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Abstract

Using the main theorem from [1] that characterizes containment of subgroups in a
direct product, we provide a characterization of maximal subgroups contained in
a direct product. We also provide an example of our main theorem to a maximal
subgroup in A4 X Aj.
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1 Introduction

In [1], we specify exact conditions on two subgroups U; and U; of
the direct product of two groups A and B that characterize when
U, < Uy. As applications, we calculated and presented the subgroup
lattice of Qg x Qg, where Qg is the quaternion group of order 8. The
second author has several other similar examples, as well as more
details of technicalities, in her dissertation [2]. The groups used are
supersolvable, even nilpotent, which made order of subgroup suffi-
cient for determining maximality of one subgroup in another.
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The article [4] tackled finding the maximal subgroups of a direct
product, but to apply the ideas of [1] to get the subgroup lattice of a
non-supersolvable group we want a characterization of the maximal
subgroups of a subgroup of a direct product. That is what the main
theorem in this article accomplishes.

We conclude by applying our main theorem to compute the sec-
ond maximal subgroups in A4 x A4 that are maximal in a maximal
subgroup of A4 x A4 that is of diagonal type.

2 Preliminaries

Basic to our results, as well as those in [4], is what is sometimes called
Goursat’s Theorem, which gives full description of the subgroups of
a direct product of two groups.

For groups A, B and U < A x B, we use I = ma(U), L = g (U),
where 7 denotes the projection to the respective coordinate groups,
and ] = ANU, K=UNB (we think of direct products internally for
the most part). Then there is an isomorphism o : /] — L/Kand U
is completely determined by U = {ab|(a])? = bK}.

We associate U to the triple (I/],L/K, o). We will be concerned
with two subgroups U; and U; of A x B and their associated triples
(Ii/li/ Li/Ki, O'i), fori= ],2.

Lemma 2.1 Let Uy, Uy <G =AxB. IfU; <-Ujand J1 x Ky f u,,
then 15]7 =17 and LKy = L.

Proor — Since U, < - Uy, Uy = Uz(]] x Kj ) Then

L1 =ma(Uz(]1 x Ky)) =7ma(Uy) =15.
Similarly, one can prove ;K7 = L;. O

Theorem 2.2 ([1], Theorem 2.4) Let U;,U,; < G = A x B with cor-
responding triples (In/Jn, Ln/Kn, on) for n = 1,2. Then U, < Uy if
and only if for Xe{l,],K L}, Xz < Xy, (12]1/11)01 = LyKy/Ky,
(I,n Ty )/]2)02 = (L, NKy)/Ky and 10, = 0107, wherefor n=1,2
On, On are as defined in [1].

Observation It is routine to verify (and we use frequently) that if
U, < Uy (in the notation of 2.2) and X; = X, for all X € {[,],K, L},
then U, = Uy. That is, 07 = 03.
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Lemma 2.3 If ¢ : X — Y is an epimorphism with M <- X, then $(M)=Y
or (M) < -Y.

ProoF — Suppose ¢$(M) < R. Then M < ¢~ 1(R). Since ¢ is onto,
¢~ T(R) # X. Therefore, ¢~ T(R) = M. O
One generally thinks of subgroup lattices of finite groups [3], but

our results need the following property.

Property 2.4 If M < N are subgroups of a group G, then G/M ~ G/N
if and only if M = N.

Of course finite groups have this property and are predominantly
in our mind, but should one want a bit more generality, only Pro-
perty 2.4 is required to establish our results.

3 The Main Theorem

Assume all groups and subgroups thereof satisfy Property 2.4.

Theorem 3.1 Suppose U, < A x B with Uy corresponding to the
triple (In/Jn, Ln/Kn, on), wheren =1,2. Then U, < - Uy if and only if

(i) Uy < Uy, and

(i) (L) If J1 x Ky < Uy, then I < - 1Ij.
(IL) If J1 x Ky £ Uy, then either
(a) K1 < Uy and consequently 1 < -1y and L, =Ly, or
(b) J1 < Uy and consequently Ly < - Ly and I; =15, or

(c) J1 £ Uy and Ky £ Uy and consequently I =1y, Ly = Ly,
and J1 /]2 is a chief factor of 1.
Proor — ="
In case (I.), observe that J; = ], and Ky = K. Now, U;/(J1 x Ky) =~
I1/]1 via projections and the image of U, /(J1 x Ky) is I5/]1. Hence,
I < -Ij. Consequently, L, < - Lj. It is not possible for I, = I; and
L, = L; for this would mean U, = Uy, contradicting U, < - Uj.

For (I.)(a), note K1 =K1y NU,; = (ANnU;)NnU, = AnU, =K, and
from U, < Uy, we know
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(12NJ1)/]2)°% = (LN Ky) /Ky =Ky /Ky = 1.

Therefore, o, : I;/], — L2/K; is an isomorphism, and hence
(I.NJ1)/J2 =1. Thus, [N ]; = J2. From 2.1, we know 1] = J;.
Thus,

Li/Ky ~1i/J1 =L/ =2 L/(Ixn 1) =12/]2 ~ L /K;.

IfL, <Ly, thenl,/Ky; <L1/Ky ~1,/K,. 50,15 =L;.
If I; = I,, then J; = J,. This means U, = U, contrary to U, < - Uj.
Then, by 2.3, I, < - I5.

(I1.)(b) can be proved analogously with respect to factors.

For (I1.)(c), we know U, < UKy < Uy and U, Ky # U, since K; f U,.
So, UpKy = Uy. Then I1 = A (Uy) = ma (UKy) = I,. Similarly, we
can consider Uy < U,J; < Uy and use J; « U, to get Ly = L,.

Observe that Uy = UyJ; and UpN =W, N (U3 NA)=U, NA=]).
To show J1/] is a chief factor of I;, suppose N is [1 —invariant with
J2 < N < J; and consider U,; < UpN < U;.

If Uy, = U)N, then N < Uy. Since N < A, N < Uy, NA =];, which
is a contradiction to our assumption.

If U; = UyN, then J; = J1NnUN = (JyNnU2)N = J,N = N, con-
trary to our assumption.
Therefore, there does not exist such an N, and ] /], is a chief factor
of Iy. Similarly, K7 /K3 is a chief factor of L.

“” "

P
Case 1 Assume (i) and (ii)(I.) holds. Note J; x Ky < U and I, < - I;.

Then 7ta : U /(J1 xKq1)—1;/]; is an isomorphism, and 71;\1 (Io/]1) =
Uz/(]] x Kj ) By 2.3, Uz/(]] X K]) < - U]/(]] x Kj ) Therefore, by
correspondence, U, < - Uj.

Case 2 (subcase 1) Assume (i) and (IL)(a) holds. Note J; x K; £ Uy,
Ki<U,, Lh<-Ijand Ly =1L;.
Koy=U,NnB=U,NnU;NB =U;NKy =Kj.

Let Uy < W < Uy, where W = (I/],L/K,0). Then L = L; = L,
K=Ky, L <I<Ij,and J, <J<Jy.Sincel, < -1, 1= orI=1;.
If I =14, then ] =J; since

Li/]=1/]~L/K=L;/Ky ~I1/];.
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Hence, W = U;.
If I =1, then ] =], since

L/]=1/]=L/K=11/K; =L2/K; =~ I1/]>.
Hence, W = U,. Therefore, U, < - Uj.

Case 2 (subcase 2) Assume (i) and (II.)(b) holds. This proof is analo-
gous, with respect to factors, to the proof of subcase 1.

Case 2 (subcase 3) Assume (i) and (IL.)(c) holds. Note J; « Uy, Ky £ Uy,
I, =1;, L, =Ly, and J; /]2 is an I;-chief factor. Let U, < W < Uy,
where W = (I/],L/K,0). Then I = I1 = I, and L =1; =L,. Thus,
J<I=ILand J =] or]=],.

If | = 1, then

Li/K=L/K~=1/J=1L/]1 = Li/Kj.

Since K < Ky, K=Ky. Hence, W = U;.
If ] =J,, then

L/K=L/K=1l/]=1/]2 =~ L2/K;.

Since K, < K, K =K,. Hence, W = U,. Therefore, U, < - Uj. O

4 An Example

To see Theorem 3.1 at work, we will consider the direct product
A4 x Ay, where Ay is the alternating group of order 12. There are
216 subgroups of A4 x A4, which include the trivial subgroup, 12 sub-
groups of order 2, 43 subgroups of order 3, 35 subgroups of order 4,
24 subgroups of order 6, 15 subgroups of order 8, 16 subgroups of or-
der 9, 50 subgroups of order 12, 1 subgroup of order 16, 6 subgroups
of order 24, 8 subgroups of order 36, 4 subgroups of order 48, and
the group itself. Establishing the notation for the subgroups of A4,
we denote the Klein 4-group as V, and the four cyclic groups of or-
der 3 as F; = (f;), where 1 <1< 4.
Let Uy be the subgroup of order 48 corresponding to the triple

(Aq/V,A4/V,id).
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Using Theorem 3.1, (IL.)(c), U7 < - A4 x A4. To determine the maxi-
mal subgroups, U;, contained in U;,we need to verify Theorem 3.1 (i)
and (ii).

Observe that verifying (i) for U, is routine, and so we proceed to
verify (ii). For Uy, note J1 =Ky =V, and [} =L; = A4.

If VxV<<Uyand I < - Ay, then I; = V. So, (ii)(I.) gives one max-
imal subgroup that corresponds to the triple (V/V,V/V,id), which is
the direct product V x V.

IfVXVﬁ U, VU, I, <-Agand Ly = Ay, then I = F; and
Kz = V. So, (ii)(II.)(a) gives 4 maximal subgroups that correspond to
the triples (Fi/1,A4/V,id), which is (1 x V)((f;, fi)).

Analogously, with respect to factors, (ii)(IL.)(b) gives 4 maximal sub-
groups that correspond to the triples (A4/V,F;i/1,id), which is
(V x T)((fi, fi))-

IfVXVﬁUz, ]1 :K1 :VﬁuZ, Iz :A4, I_z :A4,andV/]2 is
an Ag-chief factor, then J, = 1 = K;. So, (ii)(I.)(c) gives 12 maximal
subgroups that correspond to the triples (A4/1,A4/1,Tq), where T,
a € Ay, is the inner automorphism induced by a. More specifically,
these subgroups are diagonal subgroups of A4 x A4. In order to have
set containment, a must be an even permutation.

Therefore, (ii) is satisfied, and by Theorem 3.1, U; contains 21 max-
imal subgroups, including 1 of order 16 and 20 of order 12.
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