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Abstract

A subgroup X of a group G is said to be pronormal if for each element g of G the
subgroups X and Xg are conjugate in hX,Xgi. The aim of this paper is to study
pronormality and some close embedding properties, like weak normality and weak
pronormality. In particular, it is proved that these properties can be countably de-
tected, and the behaviour of groups which are rich in (generalized) pronormal sub-
groups is investigated.
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1 Introduction

A subgroup X of a group G is said to be pronormal if for each ele-
ment g of G the subgroups X and Xg are conjugate in hX,Xgi. Of
course, normal subgroups and maximal subgroups of arbitrary
groups are pronormal, as well as Sylow subgroups of finite groups
and Hall subgroups of any finite soluble group. Moreover, it follows
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from the definition that the normalizer of a pronormal subgroup is
likewise pronormal.

The concept of a pronormal subgroup was introduced by P. Hall
and the first results on this subject appeared in Rose’s paper [34].
More recently, several authors have investigated pronormality, mostly
dealing with properties of pronormal subgroups of finite groups and
with groups which are rich in pronormal subgroups (for more infor-
mation see the survey paper [20]); for instance, Kuzennyı̆ and Sub-
botin described the structure of infinite locally soluble groups which
have only pronormal subgroups (see [25]).

It is easy to show that a subgroup X of a group G is normal if and
only if it is both subnormal and pronormal, and actually subnormal-
ity can be weakened by requiring that X is ascendant in G, i.e. there
exists an ascending series

X = X0
CX1

C . . . X↵CX↵+1
C . . . X� = G

from X to G. In particular, if every subgroup of a group is pronormal,
then the group has the so-called T -property. Recall that a group is
said to be a T -group (or to have the T -property) if every subnormal sub-
group is normal, or equivalently if normality is a transitive relation;
groups with the T -property form an important group class which is
local but not subgroup closed. Here, a group class X is said to be local
if it contains every group whose finite subsets lie in an X-subgroup;
clearly, a subgroup closed group class X is local if and only if it con-
tains every group whose finitely generated subgroups belong to X.

A group is called a T -group if all its subgroups have the T -property.
Of course, groups admitting only pronormal subgroups have
the T -property. The structure of finite soluble T -groups was described
by Gaschütz (see [11]), while Robinson investigated soluble groups
with the T -property in the general case (see [29]). It turns out in par-
ticular that soluble T -groups are metabelian, and that every finitely
generated soluble group with the T -property is either finite or abelian.
Moreover, every finite T -group is supersoluble and all finite solu-
ble T -groups have the T -property.

Actually, it was proved by Peng that all subgroups of a finite
group G are pronormal if and only if G is a soluble T -group (see [28]),
and this result was later extended to the class of FC-groups (see [19]).
Recall that a group G is called an FC-group if every element of G has
only finitely many conjugates or, which is the same, if its centalizer
has finite index in G; we refer to the monograph [37] for the main
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properties of groups with the FC-property.
The main purpose of this paper is to give a contribution to the

knowledge of pronormal subgroups. In particular, it will be proved
that a subgroup of an arbitrary group is pronormal if and only if all
its countable subgroups are pronormal, and new information on the
structure of groups which are rich in pronormal subgroups will be
obtained.

Some further embedding properties, which are closely related to
pronormality and depend on the behaviour of the conjugates of a
subgroup, will be considered in the second part of the paper. A sub-
group X of a group G is said to be weakly normal if Xg

= X whenever g
is an element of G such that Xg is contained in the normalizer NG(X),
while X is called weakly pronormal if Xg

= X for each element g of G
such that Xg 6 X. Thus every pronormal subgroup is also weakly
normal, and all weakly normal subgroups are weakly pronormal; ex-
amples will be given to show that pronormality, weak normality and
weak pronormality are pairwise different concepts. We must point
out that we have chosen to define weak pronormality in this way,
although the same terminology was already used elsewhere with dif-
ferent meanings (see [2] and [24]).

Of course, finite subgroups of arbitrary groups are weakly pronor-
mal. Moreover, each subgroup of a periodic group is weakly pronor-
mal, and it is also easy to see that all groups locally satisfying the
maximal condition on subgroups have only weakly pronormal sub-
groups (see for instance [1], Lemma 4.6.3). It follows from the defini-
tion that for any set ⇡ of prime numbers the Sylow ⇡-subgroups of
an arbitrary group are weakly normal, and that a self-normalizing
subgroup is weakly normal if and only if it is weakly pronormal;
in particular, self-normalizing subgroups of groups locally satisfying
the maximal condition on subgroups are weakly normal.

We shall prove that for a subgroup also the properties of being
weakly normal or weakly pronormal can be countably detected, and
groups with many weakly normal or weakly pronormal subgroups
will be investigated.

Our notation is mostly standard and can be found in [31].
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2 Pronormal subgroups

We start with two elementary results on pronormal subgroups. The
first of them is almost obvious and shows in particular that pronor-
mal subgroups of arbitrary groups are weakly normal, while the sec-
ond describes pronormality in locally nilpotent groups.

Lemma 2.1 Let G be a group, and let X be a subgroup of G such that Xg

is contained in NG(X) for some element g of G. If X and Xg are conjugate
in hX,Xgi, then Xg

= X.

Proof — Let y be an element of hX,Xgi such that Xg
=Xy. As hX,Xgi

is contained in NG(X), we have Xg
= Xy

= X. ut

Proposition 2.2 Let G be a locally nilpotent group. Then every pronormal
subgroup of G is normal.

Proof — Let X be a pronormal subgroup of G. If g is any element
of G, there exists y in hX,Xgi such that Xg

= Xy, and hence Xgy
-1

= X.
Thus gy-1 belongs to NG(X), and so g = (gy-1

)y is an element
of

⌦
NG(X),NG(X)g

↵
. It follows that NG(X) contains a finitely gener-

ated subgroup E such that g belongs to hE,Egi. On the other hand,
the subgroup Y = hE,Egi is nilpotent, and EY

= Y, so that Y = E
and g is an element of E. Therefore Xg

= X and X is normal in G. ut

Our first main result proves that the pronormality of a subgroup
can be detected from the behaviour of its countable subgroups.

Theorem 2.3 Let G be a group, and let X be a subgroup of G. If all
countable subgroups of X are pronormal in G, then X itself is pronormal
in G.

Proof — Assume for a contradiction that X is not pronormal in G,
so that there exists an element g of G such that X and Xg are not
conjugate in hX,Xgi. Let a be any element of hX,Xgi. Suppose that
Xa 6 Xg, so that Xh is a proper subgroup of X, where h = ag-1, and
we may consider an element x of X \Xh. As the countable subgroup

Y = hx, xh, xh
2

, . . . , xh
n

, xh
n+1

, . . . i

is pronormal in G and Yh 6 Y, it follows from Lemma 2.1 that Yh
= Y.

In particular, x belongs to Yh 6 Xh, a contradiction. It follows that Xa
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is not contained in Xg, and hence there exists an element x(a) of X
such that x(a)a does not belong to Xg.

Fix now a countable subgroup Z of X, and define a chain of count-
able subgroups

Z = Z1 6 Z2 6 . . . 6 Zn 6 Zn+1 6 . . .

of X by putting

Zn+1 =
⌦
Zn, x(a) | a 2 hZn,Zg

ni
↵

for each positive integer n. As

W =

[

n2N
Zn

is a countable subgroup of X, it is pronormal in G, and hence there
exists an element b of hW,Wgi such that Wb

= Wg. Clearly,

hW,Wgi =
[

n2N
hZn,Zg

ni,

so that b is in hZm,Zg
mi for some positive integer m, and hence x(b)

is an element of Zm+1 6 W. Thus x(b)b belongs to Wb
= Wg 6 Xg,

and this last contradiction completes the proof the statement. ut
In what follows, we will denote by W0 the class of all groups ad-

mitting only pronormal subgroups.

Corollary 2.4 Let G be a group whose countable subgroups are pronor-
mal. Then G belongs to the class W0.

In contrast to Theorem 2.3, it can be remarked that pronormality
cannot be recognizable from the behaviour of finitely generated sub-
groups, as the following example shows. For each positive integer n,
let pn be the n-th odd prime number and let

Gn = han,bn | a2

n = bpn

n = 1,anbn = b-1

n ani

be the dihedral group of order 2pn. In the cartesian product of all
these groups consider the subgroup

G =
⌦
a, Dr

n2N
Gn

↵
,
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where a = (an)n2N. Then G is a locally finite T -group (see [29] Theo-
rem 6.1.1), so that in particular all its finite subgroups are pronormal.
On the other hand, the Sylow 2-subgroup

X = hanbn | n 2 Ni = Dr
n2N

hanbni

is not pronormal in G, since X and Xa are not conjugate in hX,Xai.
In relation to the above remark, the following interested fact can

be observed.

Proposition 2.5 Let G be a group whose cyclic subgroups are pronormal.
Then G is a T -group.

Proof — Let x be any element of G. Since the subgroup hxi is
pronormal in G, we have

G = NG(hxi)hxiG,

and hence
hxiG = hxiNG(hxi)hxiG

= hxihxi
G

.

It follows that G has the T -property (see [29], Lemma 2.1.1), and so it
is even a T -group since the hypotheses are inherited by subgroups. ut

For our purposes, we need the following result of Robinson con-
cerning the lower central series of a T -group (see [29]); notice that for
any group G we shall denote by ⇡(G) the set of all prime numbers
that are orders of elements of G.

Lemma 2.6 Let G be a locally finite T -group. Then �3(G) has no elements
of order 2 and ⇡

�
�3(G)

�
\ ⇡

�
G/�3(G)

�
= ;.

Our next result allows in particular to control pronormality from
the behaviour of cyclic subgroups in the case of linear groups.

Theorem 2.7 For a linear group G the following statements are equiva-
lent:

(i) all cyclic subgroups of G are pronormal;

(ii) G belongs to the group class W0;

(iii) G is a soluble T -group.



Pronormality in group theory 129

Proof — By Proposition 2.5, it is enough to prove that (ii) and (iii)
are equivalent. Suppose now that G is a W0, so that in particular
it has the T -property. Since every finitely generated subgroup of G
is residually finite (see [38], Theorem 4.2) and finite T -groups are
metabelian, we have also that G itself is metabelian.

Assume finally that G is a soluble T -group. Clearly, it can be as-
sumed that G is periodic, because soluble non-periodic T -groups are
abelian. Put L = �3(G) and ⇡ = ⇡(L). It follows from Lemma 2.6
that L is a Hall normal ⇡-subgroup of G with no elements of order 2,
so that G splits over L and the complements of L in G coincide with
the Sylow ⇡ 0-subgroups of G (see [38], Theorem 9.18). Thus the char-
acterization of soluble W0-groups obtained by Kuzennyı̆ and Sub-
botin proves that G belongs to W0 (see [25] or [20]). ut

The rest of this section is devoted to the study of groups which
are rich in pronormal subgroups, in some reasonable sense. Unfor-
tunately, it is clear that all subgroups of a Tarski group (i.e. an infi-
nite simple group whose proper non-trivial subgroups have prime
order) are pronormal, and this remark shows that in general this
task can be extremely complicated. One of the most common re-
strictions adopted in order to avoid Tarski groups and other similar
pathologies is the requirement that the group is locally graded: a
group G is said to be locally graded if every finitely generated non-
trivial subgroup of G contains a proper subgroup of finite index.
Locally graded groups form a wide class containing for instance all
groups which are locally (soluble-by-finite); moreover, any residually
finite group is locally graded, and so in particular free groups have
this property. Notice in this context the following relevant result, that
combines theorems proved in [25] and [33].

Lemma 2.8 Let G be a locally graded group in which all subgroups are
pronormal. Then G is metabelian.

The previous example also shows that the group class W0 is not lo-
cal. However, this class is at least countably recognizable. Recall here
that a group class X is said to be countably recognizable if it contains ev-
ery group whose countable subgroups belong to X. Countably recog-
nizable classes of groups were introduced by Baer in [3], but already
in the fifties of last century some relevant group properties were
proved to be detectable from the behaviour of countable subgroups.
Recently, many new items have been added to the list of the known
countably recognizable group classes (see for instance [15],[16]). Of
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course, any local class is countably recognizable, but for instance it
is straightforward to show that nilpotent groups and soluble groups
form countably recognizable classes which are not local.

Corollary 2.9 The group class W0 is a countably recognizable.

Proof — Let G be a group whose countable subgroups belong
to W0, and let X be any countable subgroup of G. If g is any ele-
ment of G, the subgroup hX, gi is likewise countable, so that X is
pronormal in hX, gi and hence X and Xg are conjugate in hX,Xgi. It
follows that each countable subgroup of G is pronormal, and hence
all subgroups of G are pronormal by Corollary 2.4. ut

The consideration of the locally dihedral 2-group shows that there
exist soluble countable groups which are not W0-groups, although
all its infinite proper subgroups belong to W0. Our next result shows
that the situation is different in the uncountable case.

Theorem 2.10 Let G be an uncountable locally graded group of cardinal-
ity @. If all proper subgroups of G of cardinality @ belong to W0 and G has
no simple homomorphic images of cardinality @, then G is a W0-group.

Proof — Assume for a contradiction that the group G has a sim-
ple non-abelian homomorphic image G/N. By hypothesis, G/N has
cardinality strictly smaller than @, so that N has cardinality @ and
hence it is metabelian by Lemma 2.8. Clearly, all proper subgroups
of the simple group G/N are metabelian, and so G/N is finitely gen-
erated. On the other hand, G/N is likewise locally graded (see [26])
and hence it must be finite. As all proper subgroups of G/N have
the T -property, they are supersoluble and hence G/N is soluble
(see [21]). This contradiction shows that G has no simple non-abelian
homomorphic images.

Since all proper subgroups of G of cardinality @ are metabelian
by Lemma 2.8, it follows that the group G itself is metabelian (see [14],
Theorem D). Thus G is a T -group (see [13]), and hence all subgroups
of G 0 are normal in G. Clearly, at least one of the abelian groups G 0

and G/G 0 has cardinality @, and so there exists a normal subgroup K
of G of cardinality @ such that also G/K has cardinality @, and ei-
ther K 6 G 0 or G 0 6 K (see [12], Lemma 2.4). If X is any countable
subgroup of G, the product XK is a proper subgroup of G of cardinal-
ity @ and so all its subgroups are pronormal. Therefore all countable
subgroups of G have only pronormal subgroups, and hence G be-
longs to W0 by Corollary 2.9. ut
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Let X be a class of groups. A non-trivial group is said to be mini-
mal non-X (or also an opponent of X) if it is not an X-group but all its
proper subgroups belong to X. We shall say that a group class X is
accessible if every locally graded group whose proper subgroups be-
long to X is either finite or an X-group, or equivalently if any locally
graded minimal non-X group is finite.

It is easy to show that the class A of abelian groups is accessi-
ble, and A shares such a property with other relevant classes of
groups, like for instance the class Nc of nilpotent groups of class at
most c (see [5]) and the class Sd of soluble groups of derived length
at most d (see [8]). On the other hand, the consideration of the locally
dihedral 2-group shows that the class N of nilpotent groups is not ac-
cessible, while it is still unknown if the class S of soluble groups is
accessible. For a detailed discussion of accessible group classes and
their abstract properties we refer to [17] and [18].

The structure of locally finite groups which are minimal non-T was
investigated by Robinson in [30], and it has recently been proved
that any locally graded group whose proper subgroups have a tran-
sitive normality relation either is finite or a T -group, so that the class
of T -groups is accessible (see [13]). In the case of groups with only
pronormal subgroups, we can prove the following result.

Theorem 2.11 The group class W0 is accessible.

Proof — Assume for a contradiction that the statement is false, and
let G be an infinite locally graded opponent of the group class W0.
Then all proper subgroups of G are metabelian by Lemma 2.8, and
so G itself is metabelian since S2 is an accessible group class. More-
over, all proper subgroups of G have the T -property, so that G is
a T -group and in particular it is periodic.

Let X be a subgroup of G which is not pronormal, and let g be
an element of G such that X and Xg are not conjugate in hX,Xgi, so
that G = hX, gi. As the factor group G/XG has the T -property and con-
tains a non-pronormal subgroup, it must be infinite (see [28]), and so
it is likewise a counterexample to the statement. Thus we may sup-
pose without loss of generality that X does not contain non-trivial
normal subgroups of G. Since all subgroups of G 0 are normal in G,
we have X\G 0

= {1}, so that X is abelian and hence X \ hgi = {1}.
Put L = [G 0,G], and let ⇡ be the set of all prime numbers that are
orders of elements of L, so that G/L is a ⇡ 0-group by Lemma 2.6.
Moreover, the centralizer CX(L) is normal in XL and XL is obviously
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normal in G, so that CX(L) is also normal in G and hence CX(L) = {1}.
Thus X is isomorphic to a group of power automorphisms of L. In par-
ticular, X induces a finite group of automorphisms on each primary
component of L, and so it is residually finite (see for instance [29]).

As G = hX, gi is infinite, also the subgroup X must be infinite,
and hence also the set ⇡(L) is infinite. Moreover, G is periodic and
X\ L = {1}, so that the intersection X0 = X\ Lhgi is finite, and X con-
tains a proper subgroup Y such that the index |X : Y| is finite and
larger than the order of X0. It follows now from the Dedekind mod-
ular law that the product YLhgi is a proper subgroup of G, so that
all its subgroups are pronormal and in particular Y and Yg are con-
jugate in hY, Ygi. Let z be an element of hY, Ygi such that Yz

= Yg, so
that v = gz-1 belongs to the normalizer NG(Y). Suppose that hX, vi is
a proper subgroup of G. Then X is pronormal in hX, vi, so that there
exists w in hX,Xvi such that Xw

= Xv and hence Xwz
= Xg. On the

other hand, hX,Xvi 6 hX,Xgi, so that wz belongs to hX,Xgi, against
the assumption. Therefore hX, vi = G, so that Y is a normal subgroup
of G, which is impossible as X does not contain non-trivial normal
subgroups of G. This last contradiction completes the proof of the
theorem. ut

Uncountable groups in which all uncountable subgroups have a
given embedding property, like normality or subnormality, have re-
cently been studied (see for instance [6] and [7]). We point out here
that a soluble uncountable group in which all uncountable subgroups
are pronormal need not have only pronormal subgroups. In fact,
Ehrenfeucht and Faber constructed a nilpotent uncountable group G
of class 2 in which all abelian subgroups are countable and all un-
countable subgroups contain G 0 (see [9]); in particular, all uncount-
able subgroups of G are normal, while obviously every non-normal
subgroup of G is not even pronormal.

3 Weakly normal subgroups

Weak normality was introduced by Müller in [27], under the influ-
ence of Reinhold Baer and with the additional requirement that the
subgroup has only finitely many conjugates. Actually, almost all
known results on weakly normal subgroups have been proved in the
finite case.
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Of course, every weakly normal subgroup is weakly pronormal,
but any non-normal subgroup of order 2 of the dihedral group D8 is
not weakly normal, although it is (trivially) weakly pronormal. More-
over, every pronormal subgroup is weakly normal, but there exist
weakly normal subgroups that are not pronormal. To see this, con-
sider the natural permutational wreath product G = H o K, where H
has order 3 and K is isomorphic to the symmetric group Sym(3).
Then |NG(K) : K| = 3 and K is the only subgroup of NG(K) isomor-
phic to Sym(3), so that K is a weakly normal subgroup of G; on the
other hand, K cannot be pronormal in G (see for instance [23], Co-
rollary to Theorem 1).

Our next three statements show that some basic facts concerning
pronormality can be extended to weakly normal subgroups.

Lemma 3.1 Let G be a group, and let X be a weakly normal subgroup
of G. Then also the normalizer NG(X) is weakly normal in G.

Proof — If g is an arbitrary element of G normalizing NG(X), we
have

Xg 6 NG(X)g = NG(X),

so that Xg
= X and g belongs to NG(X). Thus NG

�
NG(X)

�
= NG(X).

Let h be any element of G such that NG(X)h 6 NG

�
NG(X)

�
. Then

Xh 6 NG(X)h 6 NG(X),

so that Xh
= X and NG(X)h = NG(X). Therefore the subgroup NG(X)

is weakly normal in G. ut

Lemma 3.2 Let G be a group, and let X be a subgroup of G. Then X is
normal in G if and only if it is ascendant and weakly normal.

Proof — Obviously, it is enough to prove that X is normal in G,
whenever it is weakly normal and there exists an ascending series

X = X0
CX1

C . . . X↵CX↵+1
C . . . X� = G.

Assume for a contradiction that X is not normal in G, and let µ 6 �
be the smallest ordinal such that X is not normal in Xµ. Clearly, µ > 1
and µ is not a limit ordinal, so that we may consider Xµ-1 and
XCXµ-1

CXµ. If g is any element of Xµ, we have Xg 6 Xµ-1 6 NG(X),
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so that Xg
= X and hence X is normal in Xµ. This contradiction com-

pletes the proof. ut

Corollary 3.3 Let G be a group in which all subgroups are weakly normal.
Then G is a T -group.

It follows from Lemma 3.2 that every weakly normal subgroup of a
hypercentral group is normal. On the other hand, all pronormal sub-
groups of a locally nilpotent group are normal by Proposition 2.2,
but the following easy example shows that a weakly normal sub-
group of a locally nilpotent group need not be normal. Let p be a
prime number, and let G = H oK be the standard wreath product of
a group H of order p by an infinite abelian group K of exponent p; of
course, G is locally nilpotent and NG(K) = K, so that K is a weakly
normal subgroup of G which is not normal (and of course not even
pronormal).

It is also of interest to remark that a weakly normal subgroup X
of a group G may contain a characteristic subgroup Y which is not
weakly normal in G. In fact, any cyclic subgroup of order 6 of the
symmetric group Sym(5) is weakly normal, while its 2-component
cannot be weakly normal.

It was proved in [35] that any locally graded non-periodic group
admitting only weakly normal subgroups is abelian. As finite
T -groups are soluble, we have that every periodic locally graded
T -group is metabelian, and it follows that all groups with only weakly
normal subgroups are metabelian. Moreover, all subgroups of a solu-
ble T -group are weakly normal (see [35]), and hence the following
result can be stated.

Theorem 3.4 A locally graded group has only weakly normal subgroups
if and only if it is soluble and has the T -property.

It is not clear whether the requirement that all subgroups are weak-
ly normal characterizes groups with the T -property, at least within
the universe of locally graded groups. By the above quoted results
in [35], a positive answer to this question would be equivalent to the
conjecture that every non-periodic locally graded T -group is abelian
(see [22], Question 14.36).

Lemma 3.5 Let G be a group, and let X be a subgroup of G such that Xg

is contained in NG(X) for some element g of G. If Y is any countable sub-
group of X, there exists a countable subgroup Z of X such that Y 6 Z and
Zg 6 NG(Z).
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Proof — Put Z1 = Y, and if a countable subgroup Zn of X contain-
ing Y has been chosen for some positive integer n, let Zn+1 be the
subgroup generated by Zn and by the set Zg

n \NG(Zn). Then also

Z =

[

n2N
Zn

is a countable subgroup of X. Assume for a contradiction that Zg is
not contained in NG(Z), so that there exist elements u = zg of Zg

and w of Z such that wu does not belong to Z. Let m be a posi-
tive integer such that both z and w are in Zm. As wu does not be-
long to Zm, the element zg is not in NG(Zm) and hence it belongs
to Zm+1, which is of course impossible. Therefore the subgroup Zg

is contained in NG(Z). ut

We can now prove that also weak normality, like pronormality, may
be detected from the behaviour of countable subgroups.

Theorem 3.6 Let G be a group, and let X be a subgroup of G. If all
countable subgroups of X are weakly normal in G, then X itself is weakly
normal in G.

Proof — Let g be any element of G such that Xg 6 NG(X). It fol-
lows from Lemma 3.5 that for each element x of X there exists a count-
able subgroup Yx of X such that x belongs to Yx and Yg

x 6 NG(Yx).
Then Yg

x = Yx since every Yx is weakly normal in G, and so

Xg
=

[

x2X

Yg

x =

[

x2X

Yx = X.

Therefore the subgroup X is weakly normal in G. ut

We shall denote by W1 the class of all groups with only weakly
normal subgroups, which properly contains the class W0, since there
exist locally finite T -groups that are not in W0.

Corollary 3.7 Let G be a group whose countable subgroups are weakly
normal. Then G belongs to the group class W1.

Next result shows that the hypothesis of Corollary 3.7 can be weak-
ened in the case of a locally (soluble-by-finite) group, by imposing
the weak normality only to finitely generated subgroups.
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Theorem 3.8 Let G be a locally (soluble-by-finite) group in which all
finitely generated subgroups are weakly normal. Then G belongs to W1.

Proof — Let E be any finitely generated subgroup of G. Clearly,
all subgroups of finite index of E are finitely generated, and so they
are weakly normal in G. It follows that each finite homomorphic
image of E has only weakly normal subgroups, and so it is a T -group.
Then E is soluble, and so it has the T -property (see [32], Theorem 2).
As the T -property is local, we obtain that G itself is a soluble T -group,
and hence all its subgroups are weakly normal by Theorem 3.4. ut

It follows from Theorem 3.4 that the class of locally graded W1-
groups coincides with that of soluble groups with the T -property,
and so it is a local class. Although it is an open question whether W1

itself is a local class, we can prove that W1 can be at least countably
detected.

Corollary 3.9 The class W1 is countably recognizable.

Proof — Let G be a group whose countable subgroups belong
to the class W1, and let X be any countable subgroup of G. If g is
an element of G such that Xg is contained in NG(X), the subgroup
Y = hX, gi is countable and Xg 6 NY(X), so that Xg

= X because X
is weakly normal in Y. Therefore all countable subgroups of G is
weakly normal, and hence G is a W1-group by Corollary 3.7. ut

A result of Rose states that if X and Y are pronormal subgroups of
a group G such that XY

= X, then also the product XY is pronormal
in G (see [34]). The following example shows that a corresponding
result does not hold for weak normality.

Consider the standard wreath product G = H oK, where

H = ha,b | a3
= b2 = 1,ab = ba-1i

is isomorphic to the symmetric group Sym(3) and K = hci has or-
der 2, and put a 0

= ac and b 0
= bc. The subgroup X = haa 0, ci is

cyclic of order 6 and it is the Fitting subgroup of its normalizer

NG(X) = haa 0,bb 0, ci.

If g is any element of G such that Xg 6 NG(X), then |NG(X) : Xg
| = 2

so that Xg is a nilpotent normal subgroup of NG(X) and hence Xg
=X.

Therefore the subgroup X is weakly normal in G. On the other hand,
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the product of X and the normal subgroup N = ha,a 0i is not weakly
normal, because it is subnormal but not normal in G. Notice also
that the same example proves that homomorphic images of weakly
normal subgroups need not be weakly normal.

In contrast to the above example, Sementovskiı̆ proved that the
subgroup generated by any collection of pronormal subgroups is
weakly normal, although it is not always pronormal (see [4] or [36]).
Our next lemma provides a condition for a subgroup generated by
weakly normal subgroups to be weakly normal.

Lemma 3.10 Let G be a group, and let X be a subgroup of G. If X is
generated by a set H of subgroups which are normal in X and weakly normal
in G, then also X is weakly normal in G.

Proof — Let H be any element of H. Then H is normal in the nor-
malizer NG(X), because it is normal in X and weakly normal in G,
and hence NG(X) 6 NG(H). If g is any element of G such that Xg is
contained in NG(X), for each element H of H we have

Hg 6 Xg 6 NG(X) 6 NG(H)

and so Hg
= H. Since X is generated by the subgroups in H, it follows

that Xg
= X and hence X is weakly normal in G. ut

It is interesting to notice that, when G is a finite group, in the
above statement it is enough to require the normality only of the
elements of H which do not have prime-power order (see [27]). It
follows in particular that if X is a subgroup of a finite group G and
all Sylow subgroups of X are weakly normal in G, then X itself is
weakly normal in G. This fact can be alternatively obtained as a con-
sequence of Sementovskiı̆’s result, since every primary weakly nor-
mal subgroup of a finite group is pronormal.

Lemma 3.11 Let G be a group, and let X be a finite weakly normal p-sub-
group of G, where p is a prime number. If the normal closure XG is locally
finite, then X is pronormal in G.

Proof — Let g be any element of G, and let P be a Sylow p-subgroup
of Y = hX,Xgi containing X. As Y is finite, there is an element y of Y
such that Xg 6 Py, and of course the weakly normal subgroup Xg is
normal in Py by Lemma 3.2. Then

(Xg
)
g
-1

y
= Xy 6 Py 6 NG(Xg

),
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and hence Xy
= (Xg

)
g
-1

y
= Xg. Therefore the subgroup X is pronor-

mal in G. ut

Corollary 3.12 Let G be a locally finite group whose cyclic subgroups are
weakly normal. Then all cyclic subgroups of G are pronormal.

Proof — If x is any element of G, it follows from Lemma 3.11 that
each primary component of hxi is a pronormal subgroup of G, so
that hxi itself is pronormal in G (see [34]). ut

It is known that if all cyclic subgroups of an FC-group are pronor-
mal, then the group belongs to W0 (see [19], Theorem 3.9), and so
by Corollary 3.12 we have that every periodic FC-group whose cyclic
subgroups are weakly normal is a W0-group. With a little more work,
it can be proved that this is actually true for arbitrary FC-groups.

Corollary 3.13 Let G be an FC-group whose cyclic subgroups are weakly
normal. Then G belongs to W0.

Proof — Let x be any element of G. As the factor group G/Z(G) is
periodic (see [37]), in order to prove that hxi is pronormal in G, we
may replace G by the factor group G/hxi \ Z(G). Then x has finite
order and so the normal closure hxiG is finite by Dietzmann’s Lem-
ma. As in the proof of Corollary 3.12 we have now that all cyclic
subgroups of G are pronormal, and hence G belongs to W0. ut

Notice that the above statement shows in particular that within the
universe of FC-groups the classes W0 and W1 coincide.

It is well known that any periodic linear group is locally finite,
and so Corollary 3.12 and Theorem 2.7 yield that W0 contains all
periodic linear groups whose cyclic subgroups are weakly normal.
On the other hand, the periodicity cannot be omitted in this case:
in fact, every free group is linear and our next result shows that in a
free group all cyclic subgroups are weakly normal, although by Theo-
rem 3.4 a free non-abelian group must contain subgroups that are not
weakly normal.

Lemma 3.14 Let G be a free group. Then all cyclic subgroups of G are
weakly normal.

Proof — Let X be any cyclic non-trivial subgroup of G, and let g
be an element of G such that Xg 6 NG(X). Then NG(Xg

) = NG(X),
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because the normalizer NG(X) is a maximal cyclic subgroup of G, so
that |NG(X) : X| = |NG(X) : Xg

| and hence Xg
= X. Therefore all cyclic

subgroups of G are weakly normal. ut

A direct combination of Theorem 3.4 and Theorem 2.7 gives the
following interesting information.

Corollary 3.15 A linear group G is a W0-group if and only if it belongs
to the group class W1.

Lemma 3.10 can be applied to drop out the condition that the
group G is locally (soluble-by-finite) from the statement of Theo-
rem 3.8, at least when the subgroup X belongs to a suitable group
class. Our next two corollaries illustrate this fact.

Recall first that a group G is said to be a PC-group if the factor
group G/CG(hgiG) is polycyclic-by-finite for each element g of G.
Groups with the PC-property were introduced in [10] as a natural
generalization of FC-groups, and they are precisely those groups that
can be covered by polycyclic-by-finite normal subgroups.

Corollary 3.16 Let G be a group, and let X be a subgroup of G whose
finitely generated subgroups are weakly normal in G. If X is a PC-group,
then it is weakly normal in G.

Proof — Since X is covered by its polycyclic-by-finite normal sub-
groups, and each of them is weakly normal in G, it follows from Lem-
ma 3.10 that X is weakly normal in G. ut

Corollary 3.17 Let G be a group, and let X be a locally nilpotent subgroup
of G. If all finitely generated subgroups of X are weakly normal in G, then X
itself is weakly normal in G.

Proof — Let E be any finitely generated subgroup of X. Then the
subgroup hE, xi is nilpotent for each x in X, so that E is normal
in hE, xi by Lemma 3.2, and hence even in X. It follows now from Lem-
ma 3.10 that the subgroup X is weakly normal in G. ut

Another direct consequence of Lemma 3.10 is the following result,
that was already proved in [27] by a different argument; it should
be seen in relation to the fact that homomorphic images of weakly
normal subgroups are not in general weakly normal.
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Corollary 3.18 Let G be a group, and let X be a weakly normal subgroup
of G. If N is a normal subgroup of G such that XN

= X, then also the
product XN is weakly normal in G.

Our next theorem shows that groups with only weakly normal
subgroups form an accessible class.

Theorem 3.19 The group class W1 is accessible.

Proof — Let G be an infinite locally graded group whose proper
subgroups belong to W1. Then all proper subgroups of G are metabe-
lian, and so G itself is a metabelian group (see [8]). As the class
of T -groups is accessible (see [13]), the group G has the T -property,
and hence all its subgroups are weakly normal by Theorem 3.4. ut

The last result of this section deals with uncountable groups with
many weakly normal subgroups.

Theorem 3.20 Let G be an uncountable locally graded group of cardi-
nality @ which has no simple homomorphic images of cardinality @. If
all proper subgroups of G of cardinality @ belong to W1, then G itself
is a W1-group.

Proof — Every proper subgroup of G of cardinality @ is a solu-
ble T -group by Theorem 3.4, and so it is metabelian. Assume for
a contradiction that G has a simple non-abelian homomorphic im-
age G/N. Then G/N has cardinality strictly smaller than @, and so N
has cardinality @. In particular, the subgroup N is metabelian and
hence G/N is locally graded (see [26]). Moreover, every proper sub-
group of G/N has only weakly normal subgroups, so that all sub-
groups of G/N are weakly normal by Theorem 3.19 and hence G/N
is soluble. This contradiction shows that G has no simple non-abelian
homomorphic images, and so G is metabelian (see [14], Theorem D).
Then G has the T -property (see [13]), and a further application of The-
orem 3.4 yields that all subgroups of G are weakly normal. ut

The consideration of the locally dihedral 2-group shows that a
statement similar to Theorem 3.20 does not hold in the countable
case. Notice that the example by Ehrenfeucht and Faber mentioned
in Section 2 proves also that there exists an uncountable nilpotent
group of class 2 in which all uncountable subgroups are normal but
every non-normal subgroup is not even weakly normal.
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4 Weakly pronormal subgroups

The first statement of this section shows that, like pronormality and
weak normality, also the property of being weakly pronormal can be
countably recognized.

Theorem 4.1 Let G be a group, and let X be a subgroup of G. If all
countable subgroups of X are weakly pronormal in G, then X itself is weakly
pronormal in G.

Proof — Assume for a contradiction that Xg is properly contained
in X for some element g of G, and let x be an element of X \ Xg.
Clearly, Xg

n 6 X for each non-negative integer n, so that

Y = hx, xg, xg
2

, . . . , xg
n

, xg
n+1

, . . . i

is a countable subgroup of X and hence it is weakly pronormal in G.
As Yg 6 Y, it follows that Yg

= Y, which is impossible because x
belongs to Y \ Yg. This contradiction proves the statement. ut

The following example shows that the hypotheses of Theorem 4.1
cannot be weakened by assuming that all finitely generated sub-
groups of X are weakly pronormal.

Let p be any prime number, and let G = hai o hxi be the stan-
dard wreath product of a group hai of order p and an infinite cyclic
group hxi. The base group B of G can be written as a direct product

B = Dr
n2Z

hani,

where a0 = a and ax
n = an+1 for all n. Clearly, the subgroup

C = han | n > 1i

properly contains Cx, and so it is not weakly pronormal in G, while
all its finitely generated subgroups are finite and so trivially weakly
pronormal. Of course, this example should be seen in relation to the
similar situation pertaining pronormal subgroups.

Notice also that the same example can be used to show that the
subgroup generated by two weakly pronormal subgroups H and K
need not be weakly pronormal, even if [H,K] = {1}, in contrast to the
behaviour of pronormal subgroups (see for instance [34], 1.8). To see
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this, put F = {n! | n 2 N} and in the wreath product G constructed
above consider the subgroups

H = hah | h 2 F i and K = hak | k 2 N \ F i.

For each positive integer m, we have ax
m

1
= am+1 and ax

m

2
= am+2,

and at least one of the positive integers m+ 1 and m+ 2 does not
belong to F, so that Hx

m cannot be contained in H. Moreover, if n > 2
is any integer such that m < n! - (n- 1)!, we have

(n- 1)! < n! -m < n!,

so that k = n! -m is not in the set F and ax
m

k
= an! does not belong

to K. It follows that both subgroups H and K are weakly pronormal
in G, altough their product C = H⇥K is not.

A useful extension property of weak pronormality is described by
the following result.

Lemma 4.2 Let G be a group, and let N be a normal subgroup of G. If X
is a subgroup of G such that X \N and XN are weakly pronormal in G,
then also X is weakly pronormal in G.

Proof — Let g be any element of G such that Xg is contained in X.
Since

(X\N)
g
= Xg \N 6 X\N and (XN)

g
= XgN 6 XN,

it follows that Xg \N = X\N and XgN = XN. Therefore

X = X\XgN = Xg
(X\N) = Xg

and hence X is weakly pronormal in G. ut

As an example of application of Lemma 4.2, we have the following
sufficient condition for a subgroup to be weakly pronormal; it shows
for instance that a subgroup intersecting trivially some term of the
lower central series of the group is always weakly pronormal.

Corollary 4.3 Let G be a group, and let X be a subgroup of G such
that X\ �n(G) is weakly pronormal in G for some positive integer n.
Then X is weakly pronormal in G.
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Proof — Obviously, the factor group G/�n(G) locally satisfies the
maximal condition on subgroups, and so all its subgroups are weakly
pronormal. In particular, X�n(G) is a weakly pronormal subgroup
of G, and hence X is weakly pronormal in G by Lemma 4.2. ut

Notice that a result corresponding to Lemma 4.2 cannot be proved
for pronormality or for weak normality. In fact, it is enough to ob-
serve that if G is any soluble T -group for which the T -property does
not hold, it follows from Corollary 3.3 that G contains a subgroup X
which is not weakly normal (and so neither pronormal), but X \G 0

and XG 0 are obviously normal in G.

Our next lemma shows in particular that if a subgroup X of a
group G is weakly pronormal in some normal subgroup of finite
index of G, then X is also weakly pronormal in G.

Lemma 4.4 Let G be a group, and let N be a normal subgroup of finite
index of G. If X is a subgroup of G such that X \N is weakly pronormal
in N, then X is weakly pronormal in G.

Proof — Put Y = X\N, and let g be any element of G such that Yg

is contained in Y. As the index |G : N| is finite, there exists a positive
integer m such that gm belongs to N, and obviously Yg

m is con-
tained in Y. But Y is weakly pronormal in N, so that Y = Yg

m 6 Yg

and hence Y = Yg. Thus Y is weakly pronormal in G. Moreover, the
product XN is a weakly pronormal subgroup of G since the factor
group G/N is finite, and so X is weakly pronormal in G by Lem-
ma 4.2. ut

It was previously remarked that the normalizer of any pronor-
mal subgroup is pronormal, and similarly all weakly normal sub-
groups have a weakly normal normalizer. The situation is different
in the case of weakly pronormal subgroups, as the following example
shows.

Let Z be the set of all integers in their natural order, and let g be
the order automorphism of Z mapping each n to n+ 1. Consider now
a group A of prime order p, and the wreath power W = WrAZ. Of
course, g determines an automorphism of A of infinite order, and we
put G = hginA. If I1 is the set of all negative integers and I2 that of
positive integers, we have that (I1, {0}, I2) is a segmentation of Z, and
hence

W = (W1 oA0) oW2,
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where
W1 = WrAI1 , A0 ' A and W2 = WrAI2

(for more details on wreath powers and segmentations of ordered
sets see for instance [31] Part 2, Chapter 6). Then B0 = AW2

0
is a

weakly pronormal subgroup of G, while its normalizer

NG(B0) = B0W2

properly contains (B0W2)
g and so it is not weakly pronormal in G.

We shall denote by W2 the class of all groups in which all sub-
groups are weakly pronormal. Thus W2 contains all periodic groups
and all groups locally satisfying the maximal condition on subgroups;
in particular, W1 is a proper subclass of W2.

It turns out that W2 coincides with the class of the so-called
HNN-free groups, i.e. groups which do not contain HNN-extensions
(see [33]). Recall here that, given an isomorphism ' : A ! B between
two different subgroups A and B of a group G, and an infinite cyclic
group hti, the factor group of the free product G ⇤ hti by the normal
closure of the subset

�
t-1at

�
'(a)

�
-1

|a 2 A
 

is called the HNN-extension of G relative to A,B and '. This concept
plays a relevant role in several parts of group theory. It is obvious
that the class of HNN-free groups is subgroup closed, and it has
been proved in [33] that such class is local and so also countably
recognizable. Our next result shows that the class of locally solu-
ble W2-groups coincides with that of locally polycyclic groups.

Lemma 4.5 A locally (soluble-by-finite) group G belongs to the class W2

if and only if it is locally (polycyclic-by-finite).

Proof — Since W2 is subgroup closed, it can be assumed without
loss of generality that G is finitely generated and so soluble-by-finite.
Then every normal subgroup of G is finitely generated (see [33], Lem-
ma 2), and hence G is polycyclic-by-finite. ut

As a consequence of the above statement, any finitely generated
metabelian group which is not polycyclic must contain a subgroup
which is not weakly pronormal, and hence the class W2 is not exten-
sion closed. On the other hand, it follows from Lemma 4.4 that W2

is at least closed with respect to finite extensions.
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Corollary 4.6 Let G be a group containing a W2-subgroup of finite index.
Then G belongs to the group class W2.

Proof — Of course, the group G contains a normal subgroup N
which belongs to W2. If X is any subgroup of G, the intersection X\N
is weakly pronormal in N and hence X is weakly pronormal in G
by Lemma 4.4. ut

We can now prove that the class W2 has no opponents. It is interest-
ing to notice that in this case the restriction to the universe of locally
graded groups is unnecessary, a phenomenon that rarely occurs.

Theorem 4.7 Let G be a group whose proper subgroups belong to W2.
Then G is a W2-group.

Proof — Assume for a contradiction that the statement is false, so
that G must be finitely generated since the group class W2 is local.
Let X be a subgroup of G which is not weakly pronormal, and let g
be an element of G such that Xg is properly contained in X. Then

. . . < Xg
n

< . . . < Xg < X < Xg
-1

< . . . < Xg
-n

< . . .

and so
Y =

[

n2Z
Xg

n

is a proper subgroup of G which is normalized by g. Clearly, X is not
weakly pronormal in hX, gi, so that hX, gi = G and hence G = hY, gi. It
follows that Y is normal in G, and so G has a finite non-trivial homo-
morphic image. Therefore all subgroups of G are weakly pronormal
by Corollary 4.6, and this contradiction completes the proof. ut

Corollary 4.8 The group class W2 is accessible.

If G is a countable group whose (countably) infinite proper sub-
groups belong to W2, we have obviously that all proper subgroups
of G are in W2 and hence all subgroups of G are weakly pronor-
mal by Theorem 4.7. A similar result holds for uncountable groups,
provided that the group has no large simple homomorphic images.

Theorem 4.9 Let G be an uncountable group of cardinality @ which has
no simple homomorphic images of cardinality @. If all proper subgroups
of G of cardinality @ belong to W2, then G itself is a W2-group.
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Proof — By Corollary 4.6 it can be assumed that G has no proper
subgroups of finite index. Suppose first that G contains a proper
normal subgroup N of cardinality @, and let X be any subgroup of G.
Put Y = X \N and assume for a contradiction that Yg is properly
contained in Y for some element g of G. Clearly, Y is not weakly
pronormal in hN, gi, and hence hN, gi = G, which is impossible as G
has no proper subgroups of finite index. This contradiction shows
that Y is weakly pronormal in G. On the other hand, every proper
subgroup of G/N belongs to W2, and hence all subgroups of G/N
are weakly pronormal by Theorem 4.7. In particular, the product XN
is a weakly pronormal subgroup of G, and so X is weakly pronormal
in G by Lemma 4.2.

Suppose now that all proper normal subgroups of G have cardi-
nality strictly smaller than @ so that, since G has no simple ho-
momorphic images of cardinality @, each of them is contained in
a proper subgroup of cardinality @ (see [12], Corollary 2.6). More-
over, G cannot have maximal normal subgroups and so it follows
from Zorn’s Lemma that it is the union of a chain of proper normal
subgroups. Thus every finitely generated subgroup E of G is con-
tained in a proper normal subgroup of G, and so also in a proper
subgroup of cardinality @; in particular, E has only weakly pronor-
mal subgroups. As the class W2 is local, it follows that G itself be-
longs to W2. ut
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