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Abstract
Using the main theorem from [1] that characterizes containment of subgroups in a
direct product, we provide a characterization of maximal subgroups contained in
a direct product. We also provide an example of our main theorem to a maximal
subgroup in A4 ×A4.
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1 Introduction

In [1], we specify exact conditions on two subgroups U1 and U2 of
the direct product of two groups A and B that characterize when
U2 6 U1. As applications, we calculated and presented the subgroup
lattice of Q8 ×Q8, where Q8 is the quaternion group of order 8. The
second author has several other similar examples, as well as more
details of technicalities, in her dissertation [2]. The groups used are
supersolvable, even nilpotent, which made order of subgroup suffi-
cient for determining maximality of one subgroup in another.
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The article [4] tackled finding the maximal subgroups of a direct
product, but to apply the ideas of [1] to get the subgroup lattice of a
non-supersolvable group we want a characterization of the maximal
subgroups of a subgroup of a direct product. That is what the main
theorem in this article accomplishes.

We conclude by applying our main theorem to compute the sec-
ond maximal subgroups in A4 ×A4 that are maximal in a maximal
subgroup of A4 ×A4 that is of diagonal type.

2 Preliminaries

Basic to our results, as well as those in [4], is what is sometimes called
Goursat’s Theorem, which gives full description of the subgroups of
a direct product of two groups.

For groups A, B and U 6 A× B, we use I = πA(U), L = πB(U),
where π denotes the projection to the respective coordinate groups,
and J = A ∩U, K = U ∩ B (we think of direct products internally for
the most part). Then there is an isomorphism σ : I/J −→ L/K and U
is completely determined by U = {ab|(aJ)σ = bK}.

We associate U to the triple (I/J, L/K,σ). We will be concerned
with two subgroups U1 and U2 of A× B and their associated triples
(Ii/Ji, Li/Ki,σi), for i = 1, 2.

Lemma 2.1 Let U1,U2 6 G = A× B. If U2 < · U1 and J1 × K1 � U2,
then I2J1 = I1 and L2K1 = L1.

Proof — Since U2 < · U1, U1 = U2(J1 ×K1). Then

I2J1 = πA(U2(J1 ×K1)) = πA(U1) = I1.

Similarly, one can prove L2K1 = L1. ut

Theorem 2.2 ([1], Theorem 2.4) Let U1,U2 6 G = A× B with cor-
responding triples (In/Jn, Ln/Kn,σn) for n = 1, 2. Then U2 6 U1 if
and only if for X ∈ {I, J,K, L}, X2 6 X1, (I2J1/J1)

σ1 = L2K1/K1,
((I2 ∩ J1)/J2)σ2 = (L2 ∩K1)/K2 and σ1θ2 = θ1σ2, where for n = 1, 2,
θn, σn are as defined in [1].

Observation It is routine to verify (and we use frequently) that if
U2 6 U1 (in the notation of 2.2) and X1 = X2, for all X ∈ {I, J,K, L},
then U2 = U1. That is, σ1 = σ2.
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Lemma 2.3 If φ : X→ Y is an epimorphism with M <·X, then φ(M)=Y
or φ(M) < · Y.

Proof — Suppose φ(M) < R. Then M < φ−1(R). Since φ is onto,
φ−1(R) 6= X. Therefore, φ−1(R) =M. ut

One generally thinks of subgroup lattices of finite groups [3], but
our results need the following property.

Property 2.4 If M 6 N are subgroups of a group G, then G/M ' G/N
if and only if M = N.

Of course finite groups have this property and are predominantly
in our mind, but should one want a bit more generality, only Pro-
perty 2.4 is required to establish our results.

3 The Main Theorem

Assume all groups and subgroups thereof satisfy Property 2.4.

Theorem 3.1 Suppose Un 6 A × B with Un corresponding to the
triple (In/Jn, Ln/Kn,σn) , where n = 1, 2. Then U2 < · U1 if and only if

(i) U2 6 U1, and

(ii) (I.) If J1 ×K1 6 U2, then I2 < · I1.

(II.) If J1 ×K1 � U2, then either

(a) K1 6 U2 and consequently I2 < · I1 and L2 = L1, or

(b) J1 6 U2 and consequently L2 < · L1 and I2 = I1, or

(c) J1 � U2 and K1 � U2 and consequently I2 = I1, L2 = L1,
and J1/J2 is a chief factor of I1.

Proof — “=⇒"
In case (I.), observe that J1 = J2 and K1 = K2. Now, U1/(J1 ×K1) '
I1/J1 via projections and the image of U2/(J1 ×K1) is I2/J1. Hence,
I2 < · I1. Consequently, L2 < · L1. It is not possible for I2 = I1 and
L2 = L1 for this would mean U2 = U1, contradicting U2 < · U1.

For (II.)(a), note K1 = K1 ∩U2 = (A ∩U1) ∩U2 = A ∩U2 = K2 and
from U2 6 U1, we know



134 Ben Brewster – Dandrielle Lewis

((I2 ∩ J1)/J2)σ2 = (L2 ∩K1)/K2 = K2/K2 = 1.

Therefore, σ2 : I2/J2 −→ L2/K2 is an isomorphism, and hence
(I2 ∩ J1)/J2 = 1. Thus, I2 ∩ J1 = J2. From 2.1, we know I2J1 = J1.
Thus,

L1/K1 ' I1/J1 = I2J1/J1 ' I2/(I2 ∩ J1) = I2/J2 ' L2/K2.

If L2 < L1, then L2/K2 < L1/K1 ' L2/K2. So, L2 = L1.
If I1 = I2, then J1 = J2. This means U2 = U1, contrary to U2 < · U1.

Then, by 2.3, I2 < · I1.

(II.)(b) can be proved analogously with respect to factors.

For (II.)(c), we know U2 6 U2K1 6 U1 and U2K1 6= U2 since K1 � U2.
So, U2K1 = U1. Then I1 = πA(U1) = πA(U2K1) = I2. Similarly, we
can consider U2 < U2J1 6 U1 and use J1 � U2 to get L1 = L2.

Observe that U1 = U2J1 and U2∩ J1=U2 ∩ (U1 ∩A)=U2 ∩A= J2.
To show J1/J2 is a chief factor of I1, suppose N is I1−invariant with
J2 < N < J1 and consider U2 6 U2N 6 U1.

If U2 = U2N, then N 6 U2. Since N 6 A, N 6 U2 ∩A = J2, which
is a contradiction to our assumption.

If U1 = U2N, then J1 = J1 ∩U2N = (J1 ∩U2)N = J2N = N, con-
trary to our assumption.
Therefore, there does not exist such an N, and J1/J2 is a chief factor
of I1. Similarly, K1/K2 is a chief factor of L1.

“⇐="
Case 1 Assume (i) and (ii)(I.) holds. Note J1×K1 6 U2 and I2 < · I1.

Then πA :U1/(J1×K1)→I1/J1 is an isomorphism, and π−1A (I2/J1)=
U2/(J1 ×K1). By 2.3, U2/(J1 ×K1) < · U1/(J1 ×K1). Therefore, by
correspondence, U2 < · U1.

Case 2 (subcase 1) Assume (i) and (II.)(a) holds. Note J1 × K1 � U2,
K1 6 U2, I2 < · I1 and L2 = L1.

K2 = U2 ∩B = U2 ∩U1 ∩B = U2 ∩K1 = K1.

Let U2 6 W 6 U1, where W = (I/J, L/K,σ). Then L = L1 = L2,
K = K1, I2 6 I 6 I1, and J2 6 J 6 J1. Since I2 < · I1, I = I2 or I = I1.

If I = I1, then J = J1 since

I1/J = I/J ' L/K = L1/K1 ' I1/J1.
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Hence, W = U1.
If I = I2, then J = J2 since

I2/J = I/J ' L/K = L1/K1 = L2/K2 ' I2/J2.

Hence, W = U2. Therefore, U2 < · U1.

Case 2 (subcase 2) Assume (i) and (II.)(b) holds. This proof is analo-
gous, with respect to factors, to the proof of subcase 1.

Case 2 (subcase 3) Assume (i) and (II.)(c) holds. Note J1 � U2, K1 � U2,
I2 = I1, L2 = L1, and J1/J2 is an I1-chief factor. Let U2 6 W 6 U1,
where W = (I/J, L/K,σ). Then I = I1 = I2 and L = L1 = L2. Thus,
JC I = I1 and J = J1 or J = J2.

If J = J1, then

L1/K = L/K ' I/J = I1/J1 ' L1/K1.

Since K 6 K1, K = K1. Hence, W = U1.
If J = J2, then

L2/K = L/K ' I/J = I2/J2 ' L2/K2.

Since K2 6 K, K = K2. Hence, W = U2. Therefore, U2 < · U1. ut

4 An Example

To see Theorem 3.1 at work, we will consider the direct product
A4 ×A4, where A4 is the alternating group of order 12. There are
216 subgroups of A4×A4, which include the trivial subgroup, 12 sub-
groups of order 2, 43 subgroups of order 3, 35 subgroups of order 4,
24 subgroups of order 6, 15 subgroups of order 8, 16 subgroups of or-
der 9, 50 subgroups of order 12, 1 subgroup of order 16, 6 subgroups
of order 24, 8 subgroups of order 36, 4 subgroups of order 48, and
the group itself. Establishing the notation for the subgroups of A4,
we denote the Klein 4-group as V , and the four cyclic groups of or-
der 3 as Fi = 〈fi〉, where 1 6 i 6 4.

Let U1 be the subgroup of order 48 corresponding to the triple

(A4/V ,A4/V , id).
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Using Theorem 3.1, (II.)(c), U1 < · A4 ×A4. To determine the maxi-
mal subgroups, U2, contained in U1,we need to verify Theorem 3.1 (i)
and (ii).

Observe that verifying (i) for U2 is routine, and so we proceed to
verify (ii). For U1, note J1 = K1 = V , and I1 = L1 = A4.

If V ×V 6 U2 and I2 < · A4, then I2 = V . So, (ii)(I.) gives one max-
imal subgroup that corresponds to the triple (V/V ,V/V , id), which is
the direct product V × V .

If V × V � U2, V 6 U2, I2 < · A4 and L2 = A4, then I2 = Fi and
K2 = V . So, (ii)(II.)(a) gives 4 maximal subgroups that correspond to
the triples (Fi/1,A4/V , id), which is (1× V)〈(fi, fi)〉.
Analogously, with respect to factors, (ii)(II.)(b) gives 4 maximal sub-
groups that correspond to the triples (A4/V , Fi/1, id), which is
(V × 1)〈(fi, fi)〉.

If V × V � U2, J1 = K1 = V � U2, I2 = A4, L2 = A4, and V/J2 is
an A4-chief factor, then J2 = 1 = K2. So, (ii)(II.)(c) gives 12 maximal
subgroups that correspond to the triples (A4/1,A4/1, τa), where τa,
a ∈ A4, is the inner automorphism induced by a. More specifically,
these subgroups are diagonal subgroups of A4×A4. In order to have
set containment, a must be an even permutation.

Therefore, (ii) is satisfied, and by Theorem 3.1, U1 contains 21 max-
imal subgroups, including 1 of order 16 and 20 of order 12.
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