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Abstract
We study the effect under various rank restrictions of a group having an automor-
phism of prime power order whose fixed-point set is also finite of prime power order
for the same prime. Generally our conclusions are that the group has a soluble
normal subgroup of bounded derived length. Not surprisingly the bound gets larger
as the rank restrictions get weaker.
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1 Introduction

We study the effect on a group satisfying rank, sometimes very weak
rank, restrictions of having an automorphism of finite order and with
few fixed points. The central case in our discussion is that of a finite
extension of a soluble FAR group. These are defined and discussed
in [7], effectively as groups with series of finite length each factor
of which is either finite or abelian with finite torsion-free rank and
finite q-rank for every prime q. By a theorem, in fact by a much
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more general theorem of Baer and Heineken [1], these are exactly the
soluble-by-finite groups whose abelian subgroups have finite torsion-
free rank and finite q-rank for every prime q.

It is more convenient here, both for the proofs and since it suggests
fruitful generalizations, to work with a different but equivalent defi-
nition. A soluble-by-finite group G is FAR if (and only if) it has finite
Hirsch number and satisfies min-q for every prime q. A group G
has Hirsch number h if G has a series of finite length with exactly h
of the factors infinite cyclic, the remaining factors of the series being
locally finite; G satisfies min-q if it satisfies the minimal condition on
q-subgroups.

Let G be a group with finite Hirsch number h and φ an automor-
phism of G of finite order m and with its fixed-point CG(φ) of finite
order c. If m = p a prime then by Theorem D of [2] the group G has a
φ-invariant nilpotent normal subgroup of finite index (in fact index
bounded in terms of h, p and c only) of nilpotency class at most k(p),
where k(m) 6 2m−1 denotes the Kreknin integer-valued function of
m only, see [6], especially pages 83 and 94). Further if m = 22 then
in particular G is a finite extension of a soluble group of derived
length at most 3 whenever G is (torsion-free)-by-finite, see [8]. Thus
our main focus here will be on the case where m is not a prime but
is a power of a prime.

Our first theorem gives a general method for lifting results on au-
tomorphisms of finite groups to results on automorphisms of cer-
tain groups with finite Hirsch number. Unfortunately our, or rather
my, knowledge of finite groups with automorphism with few fixed
points is sufficiently limited that I have found Theorem 1 below less
useful that I would have hoped. It is, however, the basis of our proof
of Theorem 2 below.

Theorem 1.1 Let G be a group with finite Hirsch number h satisfying
min-q for every prime q. Let φ be an automorphism of G with m = |φ| and
c = |CG(φ)| both finite. Let H be any subgroup of G of finite index. Then
there exist characteristic subgroups L and M of G with L 6 M 6 H such
that G/L is finite, Mn 6 L for n = mh and CG/L(φ) 6 CG(φ)M/L.

Thus for example if m and c are π-numbers for some set π of
primes then CG/L(φ) is also a π-group. Notice that G in Theorem 1

need not be soluble-by-finite. If for finite groups G and suitable m
and c we knew that G must lie in a variety V, then for residually
finite (or even just locally residually finite) G as in Theorem 1 we
would hope to deduce that G also lies in V. For V we have in mind,
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for example, the variety of soluble groups of derived length at most d.
The following is the main result of this paper. For any group G, we
denote its unique maximal, locally finite, normal subgroup by τ(G).

Theorem 1.2 Let G be a group with finite Hirsch number satisfying
min-q for every prime q. Let φ be un automorphism of G and m = pµ

and c = pγ powers of the prime p suche that φm = 1 and |CG(φ)| = c. Set
µ ′ = µ if p is odd; if p = 2 set µ ′ = 2µ− 2 if m > 2 and µ ′ = 1 otherwise.
The following hold.

a) If τ(G) is finite and if G is a finite extension of a residually finite
p-group, then G is a finite extension of a soluble group with derived
length at most 2k(m), where k(m) is the Kreknin function.

b) If τ(G) is finite, then G is a finite extension of a soluble group of
derived length at most 2k(m) + 1.

c) If τ(G) is a Chernikov group, then G is a finite extension of a soluble
group of derived length at most 2k(m) + 2.

d) If Op ′(G) is finite, then G is a finite extension of a soluble group of
derived length at most 2k(m) + 2.

e) If G = Op ′(G), then G has a characteristic subgroup S of finite index
such that S has a characteristic series of length µ ′ with all its factors
hypercentral groups. If G is locally soluble we may choose S = G.

f) The group G has a characteristic series with its first µ ′ factors hy-
percentral p ′ groups, its next 2k(m) + 2 factors abelian and its top
factor finite.

Notice that this theorem covers all finite extensions of soluble FAR
groups. Further Part b) covers all polycyclic groups and Part c) cov-
ers all soluble-by-finite FATR groups and hence also all soluble-by-
finite minimax groups, see [7] Page 86 for definitions. In connection
with Part a), various equivalent conditions for G to be a finite exten-
sion of a residually finite-p group are given by the theorem of [10].
The main claim of Part f) can be expressed more succinctly in P.
Hall’s symbolic notation as G ∈ (LN)µ

′
A2k(m)+2F. The factors in

the series in f) all have central height at most ω2. At the expense of
extending the series by an additional abelian factor we can arrange
for all these factors to have central height at most ω.
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In Theorem 1.2 suppose for a particular m = pµ there exists a
positive integer d(m) such that for every prime q 6= p if a finite
q−subgroupQ has a fixed-point-free automorphism of orderm, then
Q has derived length at most d(m) (and of course such a d(m) does
exist if m = p or if m = 4). Then one can easily deduce from Theo-
rem 1.2 that G in Theorem 1.2 has a soluble characteristic subgroup
of finite index and derived length at most d(m)µ ′+ 2k(m)+ 2. At the
end of this paper we discuss the special case where p = 2 and m = 4.

2 The Proofs
In the main we work with weaker hypotheses than Theorems 1.1
and 1.2 might suggest. In particular Lemmas 2.5 and 2.7 below are
effectively Theorems 1.1 and 1.2 but with weaker hypotheses.

Lemma 2.1 Let φ be an automorphism of a group G and S φ−invariant,
locally finite, normal subgroup of G. If CS(φ) = 〈1〉 and if φ|S has finite
order, then CG|S(φ) = CG(φ)S/S.

Proof — See [9] Proposition 14b). ut

Lemma 2.2 Let A a periodic divisible abelian normal subgroup of a group
G with A having finite q−rank for every prime q. Suppose φ is an auto-
morphism of G with Aφ = A and with CA(φ) finite. Then CG/A(φ) =
CG(φ)A/A.

Proof — Let γ : g 7→ g−1(gφ) for g ∈ G, C = CG(φ) and K/A =
CG/A(φ). Now γ|A is an endomorphism of A, so Aγ is divisible and
A = Aγ× B for some divisible subgroup B of A. Further C ∩A is
finite and Aγ ' A/(C ∩A). But A and Aγ are both periodic divisi-
ble abelian and now with the same finite q−rank for every prime q.
Consequently B = 〈1〉 and Aγ = A.

Let k ∈ K. Then kγ ∈ A, so kγ = aγ for some a in A. Thus

k−1(kφ) = a−1(aφ), (ka−1)φ = ka−1 and ka−1 ∈ C.

Therefore K 6 CA. Trivially CA 6 K. ut

Lemma 2.3 Let φ be an automorphism of a group G and m a positive in-
teger with φm = 1. Suppose A is an abelian φ-invariant normal subgroup
of G and set C = CG(φ) and K = {g ∈ G : g−1(gφ) ∈ Am}. If A ∩C is
m-torsion free, then K = C(A∩K).
Proof — See [9] Lemma 15. ut
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Lemma 2.4 Let 〈1〉 6 T = H0 < H1 < · · · < Hr = H 6 G be a charac-
teristic series of the group G such that T is a finite group of order dividing t
and exponent dividing e and each Hi/Hi−1 is torsion-free abelian of finite
rank. Let h bound above the Hirsch number

∑
i rank(Hi/Hi−1) of H. Sup-

pose m is a positive integer and φ is an automorphism of G with φm = 1.
Then there exist integer-valued functions s(h,m, t) and n(r,m, e) of the
exhibited variables only and characteristic subgroups L 6M of H with

(H :M) 6 s(h,m, t), Mn(r,m,e) 6 L and CG/L(φ) 6 CG(φ)M/L.

Note that r 6 h and e divides t, so if we wish we may replace
n(r,m, e) by a function n(h,m, t) with the same variables as s.

Of course Lemma 2.4 is only of interest ifH < G. There is in general
no best choice for s and n in that there is scope to increase/decrease s
by decreasing/increasing n. As a trivial example suppose r = 0. Then
we may choose M = H, L = 〈1〉, s(0,m, t) = 1 and n(0,m, e) = e.
Alternatively we may choose M = L = 〈1〉, s(0,m, t) = t and
n(0,m, e) = 1. The proof of Lemma 2.4 can be used to arrive at the
small value n(r,m, e) = mr, which is independent of e note, but this
requires a really large choice for s(h,m, t). Our proof below uses in-
duction on r.
Proof — Using induction on r we construct n(r,m, e) and also a
function s(r;h,m, t) bounding (H : M). Trivially 0 6 r 6 h, so we
then set

s(h,m, t) = max
06r6h

s(r;h,m, t).

If r = 0 set M = L = 〈1〉, s(0;h,m, t) = t and n(0,m, e) = 1. Suppose
r > 0 and assume we have defined s(r− 1;h,m, t) and n(r− 1,m, e)
for all relevant values of h,m, t and e. Set C = CG(φ).

If K denotes CG(T), then clearly (G : K) divides t! and H1 ∩ K
is nilpotent of class at most 2. Also H1 ∩ K is (central of exponent
dividing e)-by-(torsion-free abelian). Consequently if f = e2, then
X = (H1 ∩K)f is torsion-free abelian. Then with Y=(H1 ∩K)fm=Xm,
Lemma 2.3 yields that

C1 = CG/Y(φ) 6 CX/Y 6 C(H1 ∩K)/Y.

In particular if r = 1 we may set L = Y and M = X, with
s(1;h,m, t) = (t!)t2h+1 and n(1,m, e) = m. Alternative we may
choose M = H1 ∩K, s(1;h,m, t) = t! and n(1,m, e) = e2m.

Now assume that r > 2. Clearly (H1 ∩ K)/Y has exponent di-
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viding fm and order dividing t(fm)h. Apply induction on r to
(H∩K)/Y 6 G/Y. Then there exist characteristic subgroups L 6 M1
of H∩K with Y 6 L,

(H∩K :M1) 6 s(r− 1;h,m, t(fm)h),

(M1)
n(r−1,m,fm) 6 L,

CG/L(φ) 6 C1(M1/Y)/(L/Y) 6 CXM1/L.

Thus set M = XM1, s(r;h,m, t) = s(r− 1;h,m, t(fm)h)(t!) and
n(r,m, e) = n(r−1,m, e2m)m (alternatively setM = (H1∩K)M1 and
n(r,m, e) = n(r− 1,m, e2m)e2m). In particular, with the first choice
of M, if n(r− 1,m, e) = mr−1, then n(r,m, e) = mr. ut

Let G be a group with finite Hirsch number at most h and with
τ(G) (locally soluble)-by-finite. Suppose G satisfies min-p for all p in
some finite set π of primes. Then G has a characteristic series

〈1〉 6 S 6 T = H0 < H1 < · · · < Hr = H 6 G,

where S is a π ′-group (= Oπ ′(H) in fact), T/S is a divisible abelian
π-group of finite rank, each Hi/Hi−1 is torsion-free abelian (neces-
sarily of finite rank; also T = τ(H)) and G/H is finite (use [5] 3.17

& 3.13 and [9] Lemmas 4 & 6).

Lemma 2.5 With the notation above let φ be an automorphism of G and
m and c (finite) π-numbers with φm = 1 and |CG(φ)| = c. Then G has
characteristic subgroups L and M with T 6 L 6M 6 H such that (G : L)
is finite, Mn 6 L for n = mr and CG/L(φ) 6 CG(φ)M/L. Further
CG/L(φ) is a finite π-group; indeed its order divides cmrh.

Proof — Clearly CS(φ) = 〈1〉. Hence by Lemma 2.1 we have
CG/S = CG(φ)S/S. Then by Lemma 2.2 we have CG/T (φ) =
CG/S(T/S)/(T/S) = CG(φ)T/T . Consequently by Lemma 2.4 and the
comments there after there exist characteristic subgroups L and
M of G with T 6 L 6 M 6 H, (G : L) finite, Mn 6 L and
CG/L(φ) 6 CG/T (φ)(M/T)/(L/T) = CG(φ)M/L. Clearly the order of
CG/L(φ) divides |CG(φ)|(M : L). The latter divides the π-number
cmrh. The proof of the lemma is complete. ut

Lemma 2.6 Let G be a group with finite Hirsch number. Suppose φ is an
automorphism of G of finite order m and m is a power of the prime p. If
CG(φ) satisfies min-p, then G also satisfies min-p.
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Proof — Suppose that m > p and that CG(φm/p) satisfies min-p
(which we know holds true if m = p). Then φm/p has order p and
hence G satisfies min-p by [5] 3.2. Clearly φ has order dividing
m/p on CG(φm/p) > CG(φ). A simple induction on m completes
the proof. ut

Lemma 2.7 Let G be a group with finite Hirsch number at most h. Sup-
pose p is a prime, φ an automorphism of G andm = pµ and c = pγ powers
of p such that φm = 1 and |CG(φ)| = c. Set µ ′ = µ if p is odd; if p = 2
set µ ′ = 2µ− 2 if m > 2 and µ ′ = 1 otherwise. Assume τ(G) is (locally
soluble)-by-finite. Then the following hold.

a) If τ(G) is finite and if G is a finite extension of a residually finite
p-group, then G is a finite extension of a soluble group with derived
length at most 2k(m), where k(m) is the Kreknin function.

b) If τ(G) is finite, then G is a finite extension of a soluble group of
derived length at most 2k(m) + 1.

c) If τ(G) is a Chernikov group, then G is a finite extension of a soluble
group of derived length at most 2k(m) + 2

d) If Op ′(G) is finite, then G is a finite extension of a soluble group of
derived length at most 2k(m) + 2.

e) If G = Op ′(G), then G has a characteristic subgroup S of finite index
such that S has a characteristic series of length µ ′ with all its factors
locally nilpotent. If G is locally soluble we may choose S = G.

f) The group G has a characteristic series with its first µ ′ factors locally
nilpotent p ′-groups, its next 2k(m) + 2 factors abelian and its top
factor finite.

Proof — By Lemma 6 the group G satisfies min-p.

a) Here G has a characteristic subgroup N of finite index that is
residually finite-p and has a characteristic series

〈1〉 = N0 < N1 < · · · < Nr = N

with each factor Ni/Ni−1 torsion-free and abelian (we are us-
ing here that τ(G) is finite and also Lemmas 4 & 6 of [9]). We
prove that there is a positive integer e, in fact depending only
on p, µ, γ, & h, such that Ne is soluble with derived length at



28 B.A.F. Wehrfritz

most 2k(m). Since (G : Ne) is clearly finite (its order divides
(G : N)eh), the proof of Part a) will be complete.

Let H be any characteristic subgroup of N with N/H a fi-
nite p-group. By Lemma 5 there exist characteristic subgroups
L 6M of H with (G : L) finite, with Mn 6 L for n = mr and
with

CG/L(φ) 6 CG(φ)M/L.

Then the order of CG/L(φ) divides p to the power of γ+ µrh.
There exists a Sylow p-subgroup P/L of G/L normalized by φ
(since the number of such Sylow subgroups is congruent to 1
modulo p). Hence P contains a normal subgroup Q > L such
that (P : Q) is (p,µ,γ,h)-bounded and such that Q/L has de-
rived length at most 2k(m) by 12.15 of [6]. Finally P covers N/H,
so there exists an integer e independent of the choice of H such
that NeH/H has derived length at most 2k(m). But ∩HH = 〈1〉.
Therefore Ne is soluble of derived length at most 2k(m), thus
completing the proof of Part a).

b) Denote the d-th derived subgroup of a group D by D(d). There
exist subgroups R 6 N of G with R torsion-free nilpotent, N/R
finitely generated, abelian and G/N finite (since τ(G) is finite,
by Lemmas 4 & 6 of [9] G is soluble-by-finite and thus we can
apply [7] 5.2.2 and 5.2.3). If X is a finite subset of R, then Y =
〈X〈φ〉〉 is finitely generated, torsion-free and nilpotent. There-
fore Y is residually a finite p-group. Thus we can apply the
proof of part a) to Y, choosing Y itself for the subgroup N there.
Hence there exists a positive integer e, dependent on G but not
on the choice of X, such that (Ye)(2k(m)) = 〈1〉. This is for all
such X and hence (Re)(2k(m)) = 〈1〉. But R/Re is finite, for exam-
ple of order dividing eh. Hence G/Re is finitely generated and
abelian-by-finite. Therefore there is a characteristic subgroup
S > Re of G with S/Re abelian and G/S finite. Clearly S is solu-
ble of derived length at most 2k(m) + 1. Part b) is proved.

c) Let D denote the minimal subgroup of τ(G) of finite index.
Then D is abelian and τ(G/D) is finite. By Part b) and Lemma 2

the group G/D is a finite extension of a soluble group with de-
rived length at most 2k(m)+ 1. Therefore G is a finite extension
of a soluble group of derived length at most 2k(m) + 2.

d) Now τ(G) is (locally soluble)-by-finite, so (τ(G) : Op ′p(G)) is
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finite by min-p and [5] 3.17 and Op ′p(G)/Op ′(G) is Chernikov.
Therefore τ(G) is Chernikov and Part d) follows from Part c).

e) Clearly here CG(φ) = 〈1〉. By hypothesis G has a locally soluble
normal subgroup S of finite index and we may choose such S
with S = Sφ (if G is locally soluble choose S = G). Let X denote
the set of φ−invariant finite subgroups of S.
Since G here is locally finite and |φ| is finite, X is a local system
of S. For X ∈ X let SX denote the set of all normal series of X
of length µ ′ (running from 〈1〉 to X of course) with each factor
nilpotent (and possibly trivial). Clearly SX is finite; by [4] IX.6.4
and IX.6.9 it is also non-empty. If X 6 Y ∈ X then intersection
with X defines a map λYX of SY into SX and {λYX : X, Y ∈ X with
X 6 Y} is an inverse system of non-empty finite sets. Therefore
its inverse limit is also non-empty (e.g. [5] 1.K.1).

Let (NX,i : 0 6 i 6 µ ′) ∈ SX with {(NX,i) : X ∈ X} lying in this
inverse limit. Set Ni = ∪XNX,i for each i for 0 6 i 6 µ ′. Then
the Ni form a normal series of S of length µ ′. Also X ∩Ni =
NX,i for each X and i and hence

(X∩Ni+1)Ni/Ni ' (X∩Ni+1)/(X∩Ni) = NX,i+1/NX,i.

Thus each factor Ni+1/Ni is locally nilpotent. By the Hirsch-
Plotkin Theorem we can replace the Ni (and hence also S) by
characteristic subgroups of G.

f) Apply e) to Op ′(G). With S as in e) clearly CS(φ) = 〈1〉 and
then CG/S(φ) = CG(φ)S/S by Lemma 2.1. Now apply Part d)
to G/S.

ut
Proof of Theorems 1 and 2 — In Theorems 1.1 and 1.2 the group
G satisfies min-q for every prime q and therefore τ(G) is (locally
soluble)-by-finite by Belyaev’s Theorem, see [3] 3.5.15.
Theorem 1.1 is now immediate from Lemma 2.5. It is easy to see that
a periodic locally nilpotent group satisfying min-q for every prime q
is a hypercentral. Thus Theorem 1.2 follows from Lemma 2.7. ut

A special case — In Lemma 2.7 suppose p = 2 and m = 4. Then in
Part b) of the lemma from [8] we know that G is a finite extension
a soluble group of derived length at most 3. Thus in Parts c) and d)
we obtain that G is a finite extension of a soluble group of derived
length at most 4. For Part e) a simple localization argument (simpler
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that the argument needed for the proof of Part e) in general) and the
finite case yield that for Part e) the group G is soluble of derived
length at most 3 (no finite extension needed here).
Finally, therefore, we arrive at the conclusion that in general if m = 4
then G is a finite extension of a soluble group of derived length at
most 7. I would be surprised if 7 is actually the best value.
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