot of work done on the structure and proper-
ties of the sequence of dimension subgroups of RG whose n-th term is
defined as

Dn(G) := G∩ (1+∆(G)n),

where ∆(G) denotes the augmentation ideal of RG. In particular,
the so called dimension subgroup problem has been extensively investi-
gated over the years by several authors. For a comprehensive account
we refer the reader to the monograph [I.B.S. Passi: “Groups Rings
and their Augmentation Ideals”, Springer, Berlin (1979)], Chapter III
of [S.K. Sehgal: “Topics in Group Rings”, Marcel Dekker, New York
(1978)], Section 1.8 of [S.K. Sehgal: “Units in Integral Group Rings”,
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John Wiley & Sons, New York (1993)] and Section 9 of [S.K. Sehgal:
“Group Rings” in Handbook of Algebra 3, North-Holland, Amsterdam
(2003), 455-541].

Motivated by questions connected with the above mentioned prob-
lem two other sequences of subgroups of G related to the Lie struc-
ture of RG have been introduced: those of Lie dimension subgroups
and restricted Lie dimension subgroups of RG. In more details, one
sets RG[1] := RG and, for n > 1, RG[n] as the two-sided ideal of RG
generated by all the left-normed Lie commutators [x1, x2, . . . , xn],
where xi ∈ RG and [y, z] : yz−zy. On the other hand, put RG(1) := RG

and inductively, for n > 1, RG(n) := [RG(n−1),RG]RG, the two-sided
ideal of RG generated by all the Lie commutators [x, y] with
x ∈ RG(n−1) and y ∈ RG. The n-th Lie dimension subgroup of RG is
defined as

D(n)(G) := G∩ (1+ RG(n)),

whereas the corresponding n-th restricted Lie dimension subgroup is the
subgroup of G

D[n](G) := G∩ (1+ RG[n]).

We observe that since any element α ∈ RG can be written as ε+β,
where ε ∈ R and β ∈ ∆(G), one can replace the Lie powers of RGwith
the Lie powers of ∆(G). The investigation of these series becomes rel-
evant in the study of Lie nilpotent (strongly Lie nilpotent, respectively)
group rings, namely those RG for which there exists an integer n
such that RG[n] = {0} (RG(n) = {0}, respectively). In particular, their
identification (which is known when R is a field) brings out the im-
pact of Lie structure of RG on the structure of G.

Along this line we propose to study two series naturally arising
in the area of Lie solvable group rings which appeared in the Problem
section of Oberwolfach meeting in 2007. Recall that in any ring A, we
let [x1, x2]◦ := [x1, x2] and, recursively,

[x1, . . . , x2n ]◦ := [[x1, . . . , x2n−1 ]
◦, [x2n−1+1, . . . , x2n ]◦].

The ring A is called Lie solvable if there exists an integer n such that
[x1, . . . , x2n ]◦ = 0 for any xi ∈ A. We define

δ[0](RG) := δ(0)(RG) := RG

and, for any n > 1, δ[n](RG) as the associative two-sided ideal gener-
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ated by all the Lie commutators of RG of the form [x1, . . . , x2n ]◦ and,
inductively

δ(n)(RG) := [δ(n−1)(RG), δ(n−1)(RG)]RG

(if δ(n)(RG) = {0} for some n, the group ring is said to be strongly Lie
solvable). Let us consider the normal subgroups of G

S[n](G) := G∩ (1+ δ[n](RG))

and
S(n)(G) := G∩ (1+ δ(n)(RG)).

Problem Compute the subgroups S[n](G) and S(n)(G) when R = Z or
a field.

The problem should be easier when G is a free group or R is a field.

A.K. Bhandari and Passi [“Residually Lie nilpotent group rings”,
Arch. Math. (Basel) 58 (1992), 1–6] and, independently, D.M. Riley
[“Restricted Lie dimension subgroup”, Comm. Algebra 19 (1991),
1493–1499] proved that if R is a field of characteristic different from 2
and 3, for any group G and integer n one has thatD(n)(G) = D[n](G).

Question 1 Is it true that S(n)(G) = S[n](G)?

Finally, a beautiful result of N. Gupta and F. Levin [“On the Lie
ideals of a ring”, J. Algebra 81 (1983), 225–231] establishes that for
any ring with unity A and any integer n > 1, if U(A) is its group of
units, then

γn(U(A)) ⊆ 1+A[n],

where γn(U(A)) is the n-th term of the lower central series of U(A).

Question 2 Is it true that δn(U(RG)) ⊆ 1+ δ[n](RG)?

Here δn(U(RG)) denotes the n-th term of the derived series of the
group U(RG), is true. This will provide an upper bound for the de-
rived length of U(RG) in terms of the Lie derived length of RG as well.

Sudarshan K. Sehgal
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ADV –2M

Let L be a finite-dimensional restricted Lie algebra over an alge-
braically closed field F of characteristic p > 0 with p-map x 7→ x[p]

for x ∈ L. It is well known that every irreducible L-moduleM is finite-
dimensional and admits a character χ ∈ HomF(L, F) such that the
central element xp − x[p] in the universal enveloping algebra of L acts
as the scalar χ(x)p onM for every x ∈ L. Under the assumption that L
is solvable, we proved in [J. Feldvoss, S. Siciliano and Th. Weigel:
“Restricted Lie algebras with maximal 0-PIM”, Transform. Groups 21

(2016), 377–398] that the number of isomorphism classes of irreduci-
ble L-modules with a fixed p-character is at most pMT(L), whereM(T)
denotes the maximal dimension of a torus in L. We ask in general the
following question.

Question Let L be a finite-dimensional restricted Lie algebra over an al-
gebraically closed field F of characteristic p > 0, and let χ be a linear
form on L. Is the number of isomorphism classes of irreducible L-modules
with p-character χ bounded above by pMT(L)?

Note that previous question is also quoted in [G. Benkart
and J. Feldvoss: “Some problems in the representation theory of
simple modular Lie algebras” in Lie Algebras and Related Topics,
Contemp. Math. 652 (2015), 207–228]; for further partial results on this
problem we refer to Section 4 of that paper and references therein.

Salvatore Siciliano
Thomas Weigel

ADV –2N

By a well known theorem of Roseblade (see [J. E. Roseblade: “On
groups in which every subgroup is subnormal”, J. Algebra 2 (1965),
402–412]), any group with all subgroups subnormal of a defect at
most n is nilpotent of class at most f(n), where f is some function
depending only on the positive integer n. This function is not well
understood in general. Restricting oneself to groups that are torsion-
free one knows however that f(n) = n for 6 4 (for n = 4 this was
proved in [H. Smith and G. Traustason: “Torsion-free groups with all
subgroups 4-subnormal”, Comm. Algebra 33 (2005), 4567–4585]).
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Question Are torsion-free groups with all subgroups n-subnormal always
nilpotent of class at most n?

Gunnar Traustason

ADV –2P

Let r(m) denote the residue class r+mZ, where 0 6 r < m. Given
disjoint residue classes r1(m1) and r2(m2), let the class transposition

τr1(m1),r2(m2)

be the permutation of Z which interchanges r1 + km1 and r2 + km2
for every k ∈ Z and which fixes everything else. The set of all class
transpositions generates a countable simple group CT(Z) < Sym(Z)
(see [S. Kohl: “A simple group generated by involutions interchang-
ing residue classes of the integers”, Math. Z. 264 (2010), 927–938]).

Question Let G < CT(Z) be a group generated by 3 class transpositions,
and let m be the least common multiple of the moduli of the residue classes
interchanged by the generators of G. Assume that G does not setwisely
stabilize any union of residue classes modulo m except for ∅ and Z, and
assume that the integers 0, . . . , 42 all lie in the same orbit under the action
of G on Z. Is the action of G on N0 necessarily transitive?

It is easy to see that the answer is positive for groups generated
by 3 class transpositions which interchange residue classes with the
same moduli (this is the case where no multiplications and no divi-
sions occur, and the group is always finite). Transitivity on N0 obvi-
ously cannot occur in this case.

There is computational evidence suggesting that there is, say, “a
reasonable chance” that the answer is positive in general. Note how-
ever that when replacing 42 by 41, the answer obviously gets negative
since the finite group

G2,3,7 := 〈τ0(2),1(2), τ0(3),2(3), τ0(7),6(7)〉

acts transitively on the set {0, . . . , 41} as well as on the set of residue
classes modulo 42. Therefore if true, the assertion is sharp.

The condition that the group does not setwisely stabilize any union
of residue classes modulo the least common multiple of the moduli
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of the residue classes interchanged by its generators is necessary, as
the example

Gnontrs := 〈τ0(2),1(2), τ0(2),3(4), τ4(9),2(15)〉

shows: while all integers 0, . . . , 87 lie in the same orbit under the
action of Gnontrs, this group stabilizes 88(90) ∪ 89(90) setwise, and
does therefore not act transitively on N0.

An example of a group which does act transitively is

Gtrs := 〈τ0(2),1(2), τ0(3),2(3), τ1(2),2(4)〉.

This group acts at least 5-transitively on N0. Since the group

GT := 〈τ0(2),1(2), τ1(2),2(4), τ1(4),2(6)〉

acts transitively on N0 if and only if the Collatz conjecture holds,
a positive answer to the question would also imply the Collatz con-
jecture [S. Kohl: “The Collatz conjecture in a group theoretic con-
text”, http://advgrouptheory.com/r/adv2g.php, submitted].
On the other hand, if the Collatz conjecture holds, this would (by
far!) not imply a positive answer to the question.

A positive answer to the question would mean that groups gener-
ated by 3 class transpositions are “well-behaved” in the sense that
for deciding transitivity, looking at very small numbers is sufficient,
and that for larger numbers “nothing can happen any more”. For a
discussion of the question, see http://advgrouptheory.com/r/
adv2g2.php.

Stefan Kohl

ADV –2Q

In order to study the involutive set-theoretic solution of the
Yang-Baxter equation, W. Rump in [“Braces, radical rings, and the
quantum Yang-Baxter equation”, J. Algebra 307 (2007), 153–170] intro-
duced a new algebraic structure called brace. A left brace is a set with
two operations + and ◦ such that (B,+) is an abelian group, (B, ◦) is
a group, and a ◦ (b+ c) + a = a ◦ b+ a ◦ c for all a,b, c ∈ B.

http://advgrouptheory.com/r/adv2g.php
http://advgrouptheory.com/r/adv2g2.php
http://advgrouptheory.com/r/adv2g2.php
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It is known that the multiplicative group (B, ◦) of any finite left
brace is solvable (see [P. Etingof, T. Schedler and A. Soloviev: “Set-
theoretical solutions to the quantum Yang-Baxter equation”, Duke
Math. J. 100 (1999), 169–209]). The class of finite groups that are the
multiplicative group of a left brace, shortly Involutive Yang-Baxter
Groups, includes, for instance, nilpotent groups of class at most 2,
abelian-by-cyclic groups (see [F. Cedó, E. Jespers and Á. del Río:
“Involutive Yang-Baxter groups”, Trans. Amer. Math. Soc. 362 (2010),
2541–2558]) and solvable groups such that all Sylow p-subgroups
are abelian (see [N. Ben David and Y. Ginosar: “On groups of I-type
and involutive Yang–Baxter groups”, J. Algebra 458 (2016), 197–206]).
Moreover, F. Eisele in [“On the IYB-property in some solvable
groups”, Arch. Math. (Basel) 101 (2013), 303–318] showed, with a com-
puter help, that any solvable group of order 6 200 and any p-group
of order < 1024 is an Involutive Yang-Baxter group.

Recently Rump in [“The brace of a classical group”, Note Mat. 34

(2014), 115–147], presented a p-group of order p10 which is not an
Involutive Yang-Baxter group. A detailed and comprehensive presen-
tation of this example can be found in [D. Bachiller: “Counterexam-
ple to a conjecture about braces”, J. Algebra 453 (2016), 160–176]. The
following problem, quoted explicitly in the paper of Cedó, Jespers
and del Río mentioned above, is therefore quite natural.

Question Which finite solvable groups are Involutive Yang-Baxter groups?

Francesco Catino

ADV –2R

An element g of a group G is called a (left) Engel element if for any
x ∈ G there exists n = n(x, g) > 1 such that [x,n g] = 1. As usual, the
commutator [x,n g] is defined recursively by the rule

[x,n g] =
[
[x,n−1 g], g

]
assuming [x, 0 g] = x. If n can be chosen independently of x, then g
is a (left) n-Engel element. A group G is called Engel if all elements
of G are Engel. Gruenberg showed in [“The Engel structure of linear
groups”, J. Algebra 3 (1966), 291–303] that the set of Engel elements
in a linear group is a locally nilpotent subgroup. By a linear group
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we understand here a subgroup of GL(m, F) for some field F and a
positive integer m.

We say that a group G is almost Engel if for every g ∈ G there is
a finite set E(g) such that for every x ∈ G all sufficiently long com-
mutators [x,n g] belong to E(g), that is, for every x ∈ G there is a
positive integer n(x, g) such that [x,n g] ∈ E(g) whenever n(x, g) 6 n.
Thus, Engel groups are precisely the almost Engel groups for which
we can choose E(g) = {1} for all g ∈ G. Almost Engel groups were in-
troduced in [E. I. Khukhro and P. Shumyatsky: “Almost Engel com-
pact groups”, https://arxiv.org/abs/1610.02079], where it
was proved that almost Engel compact groups are finite-by-(locally
nilpotent). Later it was shown in [P. Shumyatsky: “Almost Engel lin-
ear groups”, https://128.84.21.199/abs/1610.03126] that
almost Engel linear groups are finite-by-(locally nilpotent). In view
of Gruenberg’s results the following question now becomes interest-
ing.

Question Is the set of almost Engel elements in a linear group always a
subgroup?

Pavel Shumyatsky

https://arxiv.org/abs/1610.02079
https://128.84.21.199/abs/1610.03126
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