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Abstract

This survey is an attempt of describing of main contours of a recently developing
general theory of Leibniz Algebras. This theory based on the employing of methods
and approaches which are proved to be exceedingly effective in infinite group theory.
The survey addresses a number of natural problems that quite often have analogs in
other disciplines, discusses the parts of the theory that have been already developed,
and argues which parts of it should be developed further.
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1 Introduction

Let L be an algebra over a field F with the binary operations +

and [·, ·]. Then L is called a Leibniz algebra (more precisely a left Leibniz
algebra) if for all a,b, c 2 L it satisfies the Leibniz identity

[[a,b], c] = [a, [b, c]]- [b, [a, c]].

We will also use another form of this identity:

[a, [b, c]] = [[a,b], c] + [b, [a, c]].
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Leibniz algebras appeared first in the papers of A.M. Bloh [14,
15, 16], in which they were called the D-algebras. However, in that
time these works were not in demand. Only after two decades, a
real interest to Leibniz algebras rose. It happened thanks to the work
of J.-L. Loday [51] (see also [52, Section 10.6]), who “rediscovered”
these algebras and used the term Leibniz algebras since it was Leib-
niz who discovered and proved the Leibniz rule for differentiation
of functions. The main motivation for the introduction of Leibniz al-
gebras was the study of periodicity phenomena in algebraic K-theory.
The Leibniz algebras appeared to be naturally related to several ar-
eas such as differential geometry, homological algebra, classical al-
gebraic topology, algebraic K-theory, loop spaces, noncommutative
geometry, and so on. They found some applications in physics (see,
for example, [4, 17, 29, 30]). Nowadays the theory of Leibniz algebras
is one of actively developing areas of modern algebra.

Note that the Lie algebras are the partial case of Leibniz algebras.
Indeed, if L is a Lie algebra, then

[[a,b], c] + [[b, c],a] + [[c,a],b] = 0.

It follows that

[[a,b], c] = -[[b,c],a]- [[c,a],b] = [a, [b, c]] + [b, [c,a]]
= [a, [b, c]]- [b, [a, c]],

which shows that every Lie algebra is a Leibniz algebra.

Conversely, suppose that [a,a] = 0 for each element a 2 L. Then
for arbitrary elements a,b 2 L we have

0 = [a+ b,a+ b] = [a,a] + [a,b] + [b,a] + [b,b]
= [a,b] + [b,a].

It follows that [a,b] = -[b,a]. Then we obtain

0 = [[a,b], c]- [a, [b, c]] + [b, [a, c]]
= [[a,b], c] + [[b, c],a]- [[a, c],b]
= [[a,b], c] + [[b, c],a] + [[c,a],b]

for all a,b, c 2 L. Thus, Lie algebras can be characterized as Leibniz
algebras with the identity [a,a] = 0 for every element a 2 L. The last
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equality implies that [a,b] = -[b,a], therefore we can define the Lie
algebras as anticommutative Leibniz algebras.

The theory of Leibniz algebras has been developing quite inten-
sively, but this development is uneven and fragmented. This state
of theory of Leibniz algebras is fully reflected in a recent book [7].
Most of the results showing the structural features of Leibniz al-
gebras were obtained for finite-dimensional algebras, and many of
them over fields of characteristic zero. In some articles, the authors
do not even stipulate that they consider finite-dimensional Leibniz
algebras, this can only be seen by looking at the proofs. A number of
these results are analogues of the corresponding theorems from the
theory of Lie algebras. The specifics of Leibniz algebras, the features
that distinguish them from Lie algebras, can be seen from the descrip-
tion of Leibniz algebras of small dimensions. But this description also
concerns algebras over fields of characteristic zero. And here paral-
lels with the theory of groups are immediately striking, precisely
with its period when the theory of finite groups was already quite
developed, and the theory of infinite groups only arose, i.e. with the
time when the formation of the general theory of groups took place.
Therefore, the idea of using this experience naturally arises. It is clear
that we cannot talk about some kind of similarity of results, we can
talk about approaches and problems, we can talk about application
of group theory philosophy. Moreover, any theory has a number of
natural problems that arise in the process of its development, and
these problems quite often have analogues in other disciplines. In
this review, we want to focus on such issues, our goal is to see which
parts of the picture involving the general structure of Leibniz alge-
bras have already been drawn, and this will allow us to see which
parts of this picture should be developed further, and show signifi-
cant differences of Leibniz algebras from Lie algebras.

2 Some specific subalgebras of Leibniz algebras

The lack of anticommutativity immediately brings its own specifics.
An algebra R over a field F is called right Leibniz if it satisfies the Leib-
niz identity

[a, [b, c]] = [[a,b], c]- [[a, c],b]

for all a,b, c 2 R. Note at once that the classes of left Leibniz algebras
and right Leibniz algebras are different. The following simple exam-
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ple justifies it. Let F be an arbitrary field and L be a vector space
over F having a basis {a,b}. Define the operation [·, ·] on L by the
following rules:

[a,a] = [a,b] = b, [b,a] = [b,b] = 0.

It is not hard to check that L becomes a left Leibniz algebra. But

0 = [[a,a],a] 6= [[a,a],a] + [a, [a,a]] = [a,b] = b.

Let R be a right Leibniz algebra, then put [[a,b]] = [b,a]. Then we
have

[[[[a,b]], c]] = [c, [b,a]] = [[c,b],a]- [[c,a],b]
= [[a, [[b, c]]]]- [[b, [[a, c]]]].

Thus, this substitution leads us to a left Leibniz algebra. Similarly,
we can make a transfer from a left Leibniz algebra to a right Leibniz
algebra.

An algebra L over a field F is called a symmetric Leibniz algebra if it
is both a left and right Leibniz algebra.

We prefer to work with left Leibniz algebras even though many au-
thors prefer to consider right Leibniz algebras. The choice of left Leib-
niz algebras is more suitable for us because they have more visible
relationships with the differentiation of products (in which the differ-
ential operator is written to the right of a differentiable object). Thus,
in this article, the term a Leibniz algebra stands for a left Leibniz
algebra.

Note the following useful property of the elements of Leibniz alge-
bras. We have

[a, [b, c]] = [[a,b], c] + [b, [a, c]],
[b, [a, c]] = [[b,a], c] + [a, [b, c]]

or
[a, [b, c]] = [b, [a, c]]- [[b,a], c].

It follows that

[[a,b], c] + [b, [a, c]] = [b, [a, c]]- [[b,a], c],
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and hence
[[a,b], c] = -[[b,a], c].

A Leibniz algebra L is called abelian (or trivial) if [a,b] = 0 for every
elements a,b 2 L. In particular, an abelian Leibniz algebra is a Lie
algebra.

Let L be a Leibniz algebra over a field F. If A,B are subspaces of L,
then [A,B] will denote a subspace generated by all elements [a,b]
where a 2 A, b 2 B. As usual, a subspace A of L is called a subalgebra
of L, if [x,y] 2 A for every x,y 2 A. It follows that [A,A] 6 A.

Let L be a Leibniz algebra over a field F, M be non-empty subset
of L, then hMi denote the subalgebra of L generated by M.

A subalgebra A is called a left (respectively right) ideal of L,
if [y, x] 2 A (respectively [x,y] 2 A) for every x 2 A, y 2 L. In other
words, if A is a left (respectively right) ideal, then [L,A] 6 A (respec-
tively [A, L] 6 A).

A subalgebra A is called an ideal of L (more precisely, two-sided
ideal) if it is both a left and right ideal, that is [x,y], [y, x] 2 A for
every x 2 A, y 2 L.

If A is an ideal of L, we can consider the factor-algebra L/A. It is
not hard to see that this factor-algebra also is a Leibniz algebra.

Every Leibniz algebra L possesses the following specific ideal. De-
note by Leib(L) the subspace generated by the elements [a,a], a 2 L.
We note that Leib(L) is an ideal of L. Indeed, for arbitrary ele-
ments a, x 2 L we have

[a, [a, x]] = [[a,a], x] + [a, [a, x]],

so [[a,a], x] = 0. Furthermore,

[x+ [a,a], x+ [a,a]] = [x, x] + [x, [a,a]] + [[a,a], x] + [[a,a], [a,a]]
= [x, x] + [x, [a,a]].

It follows that [x, [a,a]] = [x+ [a,a], x+ [a,a]]- [x, x] 2 Leib(L).
Put K = Leib(L). Then in the factor-algebra L/K we have

[a+K,a+K] = [a,a] +K = K

for each element a 2 L. By mentioned above we obtain that L/K
is a Lie algebra. Conversely, suppose that H is an ideal of L such
that L/H is a Lie algebra. Then H = [a+H,a+H] = [a,a] +H, which
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implies that [a,a] 2 H for every element a 2 L. Then Leib(L) 6 H.
The ideal Leib(L) is called the Leibniz kernel of algebra L. We note

the following important property of the Leibniz kernel:

[[a,a], x] = [a, [a, x]]- [a, [a, x]] = 0.

This property shows that Leib(L) is an abelian subalgebra of L.
Let L be a Leibniz algebra. Define the lower central series of L

L = �1(L) > �2(L) > . . .�↵(L) > �↵+1(L) > . . .��(L)

by the following rules: �1(L) = L, �2(L) = [L, L], and recursively

�↵+1(L) = [L,�↵(L)]

for all ordinals ↵ and ��(L) =
T

µ<�
�µ(L) for limit ordinals �. The

last term ��(L) is called the lower hypocenter of L, and we have

��(L) = [L,��(L)].

If ↵ = k is a positive integer, then �k(L) = [L, [L, [L, . . . , L] . . .]] is the
left normed commutator of k copies of L. Note the following useful
properties of subalgebras and ideals.

As usually, we say that a Leibniz algebra L is called nilpotent, if
there exists a positive integer k such that �k(L) = h0i. More pre-
cisely, L is said to be nilpotent of nilpotency class c if �c+1(L) = h0i,
but �c(L) 6= h0i. We denote the nilpotency class of L by ncl(L).

Note some properties of subalgebras and ideals.

Proposition 2.1 Let L be a Leibniz algebra over a field F.

(i) If H is an ideal of L, then [H,H] is an ideal of L.

(ii) If H is an ideal of L, then [L,H] is a subalgebra of L.

(iii) If H is an ideal of L, then [H, L] is a subalgebra of L.

(iv) If H is an ideal of L, then [L,H] + [H, L] is an ideal of L.

(v) If H is an ideal of L, then [�j(H),�k(H)] 6 �j+k(H) for every posi-
tive integers j, k.

(vi) If H is an ideal of L, then �j(H) is an ideal of L for each positive inte-
ger j. In particular, �j(L) is an ideal of L for each positive integer j.
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(vii) If H is an ideal of L, then �j(�k(H)) 6 �jk(H) for every positive
integers j, k.

We remark that if A,B are ideals of a Leibniz algebra L, then, in
general, [A,B] needs not be an ideal. The following example justifies
it (see [12]).

Example 2.2 Let L be a vector space over a field F with basis

{e1, e2, e3, e4, e5}.

Define the operation on basis vectors by the following rule:

[ej, ej] = 0, 1 6 j 6 4,

[e1, ej] = ej for j 2 {2, 4, 5}, [e1, e3] = 0,

[e2, e1] = -e2, [e2, e3] = e4, [e2, e4] = [e2, e5] = 0,

[e3, ej] = 0 for j 6= 2, [e3, e2] = e5,

[e4, ej] = 0 for j 6= 1, [e4, e1] = e5,

[e5, ej] = 0 for j 6= 1, [e5, e1] = -e5.

Let
A = Fe2 + Fe4 + Fe5 and B = Fe3 + Fe4 + Fe5.

It is not hard to check that A, B are ideals of L. However, [A,B] = Fe4
is not an ideal.

The left (respectively right) center ⇣left
(L) (respectively ⇣right

(L)) of
a Leibniz algebra L is defined by the rule:

⇣left
(L) = {x 2 L| [x,y] = 0 for each element y 2 L}

(respectively,

⇣right
(L) = {x 2 L| [y, x] = 0 for each element y 2 L}).

It is not hard to prove that the left center of L is an ideal, but
it is not true for the right center. Moreover, Leib(L) 6 ⇣left

(L), so
that L/⇣left

(L) is a Lie algebra. The right center is an subalgebra of L,
and in general, the left and right centers are different. Moreover, they
even may have different dimensions. We will construct now the fol-
lowing examples [41].
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Example 2.3 Let F be a field. Put L = Fe1 � Fe2 � Fe3 � Fe4 and
define an operation [·, ·] by the following rules:

[e1, e1] = e2, [e1, e2] = -e2 - e3, [e1, e3] = e2 + e3, [e1, e4] = 0,
[e2, e1] = 0, [e3, e1] = 0, [e4, e1] = e2 + e3, [ej, ek] = 0

for all j, k 2 {2, 3, 4}. It is possible to check that this operation defines
a Leibniz algebra. We can see that ⇣right

(L) = Fe4 and ⇣right
(L) is not

an ideal. Furthermore, ⇣left
(L) = Fe2 � Fe3, so that

⇣right
(L)\ ⇣left

(L) = h0i.

Moreover,

dimF(⇣
right

(L)) = 1 < 2 = dimF(⇣
left

(L)).

Note also that [L, L] = Leib(L) = ⇣left
(L).

Example 2.4 Let F be a field. Put L = Fe1 � Fe2 � Z where a sub-
space Z has a countable basis {zn| n 2 N}. Put [zn, x] = 0 for ev-
ery x 2 L and

[e1, e1] = [e2, e2] = [e1, e2] = [e2, e1] = z1, [e1, z1] = [e2, z1] = 0.

By such definitions, we have

0 = [[ej, ek], em] and [ej, [ek, em]]- [ek, [ej, em]] = 0- 0 = 0

for all j, k,m 2 {1, 2}. Take into account the equalities

0 = [[e1, e2], z] = [e1, [e2, z]]- [e2, [e1, z]],
0 = [[e2, e1], z] = [e2, [e1, z]]- [e1, [e2, z]],

we obtain [e2, [e1, z]]- [e1, [e2, z]] = 0 for every z 2 Z. Now we put

[e1, zj] = zj, [e2, zj] = zj+1

for all j > 1. By this definition, we have

0 = [[ej, z], ek] and [ej, [z, ek]]- [z, [ej, ek]] = [ej, 0]- 0 = 0,
0 = [[z, ej], ek] and [z, [ej, ek]]- [ej, [z, ek]] = 0- [ej, 0] = 0
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for all j, k 2 {1, 2} and z 2 Z. As we have seen above

[[ej, ek], z] = [ej, [ek, z]]- [ek, [ej, z]]

for all j, k 2 {1, 2} and z 2 Z. Hence, L is a Leibniz algebra. By it
construction Z is a left center of L, the right center coincides with the
center of L and coincides with Fz1, so that, the left center has finite
codimension (and therefore, infinite dimension) and the right center
and the center have finite dimension. By the construction, [L, L] = Z.
Furthermore

[e1 + z1, e1 + z1] = [e1, e1] + [z1, e1] + [e1, z1] + [z1, z1] = z1,

[e1 + zj, e1 + zj] = [e1, e1] + [zj, e1] + [e1, zj] + [zj, zj] = z1 + zj

for j > 1. It follows that Leib(L) = Z.

The center ⇣(L) of L is defined as

⇣(L) = {x 2 L| [x,y] = 0 = [y, x] for each element y 2 L}.

The center is an ideal of L. In particular, we can consider the factor-
algebra L/⇣(L).

3 Leibniz algebras of small dimensions

As usual, we say that a Leibniz algebra L is finite dimensional, if the
dimension L as a vector space over F is finite. The condition “to be
finite dimensional” is very strong. That is why the majority of results
on Leibniz algebras were obtained for finite dimensional Leibniz al-
gebras.

If dimF(L)=1, then L = Fa for some element a 2 L. Then [a,a] = ↵a
where ↵ 2 F. We have 0 = [[a,a],a] = [↵a,a] = ↵[a,a] = ↵2a. It fol-
lows that ↵ = 0, that is, [a,a] = 0, and L is abelian.

Suppose now that dimF(L) = 2 and L is not a Lie algebra. It follows
that K = Leib(L) is non-zero. Since K is abelian, K 6= L. Hence there
exists an element a 2 L such that b = [a,a] 6= 0. By this choice, a 62 K.
Then L = Fa+ Fb, and we have [b,a] = 0. The fact that K is an ideal
of L implies that [a,b] = �b for some � 2 F. Suppose that � 6= 0 and
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put c = �-1a. Then [c,b] = �-1
[a,b] = �-1�b = b. We have

[c, c] = �-2
[a,a] = �-2b = d,

and
[c,d] = [c,�-2b] = �-2

[c,b] = �-2b = d.

By this choice, {c,d} is a basis of L.
Thus, we obtain the following two non-isomorphic algebras:

L1 = Fa+ Fb, [a,a] = b, [b,a] = [a,b] = [b,b] = 0,

and
L2 = Fc+ Fd, [c, c] = [c,d] = d, [d, c] = [d,d] = 0.

We consider now the structure of 3-dimensional Leibniz algebras.
The description of Leibniz algebras over a field of complex numbers
of dimension 3 was obtained in the papers [6, 19]. The description
of right Leibniz algebras over a field of odd characteristic having di-
mension 3, was obtained in the paper [59]. The description of Leibniz
algebras over an arbitrary finite field of dimension 3 one can finds in
the paper [68]. The description given in the paper [59] is contained
in [7]. Therefore, we present here the results of [68], especially since
many of them can be extended to infinite fields.

Further writing L = A � B means that L is a direct sum of the
subspaces A and B or the subalgebras A and B. If L = A+ B and A
is an ideal of L and B is a subalgebra of L, then we will say that L is
a semidirect sum of A and B and use the following symbol L = A a B.

Let now L be a Leibniz algebra of dimension 3 over a finite field F
and {a,b, c} be a basis of L. The results of paper [68] shows that L is
an algebra of one of the following types.

• S1 = hai, [a,a] = b, [a,b] = c, [c,a] = [a, c] = [c,b] = [b, c] =
[b,b] = [c, c] = 0, Leib(L) = ⇣left

(L) = [L, L] = Fb� Fc, ⇣right
(L) =

⇣(L) = �3(L) = Fc. In particular, L is a nilpotent cyclic Leibniz
algebra.

• S2 = A � B where A, B are the ideals, B = Fb, [b,b] = 0,
A = Fa� Fc is a cyclic nilpotent subalgebra, [a,a] = c, [c,a] =
[a, c] = 0. Moreover, Leib(L) = [L, L] = Fc, ⇣left

(L) = ⇣right
(L) =

⇣(L) = Fb� Fc.

• S3 = A a B where A = Fa � Fc is a cyclic nilpotent subal-
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gebra, [a,a] = c, [c,a] = [a, c] = 0, B = Fb, [b,b] = 0, and
[a,b] = c, [b,a] = [b, c] = [c,b] = 0. Moreover, Leib(L) = [L, L] =
⇣right

(L) = ⇣(L) = Fc, ⇣left
(L) = Fb� Fc.

• S4 = A a B where A = Fa� Fc is a cyclic nilpotent subalgebra,
[a,a] = c, [c,a] = [a, c] = 0, B = Fb, [b,b] = 0, and [a,b] = c,
[b,a] = �c, � 6= 0, [b, c] = [c,b] = 0. Moreover, Leib(L) = [L, L] =
⇣left

(L) = ⇣right
(L) = ⇣(L) = Fc.

• S5 = A + B where A, B are the ideals, A = hai, B = hbi,
A \ B = ⇣(L) = Fc, [a,a] = [b,b] = c, [c,a] = [a, c] = [c,b] =
[b, c] = [a,b] = [b,a] = 0. Moreover, Leib(L) = [L, L] = ⇣left

(L) =
⇣right

(L) = ⇣(L) = Fc, char(F) 6= 2, and equation x2 + 1 = 0 has
no solutions in F.

For example, if F = F5, F13, equation y2 + 1 = 0 has a solution,
if F = F3, F7, F11, equation y2 + 1 = 0 has no solutions.

Thus we can see that algebras could have the same defining rela-
tion, but different properties.

• S6 = A+B where A, B are the nilpotent ideals, A = hai, B = hbi,
A \ B = ⇣(L) = Fc, [a,a] = c, [b,b] = ⇢c, where ⇢ is a prim-
itive root of identity of degree |F| - 1, [c,a] = [a, c] = [c,b] =
[b, c] = [a,b] = [b,a] = 0. Moreover, Leib(L) = [L, L] = ⇣left

(L) =
⇣right

(L) = ⇣(L) = Fc, char(F) 6= 2.

• S7 = A + B where A, B are the ideals, A = hai, B = hbi,
A\B= ⇣(L) = Fc, [a,a] = c = [a,b], [b,b] = ⌘c, [c,a] = [a, c] =
[c,b] = [b, c] = [b,a] = 0. Moreover, Leib(L) = [L, L] = ⇣left

(L) =
⇣right

(L) = ⇣(L) = Fc and polynomial x2 + x+ ⌘ has no roots in
field F.

As we can see, in this last case the properties of the algebra depend
on whether the polynomial given above has roots in the field F, and
this also depends on the choice of the element ⌘. The difference is
already evident even over the fields of the same characteristic. So
if F = F2, then for ⌘ there is only one value ⌘ = 1. But equation

y2 + y+ 1 = 0

has no solution in field F = F2. Hence the respectively algebra has no
element d 62 Fc such that [d,d] = 0. It follows that every subalgebra
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of L is an ideal. If F = F4 and ⌘1 = 1, then equation y2 + y+ 1 = 0
has solutions in field F = F4. In this case, L has one dimensional
subalgebra, which is no ideal.

In all of the above cases the Leibniz algebras are nilpotent. All of
the following Leibniz algebras are not nilpotent.

• S8 = A � B where A, B are the ideals, B = Fb, [b,b] = 0, A
is a cyclic subalgebra, A = Fa� Fc, where [a,a] = c = [a, c],
[c,a] = [c,b] = [b, c] = [a,b] = [b,a] = 0. Moreover, Leib(L) =

[L, L] = Fc, ⇣left
(L) = Fb� Fc, ⇣right

(L) = ⇣(L) = Fb.

• S9 = A a B where B = Fb, [b,b] = 0, A = Fa� Fc is a cyclic
subalgebra, [a,a] = c = [a, c], [a,b] = c, [c,a] = [c,b] = [b, c] =
[b,a] = 0. Moreover, Leib(L) = [L, L] = Fc, ⇣left

(L) = Fb� Fc,
⇣(L) = ⇣right

(L) = h0i.

• S10 = A a B where B = Fb, [b,b] = 0, A = Fa� Fc is a cyclic
subalgebra, [a,a] = c = [a, c], [b,a] = [b, c] = c, [c,a] = [c,b] =
[a,b] = 0. Moreover, Leib(L) = [L, L] = ⇣left

(L) = Fc, ⇣right
(L) =

Fb, ⇣(L) = h0i.

• S11 = A a B where B = Fb, [b,b] = 0, A = Fa� Fc is a cyclic
subalgebra, [a,a] = c = [a, c], [a,b] = a = -[b,a], [b, c] = -2c,
[c,a] = [c,b] = 0. Moreover, Leib(L) = [L, L] = ⇣left

(L) = Fc,
⇣right

(L) = ⇣(L) = h0i.

• S12 = A a B where B = Fb, [b,b] = 0, A = Fa� Fc is a cyclic
subalgebra, [a,a] = c, [a, c] = 0, [a,b] = a+ �c, � 2 F, [b,a] =
-a + �c, [b, c] = -2c, [c,a] = [c,b] = 0. Moreover, Leib(L) =

[L, L] = ⇣left
(L) = Fc, ⇣right

(L) = ⇣(L) = h0i whenever char(F) 6= 2
and ⇣right

(L) = ⇣(L) = Fc whenever char(F) = 2.

• S13 = D a A where D = Fd, [d,d] = 0, A = Fa� Fc is a cyclic
nilpotent subalgebra, [a,a] = c, [a, c] = 0, [a,d] = �d, 0 6= � 2 F,
[c,a] = [c,d] = [d, c] = [d,a] = 0, Leib(L) = [L, L] = ⇣left

(L) =

Fd� Fc, ⇣(L) = ⇣right
(L) = Fc.

• S14 = D a B where B = Fb, [b,b] = 0, D = Fd � Fc is an
abelian subalgebra, [d,d] = [d, c] = [c,d] = [c, c] = 0, [b, c] = d,
[b,d] = �d + �d, 0 6= �, � 2 F, [c,b] = [d,b] = 0. Moreover,
Leib(L) = [L, L] = ⇣left

(L) = Fd� Fc, ⇣right
(L) = Fb, ⇣(L) = h0i.

• S15 = A a D where D = Fd, [d,d] = 0, A = Fa� Fc is a cyclic
subalgebra, [a,a] = c = [a, c], [a,d] = d, [c,a] = [c,d] = [d, c] =
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[d,a] = 0. Moreover, Leib(L) = [L, L] = ⇣left
(L) = Fd� Fc, ⇣(L) =

⇣right
(L) = h0i.

• char(F) 6= 2, S16 = A a D where D = Fd, [d,d] = 0, A = Fa� Fc
is a cyclic subalgebra, [a,a] = c = [a, c], [a,d] = c+ 2d, [c,a] =
[c,d] = [d, c] = [d,a] = 0. Moreover, Leib(L) = [L, L] = ⇣left

(L) =
Fd� Fc, ⇣(L) = ⇣right

(L) = h0i.

Investigation of Leibniz algebras of dimensions 4 over the fields of
characteristic 0 has been conducted in the papers [1, 2, 5, 6, 18, 26, 27,
28, 61, 35]; see also the book [7].

4 The structure of cyclic Leibniz algebras

One of the first questions that naturally arise in the study of any al-
gebraic structure is the question of the structure of its cyclic substruc-
tures (that is, substructures generated by one element). In particular,
for a Leibniz algebra the question of the structure of its cyclic sub-
algebras naturally arises. Unlike Lie algebras, associative algebras,
groups, etc., cyclic Leibniz algebras is no necessarily abelian.

The structure of cyclic Leibniz algebras has been described in [23].
Now we consider the main results of this paper.

Let L be a Leibniz algebra over a field F and d be an element of L.
Put ln1(d) = d, ln2(d) = [d,d], lnk+1(d) = [d, lnk(d)], k 2 N. These
elements are called the left normed commutators of the element d.

Proposition 4.1 Let L be a Leibniz algebra over a field F, d 2 L. Then
every non-zero product of k copies of an element d with any bracketing
is coincides with lnk(d). Hence a cyclic subalgebra hdi is generated as a
subspace by the elements lnk(d), k 2 N.

The following two natural cases appear here.
The elements dj = lnj(d), j 2 N are linearly independent. In this

case, a subalgebra D = hdi has the lower central series

D = �1(D) > �2(D) > . . . > �j(D) > �j+1(D) > . . . h0i

of length !, and �j(D) =
L

t>j
Fdt, j 2 N. In this case, we will say

that the element d has infinite depth.
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Consider now the second possibility, namely when the elements
dj = lnj(d), j 2 N, are not linearly independent. In this case, we
have the following result.

Proposition 4.2 Let L be a Leibniz algebra over a field F, d 2 L, D = hdi.
If there exists a positive integer k such that

lnk+1(d) 2 F ln1(d) + . . .+ F lnk(d),

then D = F ln1(d) + . . .+ F lnk(d).

In particular, in this case, the subalgebra D = hdi has finite dimen-
sion over F, and we will say that an element d has finite depth. Let k
be the least positive integer such that ln1(d), . . . , lnk(d) are linearly
independent, but the elements ln1(d), . . . , lnk(d), lnk+1(d) are not lin-
early independent. Then the subset {ln1(d), . . . , lnk(d)} is a basis of D
and dimF(D) = k. In this case, we can say that element d has depth k.

The case when an element d has finite depth turned out to be much
more diverse. The following theorem from paper [23] has described
this case.

Theorem 4.3 Let L be a Leibniz algebra over a field F, d 2 L, D = hdi.
Suppose that an element d has finite depth. Then D is an algebra of one of
the following types:

(i) D = Fd is abelian, [d,d] = 0;

(ii) there is a positive integer k such that lnk(d) 6= 0, but lnk+1(d)=0,
that is D is a nilpotent cyclic algebra;

(iii) D = V �U where V is an abelian ideal, V 6 ⇣left
(D), U is a nilpotent

cyclic subalgebra, [D,D] = V � [U,U] is an abelian ideal;

(iv) D = ⇣left
(D)� ⇣right

(D) where

[D,D] = ⇣left
(D) = F ln2(d) + . . .+ F lnk(d),

⇣right
(D) = Fc for some element c 2 D and [c,y] = [d,y] for each

element y 2 ⇣left
(D).

For the case when F = C is the field of complex numbers, some de-
scription of cyclic finite dimensional Leibniz algebras were obtained
in the paper [62]. Unlike Theorem 4.3, it does not show the struc-
ture of cyclic Leibniz algebras and based on the following. Let an



Applying group theory philosophy to Leibniz algebras 85

element a has a depth k. Then lnk+1(d) = ↵2 ln2(a) + . . .+↵k lnk(a),
for some ↵j 2 F, 2 6 j 6 k. In the paper [62], a characterization for
the set of coefficients (↵2, . . . ,↵k) was obtained.

Note that the results of this paper have been extended on the case
of arbitrary field in [24].

As we already noted above, Lie algebras are a partial type of Leib-
niz algebras. In this regard, it is interesting to see how the Leibniz
algebras that are the minimal non Lie algebras with all proper subal-
gebras are Lie algebras are organized. A description of such algebras
was obtained in [23].

Theorem 4.4 Let L be a Leibniz algebra over a field F. Suppose that every
proper subalgebra of L is a Lie algebra. Then L is an algebra of one of the
following types:

(i) L is a Lie algebra;

(ii) there is a positive integer k such that lnk(a) 6= 0, but lnk+1(a) = 0,
that is L is nilpotent;

(iii) L = V � U where V is an abelian ideal, V 6 ⇣left
(D), U = Fu

and [u,u] = 0, V = Fv+ Fv1 and [u, v] = v1, [u, v1] = 0;

Since every abelian Leibniz algebra is a Lie algebra, we obtain the
next corollary.

Corollary 4.5 Let L be a Leibniz algebra over a field F. Suppose that every
proper subalgebra of L is abelian. Then L is an algebra of one of the following
types:

(i) L is a Lie algebra whose proper subalgebras are abelian;

(ii) there is a positive integer k such that lnk(a) 6= 0, but lnk+1(a) = 0,
that is L is nilpotent;

(iii) L = V � U where V is an abelian ideal, V 6 ⇣left
(D), U = Fu

and [u,u] = 0, V = Fv+ Fv1 and [u, v] = v1, [u, v1] = 0.

This result implies that the description of Leibniz algebras, whose
proper subalgebras are abelian, can be deduced to the case of Lie al-
gebras, whose proper subalgebras are abelian. Such Lie algebras are
either simple, or solvable. Soluble minimal nonabelian Lie algebras
(even soluble minimal non nilpotent Lie algebras) were described
in [33, 65, 66]. Simple minimal nonabelian Lie algebras were stud-
ied in [31] and [32], but their complete description remains an open
problem.
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5 Nilpotent Leibniz algebras and their

generalizations

Consider now such an important type of Leibniz algebras as the
nilpotent Leibniz algebras. The concept of nilpotency arises in many
algebraic structures. In most works on the theory of Leibniz algebras,
the definition of nilpotency is given through the use of the lower cen-
tral series. We also gave this standard definition at the beginning of
this article. For Lie algebras, for groups and other algebraic struc-
tures, the concept of nilpotency can be introduced using upper cen-
tral series. We show now how this can be done for Leibniz algebras.
This was done in [41]. Here are some of its results.

Define the upper central series

h0i = ⇣0(L) 6 ⇣1(L) 6 . . . ⇣↵(L) 6 ⇣↵+1(L) 6 . . . ⇣�(L) = ⇣1(L)

of a Leibniz algebra L by the following rules: ⇣1(L) = ⇣(L) is the
center of L, and recursively,

⇣↵+1(L)/⇣↵(L) = ⇣(L/⇣↵(L))

for all ordinals ↵, and ⇣�(L) =
S

µ<�
⇣µ(L) for limit ordinals �. By

definition, each term of this series is an ideal of L. The last term ⇣1(L)
of this series is called the upper hypercenter of L. Denote by zl(L) the
length of the upper central series of L.

It is a well-known that in nilpotent Lie algebras and nilpotent
groups the lower and the upper central series have the same length.

Consider the factors �k(L)/�k+1(L), k 2 N. By definition,

[L,�k(L)] = �k+1(L).

By Proposition 2.1, [�k(L), L] = [�k(L),�1(L)] 6 �k+1(L).
Let

h0i = C0 6 C1 6 . . . C↵ 6 C↵+1 6 . . . C� = L

be an ascending series of ideals of Leibniz algebra L. This series is
called central if C↵+1/C↵ 6 ⇣(L/C↵) for each ordinal ↵ < �. In other
words, [C↵+1, L], [L,C↵+1] 6 C↵ for each ordinal ↵ < �.

Proposition 5.1 Let L be an Leibniz algebra over a field F, and

h0i = C0 6 C1 6 . . . 6 Cn = L
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be a finite central series of L. Then:

(i) �j(L) 6 Cn-j+1, so that �n+1(L) = h0i;

(ii) Cj 6 ⇣j(L), so that ⇣n(L) = L;

(iii) if j, k are positive integer, k > j, then

[�j(L), ⇣k(L)], [⇣k(L),�j(L)] 6 ⇣k-j(L).

Corollary 5.2 Let L be an Leibniz algebra over a field F and suppose that L
has a finite central series

h0i = C0 6 C1 6 . . . 6 Cn = L.

Then L is nilpotent and ncl(L) 6 n. Furthermore, the upper central series
of L is finite, ⇣1(L) = L, zl(L) 6 n. Moreover, ncl(L) = zl(L).

This Corollary shows that a Leibniz algebra L is nilpotent if and
only if there is a positive integer k such that L = ⇣k(L). The least
positive integer having this property coincides with nilpotency class
of L. So, as in the cases of Lie algebras and groups, the definition of
nilpotency can be given here using the notion of the upper central
series.

Here it will be appropriate to note the fact that the Leibniz alge-
bra L can be associative. Indeed, if [L, L] = �2(L) 6 ⇣(L), then

0 = [[x,y], z] = [x, [y, z]]

for all x,y, z 2 L. Conversely, suppose that L is associative. Then,
taking into account the equality [[x,y], z] = [x, [y, z]], from

[[x,y], z] = [x, [y, z]]- [y, [x, z]]

we derive that [y, [x, z]] = 0. Since it is true for all

x,y, z 2 L, [L, L] 6 ⇣right
(L).

Furthermore,
0 = [y, [x, z]] = [[y, x], z],

which shows that [L, L] 6 ⇣left
(L). So we obtain the following propo-

sition.
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Proposition 5.3 Let L be a Leibniz algebra over a field F. Then L is asso-
ciative if and only if [L, L] 6 ⇣(L).

The concepts of upper and lower central series introduced here
immediately leads to the following classes of Leibniz algebras.

A Leibniz algebra L is said to be hypercentral if it coincides with the
upper hypercenter.

A Leibniz algebra L is said to be hypocentral if its lower hypocenter
is trivial.

In the case of finite dimensional algebras, these two concepts coin-
cide, even though, in general, these two classes are very different.

Thus, a cyclic Leibniz algebra D = hdi, where the element d has
infinite depth, is hypocentral and has infinite dimension. At the same
time, D has a trivial center.

For finitely generated hypercentral Leibniz algebras we obtained
in [48] the following theorem.

Theorem 5.4 Let L be a finitely generated Leibniz algebra over a field F.
If L is hypercentral, then L is nilpotent. Moreover, L has finite dimension.
In particular, a finitely generated nilpotent Leibniz algebra has finite dimen-
sion.

This result is an analog of a similar group theoretical result proved
by A.I. Maltsev [54].

A Leibniz algebra L is said to be locally nilpotent if every finite
subset of L generates a nilpotent subalgebra.

That is why, hypercentral Leibniz algebras give us examples of
locally nilpotent algebras.

In [48] we obtained the following characterization of hypercentral
Leibniz algebras.

Theorem 5.5 Let L be a Leibniz algebra over a field F. Then L is hyper-
central if and only if for each a 2 L and every countable subset {xn| n 2 N}

of elements of L there exists a positive integer k such that all

[x1, . . . , xj,a, xj+1, . . . , xk]

are zeros for all j, 0 6 j 6 k.

Corollary 5.6 Let L be a Leibniz algebra over a field F. Then L is hy-
percentral if and only if every subalgebra of L having finite or countable
dimension is hypercentral.
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These results are analogs of the classical results proved for the
groups by S.N. Chernikov in [21].

In [12], the following properties of nilpotent ideals of Leibniz alge-
bras have been obtained.

Theorem 5.7 Let L be a Leibniz algebra over a field F and K1, K2 are
ideals of L. Suppose that K1, K2 are nilpotent and

ncl(K1) = c1, ncl(K2) = c2.

Then the ideal K1 +K2 is nilpotent, and ncl(K1 +K2) = c1 + c2.

Corollary 5.8 Let L be a Leibniz algebra over a field F. If L has a finite
dimension over F, then L has the greatest nilpotent ideal.

If L is an arbitrary Leibniz algebra, then denote by Nil(L) the sub-
algebra, generated by all nilpotent ideals of L. Nil(L) is called the
nil-radical of L.

If L = Nil(L), then L is called a Leibniz nil-algebra. Every nilpo-
tent Leibniz algebra is a nil-algebra, but converse is not true even
for a Lie algebra. If L is finite dimensional, then Corollary 5.8 shows
that Nil(L) is nilpotent. In the general case, Nil(L) is locally nilpotent,
but converse is not true even for a Lie algebra. Moreover, there exists
a Lie nil-algebra, which is not hypercentral. There is a corresponding
example in Chapter 6 of the book [3].

In this connection, the following question arises: is an analogous
assertion valid for locally nilpotent ideals? For Lie algebras the ques-
tion has a positive answer, as it was shown by B. Hartley in [38].

Now we show the basic results of [46], which give an affirmative
answer on this question.

Theorem 5.9 Let L be a Leibniz algebra over a field F, and A, B be locally
nilpotent ideals of L. Then ideal A+B is locally nilpotent.

Corollary 5.10 Let L be a Leibniz algebra over a field F and S be a family
of locally nilpotent ideals of L. Then the subalgebra generated by S is locally
nilpotent.

Corollary 5.11 Let L be a Leibniz algebra over a field F. Then L has the
greatest locally nilpotent ideal.

Let L be a Leibniz algebra over a field F. The greatest locally nilpo-
tent ideal of L is called the locally nilpotent radical of L and will be
denoted by Ln(L).
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These results are analogues of those proved for groups by
K.A. Hirsch [39] and B.I. Plotkin [57, 58].

Note the following important properties of locally nilpotent Leib-
niz algebras, which have been obtained in [48].

Theorem 5.12 Let L be a locally nilpotent Leibniz algebra over a field F.

(i) If A, B, A 6 B are ideals of L such that factor B/A is L-chief,
then B/A is central in L (that is B/A 6 ⇣(L/A)). In particu-
lar, dimF(B/A) = 1.

(ii) If A is a maximal subalgebra of L, then A is an ideal of L.

Let L be a Leibniz algebra over a field F, let M be a non-empty
subset of L and H be a subalgebra of L. Put

Annleft
H

(M) = {a 2 H | [a,M] = h0i},

Annright
H

(M) = {a 2 H | [M,a] = h0i}.

The subset Annleft
H

(M) is called the left annihilator or the left centralizer
of M in subalgebra H. The subset Annright

H
(M) is called the right anni-

hilator or the right centralizer of M in subalgebra H. The intersection

AnnH(M)=Annleft
H

(M)\ Annright
H

(M)

= {a 2 H| [a,M] = h0i = [M,a]}

is called the annihilator or the centralizer of M in subalgebra H.
It is not hard to see that all of these subsets are subalgebras of L.

Moreover, if M is a left ideal of L, then Annleft
L

(M) is an ideal of L.
Indeed, let x be an arbitrary element of L, a 2 Annleft

L
(M), b 2 M.

Then

[[a, x],b] = [a, [x,b]]- [x, [a,b]] = 0- [x, 0] = 0, and

[[x,a],b] = [x, [a,b]]- [a, [x,b]] = [x, 0]- 0 = 0.

If M is an ideal of L, then AnnL(M) is an ideal of L. Indeed, let x
be an arbitrary element of L, a 2 AnnL(M), b 2 M. Using the above
arguments, we obtain that

[[a, x],b] = [[x,a],b] = 0.
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Further,

[b, [a, x]] = [[b,a], x] + [a, [b, x]] = [0, x] + 0 = 0, and

[b, [x,a]] = [[b, x],a] + [x, [b,a]] = 0+ [x, 0] = 0.

Let H be a subalgebra of L. The left idealizer or the left normalizer
of H in L is defined by the following:

Ileft
L

(H) = {x 2 L| [x,h] 2 H for all h 2 H}.

Clearly, that the term the normalizer arose from group theory analo-
gous.

Similarly, the right idealizer of H in L is defined by the following:

Iright
L

(H) = {x 2 L| [h, x] 2 H for all h 2 H}.

The idealizer of H in L is defined by the following:

IL(H) = {x 2 L| [h, x], [x,h] 2 H for all h 2 H} = Ileft
L

(H)\ Iright
L

(H).

The left idealizer of H is a subalgebra of L. Indeed, let x,y 2 Ileft
L

(H),
h 2 H, ↵ 2 F, then

[x- y,h] = [x,h]- [y,h] 2 H;

[↵x,h] = ↵[x,h] 2 H; and

[[x,y],h] = [x, [y,h]]- [y, [x,h]] 2 H.

The idealizer of H is also a subalgebra of L. Indeed, let x,y 2 IL(H),
h 2 H, ↵ 2 F. As above we can show that x- y, ↵x, [x,y] 2 IL(H).
Further,

[x- y,h] = [x,h]- [y,h] 2 H;

[↵x,h] = ↵[x,h] 2 H; and

[h, [x,y]] = [[h, x],y] + [x, [h,y]] 2 H.

However the right idealizer need not be a subalgebra. This is shown
by the following example from [10].

Example 5.13 Let L be a vector space over F, and {a,b, c,d} be a
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basis of L. Define the operation [·, ·] by the rules:

[a,b] = a, [b,a] = -a+ c, [b,b] = d, [a,d] = c,

[a,a] = [a, c] = 0, [b, c] = -c, [d, [d,d]] = 0,

and
[c, x] = [[d,d], x] = 0 for all x 2 L.

It is not hard to prove that L is a Leibniz algebra. Let H = hai. It
follows from [a,a] = 0 that hai = Fa. Clearly,

Iright
L

(H) = Fb+ Fc.

However [c, c] = d 62 Iright
L

(H), which shows that Iright
L

(H) is not a
subalgebra of L.

However, if H is a left ideal of L, then its right idealizer is a subal-
gebra. Indeed, let x,y 2 Iright

L
(H), h 2 H, then

[h, [x,y]] = [[h, x],y] + [x, [h,y]].

By definition, [h, x], [h,y] 2 H, and [[h, x],y] 2 H. Since H is a left
ideal, [x, [h,y]] 2 H, which implies that [x,y] 2 Iright

L
(H).

Let L be a hypercentral Leibniz algebra and let

h0i = Z0 6 Z1 6 . . . Z↵ 6 Z↵+1 6 . . . Z� = L

be the upper central series of L. Let H be a proper subalgebra of L.
Then there exists an ordinal ↵ such that Z↵ 6 H but H does not
include Z↵+1. Choose an element

x 2 Z↵+1 \H.

For every element h 2 H we have [x,h], [h, x] 2 Z↵. The inclusion

Z↵ 6 H

implies that [x,h], [h, x] 2 H. This shows that IL(H) 6= H, in particular

Iright
L

(H) 6= H 6= Ileft
L

(H),



Applying group theory philosophy to Leibniz algebras 93

so we obtain the following result.

Proposition 5.14 Let L be a Leibniz algebra over a field F. If L is hyper-
central, then IL(H) 6= H for every proper subalgebra H of L.

Corollary 5.15 Let L be a nilpotent Leibniz algebra over a field F.
Then IL(H) 6= H for every proper subalgebra H of L.

Let L be a Leibniz algebra over field F. We say that L satisfies the
idealizer condition if IL(A) 6= A for every proper subalgebra A of L.

A subalgebra A is called ascendant in L if there is an ascending
chain of subalgebras

A = A0 6 A1 6 . . . A↵ 6 A↵+1 6 . . . A� = L

such that A↵ is an ideal of A↵+1 for all ↵ < �.
It is possible to prove that L satisfies the idealizer condition if and

only if every subalgebra of L is ascendant. Next result has been ob-
tained in [48].

Theorem 5.16 Let L be a Leibniz algebra over a field F. If L satisfies the
idealizer condition then, L is locally nilpotent.

This result is analogous to a result proved by B.I. Plotkin for groups
in [56].

It should be noted that Leibniz algebras with the idealizer con-
dition form a proper subclass of the class of locally nilpotent Leib-
niz algebras, since this is the case for Lie algebras. A corresponding
example could be found in Chapter 6 of the book [3]. For finitely
dimensional Leibniz algebras the following characterization of nilpo-
tent Leibniz algebras is valid.

Theorem 5.17 Let L be a finite dimensional Leibniz algebra over a field F
of characteristic 0. Then the following statements are equivalent.

(i) L is nilpotent.

(ii) Every proper subalgebra of L does not coincide with its idealizer.

(iii) Every proper subalgebra of L does not coincide with its right idealizer.

(iv) Every maximal subalgebra of L is an ideal of L.

(v) Every maximal subalgebra of L is a right ideal of L.
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The most useful of these characterizations were proved in [10].
In [60] the following properties of finite dimensional Leibniz alge-

bras have been obtained.

Theorem 5.18 Let L be a finite dimensional Leibniz algebra over a field F
and H be a nilpotent ideal of L. Then L is nilpotent if and only if L/[H,H]

is nilpotent. Moreover, if ncl(H) = c and ncl(L/[H,H]) = d + 1, then
ncl(L) 6

�
c+1

2

�
d-

�
c

2

�
.

Theorem 5.19 Let L be a finite dimensional Leibniz algebra over a field F.
If L is nilpotent and H is a subalgebra of L such that H + [L, L] = L,
then H = L. Conversely, if for every subalgebra H such that H+ [L, L] = L
we have H = L, then L is nilpotent.

Let L be a Leibniz algebra. The intersection of the maximal subalge-
bras of L is called the Frattini subalgebra of L and denoted by Frat(L).
If L does not include maximal subalgebras, then put L = Frat(L).

The next property of Frattini subalgebra was proved in [12].

Theorem 5.20 Let L be a Leibniz algebra over a field F of characteristic 0.
Then Frat(L) is an ideal of L.

Note that if char(F) is prime, the above statement is not true even
for soluble Lie algebras (see [13]).

Combining Theorem 5.20 with Corollary 5.6 of the paper [10], we
obtain the following theorem.

Theorem 5.21 Let L be a Leibniz algebra over a field F of characteristic 0.
If dimF(L) is finite, then Frat(L) is nilpotent.

Note the following important property of the Frattini subalgebra.

Proposition 5.22 Let L be a finite dimensional Leibniz algebra over a
field F. If M is a subset of L such that hM, Frat(L)i = L, then hMi = L.

Indeed, suppose the contrary. Let hMi is a proper subalgebra of L.
Since dimF(L) is finite, there is a maximal subalgebra H such that

hMi 6 H.

Being maximal, H includes Frat(L), so that

hM, Frat(L)i 6 H 6= L.

This contradiction proves that hMi = L.
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Using the Frattini subalgebra, we can obtain the following char-
acterization of nilpotent Leibniz algebras. But first we formulate a
slightly generalized statement.

Proposition 5.23 Let L be a finite dimensional Leibniz algebra over a
field F. Then [L, L] = Frat(L) if and only if every maximal subalgebra of L
is an ideal.

Indeed, suppose that each maximal subalgebra of L is an ideal.
Let K be an arbitrary maximal subalgebra of L. Then hK, xi = L for
each element x 62 K. Since K is an ideal, L/K is a cyclic algebra. If
we suppose that Leib(L/K) is non-zero, then Leib(L/K) is a proper
subalgebra of L/K, which is impossible. Hence Leib(L/K) = h0i, so
that L/K is a cyclic Lie algebra. In particular, it is abelian, which fol-
lows that [L, L] 6 K. It is valid for each maximal subalgebra, therefore
their intersection Frat(L) includes [L, L]. On the other hand, factor-
algebra L/[L, L] is abelian, so that every its subspace is a subalgebra.
Since the intersection of all maximal subspaces of L/[L, L] is zero,
then Frat(L) = [L, L].

Conversely, if [L, L] = Frat(L), then Frat(L) is an ideal and the factor-
algebra L/ Frat(L) is abelian. It follows that every subalgebra includ-
ing Frat(L) is an ideal of L, in particular, every maximal subalgebra
of L is an ideal.

Using this result and Theorem 5.12 we obtain the next corollary.

Corollary 5.24 Let L be a finite dimensional Leibniz algebra over a field F
of characteristic 0. Then L is nilpotent if and only if [L, L] = Frat(L).

Let L be a Leibniz algebra. Define the lower derived series of L

L = �0(L) > �1(L) > . . . �↵(L) > �↵+1(L) > . . . �⌫(L)

by the following rules: �0(L) = L, �1(L) = [L, L], and recursively

�↵+1(L) = [�↵(L), �↵(L)]

for all ordinals ↵ and

��(L) =
\

µ<�

�µ(L)

for limit ordinals �. For the last term �⌫(L) we have

�⌫(L) = [�⌫(L), �⌫(L)].
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The length ⌫ of this series is called the derived length of L and denoted
by dl(L).

If �⌫(L) = h0i for some ordinal ⌫, then L is called a hypoabelian Leib-
niz algebra. If �n(L) = h0i for some positive integer n, then we say
that L is a soluble Leibniz algebra.

If K1, K2 are soluble ideals of Leibniz algebra L, then their sum

K1 +K2

is a soluble ideal of L. Therefore if L is a finite dimensional Leibniz
algebra, then its subalgebra Sol(L) generated by all soluble ideals
of L is called the soluble radical of L. By above remarked, Sol(L) is
a soluble ideal of L, and factor-algebra L/ Sol(L) does not include
non-zero soluble ideals.

Note some properties of the nil-radical and the soluble radical ob-
tained in [36].

Theorem 5.25 Let L be a finite dimensional Leibniz algebra over a field F
of characteristic 0. Then [L, Sol(L)] 6 Nil(L).

Corollary 5.26 Let L be a finite dimensional Leibniz algebra over a field F
of characteristic 0. Then [Sol(L), Sol(L)] is nilpotent.

Corollary 5.27 Let L be a finite dimensional Leibniz algebra over a field F
of characteristic 0. Then L is soluble if and only if [L, L] is nilpotent.

The last two corollaries were proved in [5].
The following analogue of the Levi’s theorem from Lie algebras is

true for a finite dimensional Leibniz algebra; it was proved
by D. Barnes [11].

Theorem 5.28 Let L be a finite dimensional Leibniz algebra over a field F
of characteristic 0. Then L includes a subalgebra S (being a semisimple Lie
algebra) such that L = Sol(L) + S and Sol(L)\ S = h0i.

The examples given in [11] show that the subalgebra S is not u-
nique.

6 Anticentrality in dimension of Leibniz algebras

Taking into account the fact that the difference between Leibniz al-
gebras and Lie algebras is in the absence of anticommutativity, we
naturally arrive at the following object in Leibniz algebras.



Applying group theory philosophy to Leibniz algebras 97

Let L be a Leibniz algebra. Put

↵(L) = {z 2 L| [a, z] = -[z,a] for every a 2 L}.

This subset is called the anticenter of the Leibniz algebra L.

Clearly the anticenter is a subspace of L. It is also a subalgebra of L.
Indeed, let z,y 2 ↵(L) and a be an arbitrary element of L. Then

[[z,y],a] = [z, [y,a]]- [y, [z,a]]

= -[z, [a,y]] + [y, [a, z]]

= -[z, [a,y]]- [[a, z],y]

= -([[a, z],y] + [z, [a,y]])

= -[a, [z,y]].

Moreover, the anticenter is an ideal of L. In fact, let z 2 ↵(L) and a be
an arbitrary element of L. For every element b 2 L we have

[[z,a],b] = [z, [a,b]]- [a, [z,b]] = -[[a,b], z] + [a, [b, z]]

= -[[a,b], z] + [[a,b], z] + [b, [a, z]] = -[b, [z,a]]

and

[[a, z],b] = [a, [z,b]]- [z, [a,b]] = -[a, [b, z]] + [[a,b], z]

= -[a, [b, z]] + [a, [b, z]]- [b, [a, z]] = -[b, [a, z]].

Note that in [20] it was used the term Lie-center of a Leibniz alge-
bra. However, the property of anticommutativity is inherent not only
in Lie algebras; therefore, instead of the term Lie-center, it seems to
us preferable to use the more general term anticenter. Note also that
if char(F) = 2, then the anticenter of the Leibniz algebra coincides
with the set

{z 2 L| [a, z] = [z,a] for every a 2 L}.

In general, this set is not an ideal. Therefore, it is worthwhile to
conduct reviews related to the anticenter over the field F such that
char(F) 6= 2, and in this part of the paper we will assume that char(F)
is not 2.

Let L be a Leibniz algebra over a field F, M be a non-empty subset
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of L and H be a subalgebra of L. Put

ACH(M) = {a 2 H| [a,u] = -[u,a] for all u 2 M}.

The subset ACH(M) is called the anticentralizer of M in the subalge-
bra H. It is clear that the anticenter of L is the intersection of the anti-
centralizers of all elements of L. But that’s all the good ends. Unlike
annihilator, the anticentralizer of subset is not always even a subalge-
bra, so anticentralizer can no longer be such a good technical tool as
centralizer. A corresponding example is constructed in [46]. In Leib-
niz algebras dual to the center is the derived ideal [L, L] generated by
all elements [x,y], x,y 2 L. Based on our analogy, in which ↵(L) can
be considered as a kind of analogue of the center, and subspace (L, L)
generated by all elements (x,y) = [x,a] + [a, x], x,a 2 L, can be con-
sidered as some kind of analog of the derived subalgebra. We note
right away that this subspace is an ideal. Moreover, if x,a 2 L, then

[[x,a] + [a, x],y] = 0

for every element y 2 L. Indeed, let x,y, z 2 L, then

[[x,y] + [y, x], z] = [[x,y], z] + [[y, x], z]
= [x, [y, z]]- [y, [x, z]] + [y, [x, z]]- [x, [y, z]] = 0.

Further,

[z, [x,y] + [y, x]] = [z, [x,y]] + [z, [y, x]] = [[z, x],y] + [x, [z,y]]
+[[z,y], x] + [y, [z, x]] = ([[z, x],y] + [y, [z, x]]) + ([x, [z,y]] + [[z,y], x]).

On the other hand, [a,a] + [a,a] = 2[a,a] 2 (L, L), and char(F) 6= 2
implies that [a,a] 2 (L, L), so that Leib(L) 6 (L, L). Since L/Leib(L) is
a Lie algebra, [x,a] + [a, x] 2 Leib(L), so that Leib(L) = (L, L). Thus,
with this approach, the Leibniz kernel will be dual to the anticenter.

Starting from the anticenter, we define the upper anticentral series

h0i = ↵0(L) 6 ↵1(L) 6 . . .↵�(L) 6 ↵�+1(L) 6 . . .↵�(L) = ↵1(L)

of a Leibniz algebra L by the following rules: ↵1(L) = ↵(L) is the
anticenter of L, and recursively, ↵�+1(L)/↵�(L) = ↵(L/↵�(L)) for all
ordinals �, and ↵µ(L) =

S
⌫<µ

↵⌫(L) for limit ordinals µ. By defini-
tion, each term of this series is an ideal of L. The last term ↵1(L) of
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this series is called the upper hyperanticenter of L. A Leibniz algebra L
is said to be hyperanticentral if it coincides with the upper hyperanti-
center. Denote by al(L) the length of upper anticentral series of L. If L
is hyperanticentral and al(L) is finite, then L is said to be antinilpotent.

Let A, B be the ideals of L such that B 6 A. The factor A/B is called
anticentral, if A/B 6 ↵(L/B). By definition, the factor A/B is anticen-
tral if and only if [x,a] + [a, x] 2 B for each a 2 A and each x 2 L.

If U, V the ideals of L, then denote by (U,V) a subspace, generated
by all elements [u, v] + [v,u], u 2 U, v 2 V . As we have seen above,

[u, v] + [v,u] 2 ⇣left
(L).

Using the above arguments, we can show, that (U,V) is an ideal of L.
Note at once, that a factor A/B is anticentral if and only if (L,A)6B.
Now we can introduce an analog of the lower central series. Define

the lower anticentral series of L

L = 1(L) > 2(L) > . . . ↵(L) > ↵+1(L) > . . . �(L)

by the following rules: 1(L) = L, 2(L) = (L, L), and recursively

�+1(L) = (L, �(L))

for all ordinals � and

µ(L) =
\

⌫<µ

⌫(L)

for limit ordinals µ. The last term �(L) is called the lower hypoanti-
center of L. We have �(L) = (L, �(L)).

As we have seen above

2(L) = (L, L) = Leib(L) = K.

Furthermore, 3(L) = (L, 2(L)). If x 2 L, a 2 K = 2(L), then

(x,a) = [x,a] + [a, x] = [x,a],

because Leib(L) 6 ⇣left
(L). It follows that

3(L) = [L, 2(L)] = [L, Leib(L)].
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If A is an ideal of L, then put �L,1(A) = A, �L,2(A) = [L,A], and
recursively �L,n+1(A) = [L,�L,n(A)] for all positive integers n.

Thus we obtain

1(L) = L, 2(L) = Leib(L),

3(L) = �L,2(Leib(L)),

n+1(L) = �L,n(Leib(L))

for all positive integers n.
Suppose now that L has finite series of ideals

h0i = A0 6 A1 6 A2 6 . . . 6 An = L.

This series is said to be anticentral, if every factor Aj/Aj-1 is anticen-
tral, 1 6 j 6 n.

Proposition 6.1 Let L be an Leibniz algebra over a field F and

h0i = C0 6 C1 6 . . . 6 Cn = L

be a finite anticentral series of L. Then:

(i) j(L) 6 Cn-j+1, so that n+1(L) = h0i;

(ii) Cj 6 ↵j(L), so that ↵n(L) = L.

For right Leibniz algebras this statements were proved in [20], for
left Leibniz algebras the proof is similar.

Corollary 6.2 Let L be an antinilpotent Leibniz algebra. Then the length
of the lower anticentral series coincides with the length of the upper anti-
central series. Moreover, the length of these two series is the smallest among
the lengths of all anticentral series of L.

The length of the upper anticentral series (or lower anticentral se-
ries) is called the class of antinilpotency of a Leibniz algebra L, and
denote it by ancl(L). In [20] it was called a Lie-nilpotent algebra and
class of Lie-nilpotency. However, the concept of Lie-nilpotency arose
much earlier in the theory of associative rings, so to avoid confusion
it is better to use a different term. In addition, as we have already
noted, the property of anticommutativity is inherent not only in Lie
algebras, so it is better to focus on it. In general, the results of [20]
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and [46] show that this approach does not yet seem very effective.
The above properties show a certain analogy between nilpotent and
antinilpotent Leibniz algebras. However, this analogy is very shallow.
Thus, every chief central factor of Leibniz algebra L has dimension 1.
On the other hand, every chief factor of Lie algebra is anticentral, but
it can have even infinite dimension. Further, we have showed above
that finitely generated nilpotent Leibniz algebra has finite dimension.
On the other hand, there are finitely generated Lie algebras, which
have infinite dimension.

7 Almost hypercentral Leibniz algebras

As we can see Corollary 5.2 states that the fact �c+1(L) = h0i is equiv-
alent to the fact that ⇣c(L) = L, i.e. the lower and the upper central
series in nilpotent Leibniz algebras have the same length. The next
natural step is the consideration of the case when the upper (respec-
tively lower) central series has finite length. For this case the ques-
tion about the relationships between L/⇣k(L) and �k+1(L) naturally
appears.

If L is a Lie algebra such that L/⇣k(L) is finitely dimensional,
then �k+1(L) is also finitely dimensional. It follows from Theorem 5.2
of paper [64] by I. Stewart. A corresponding result for groups has
been obtained early by R. Baer [9]. In paper [41] the following ana-
log of these theorems has been obtained.

Theorem 7.1 Let L be a Leibniz algebra over a field F. Suppose that codi-
mension codimF(⇣k(L)) = d is finite. Then �k+1(L) has finite dimension.
Moreover dimF(�k+1(L)) 6 2k-1dk+1, k > 1.

As a corollary we obtained a bound for the dimension of �k+1(L)
in a Lie algebra L.

Corollary 7.2 Let L be a Lie algebra over a field F. Suppose that codi-
mension codimF(⇣k(L)) = d is finite. Then �k+1(L) has finite dimension.
Moreover dimF(�k+1(L)) 6 dk

(d+ 1)/2.

An important specific case here is the case when the centre of
a Leibniz algebra L has finite codimension. For Lie algebras the fol-
lowing result is well known (see, for example, [67]).
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Theorem 7.3 Let L be a Lie algebra over a field F. If a factor-algebra L/⇣(L)
has finite dimension d, then the derived subalgebra [L, L] also has finite di-
mension, and, in addition, dimF([L, L]) 6 d(d+ 1)/2.

A corresponding result for groups was proved much earlier.

Theorem 7.4 Let G be a group, C a subgroup of the center ⇣(G) such
that G/C is finite. Then the derived subgroup [G,G] is finite.

In this formulation this statement first appears in the paper
of B.H. Neumann [55]. This theorem was obtained by R. Baer [9]
also.

For Leibniz algebras the following analog of these results has been
obtained in [41].

Theorem 7.5 Let L be a Leibniz algebra over a field F. Suppose that
codimensions codimF(⇣

left
(L)) = d and codimF(⇣

right
(L)) = r are finite.

Then [L, L] has finite dimension, moreover dimF([L, L]) 6 d(d+ r).

In this connection the following question appears. Suppose that
only codimF(⇣

left
(L)) is finite. Is dimF([L, L]) finite? The above con-

structed Example 2.4 gives a negative answer on this question.

Corollary 7.6 Let L be a Leibniz algebra over a field F. Suppose that
codimension codimF(⇣(L)) = d is finite. Then [L, L] has finite dimension.
Moreover dimF([L, L]) 6 d2.

Corollary 7.7 Let L be a Leibniz algebra over a field F. Suppose that
codimension codimF(⇣(L)) = d is finite. Then the Leibniz kernel of L has
finite dimension at most d(d- 1)/2.

The paper [44] considered Lie algebras L whose upper hypercenter
have finite codimension. Such algebra includes a finite dimensional
ideal K such that the factor-algebra L/K is hypercentral. In addition,
some restrictions were obtained for the dimension of this finite di-
mensional ideal. A similar result for groups was obtained in [25]
and [42]. These results relate to a rather extensive topic linked to the
study of the relationships between the upper and lower central series
in various algebraic structures, see the survey [47].

In the paper [43] the following extension of Theorem 7.1 has been
obtained.

Theorem 7.8 Let L be a Leibniz algebra over a field F. Suppose that the
upper hypercenter of L has finite codimension, say d. Then L includes a
finite dimensional ideal E such that the factor-algebra L/E is hypercentral.
Moreover, dimF(E) 6 d(d+ 1).
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In this regard, it will not be out of place to cite the following results
proved in [46]. We are talking about the inversion of Theorem 7.8.
The inversion of this theorem is wrong for both groups and Leibniz
algebras. However, if a derived subgroup of a group G is finite, then
the second hypercenter of G has finite index [37]. The same situation
holds for Leibniz algebras, as the following results proved in [46]
show.

Theorem 7.9 Let L be a Leibniz algebra over a field F. Suppose that the
derived ideal of L has finite dimension d. Then the second hypercenter of L
has finite codimension at most 2d2

(1+ 2d).

Theorem 7.10 Let L be a Leibniz algebra over a field F. If the anticen-
ter of L has finite codimension d, then the Leibniz kernel of L has finite
dimension at most d2.

8 Restrictions on subalgebras

Another natural question concerns the relationship of the subalge-
bras and ideals. In particular, what is a structure of Leibniz algebras,
all of whose subalgebras are ideals? It is not hard to prove that a Lie
algebra, all of whose subalgebras are ideals, is abelian. For groups
the situation is different. There exists a non-abelian groups, all of
whose subgroups are normal. Such groups have been described in [8].
In the case of associative algebras, the situation is much more com-
plicated. And for Leibniz algebras the situation is quite diverse. At
once it is possible to specify a simple example of non-abelian Leibniz
algebra, all of whose subalgebras are ideals.

Let L be a vector space over a field F, having dimension 2, {a,b} be
a basis of L. Define the operation [·, ·] by the following rule: [a,a] = b,
[b,b] = [b,a] = [a,b] = 0. A direct check justifies that L becomes
a Leibniz algebra. If �a+ µb is an arbitrary element of L and � 6= 0,
then

[�a+ µb, �a+ µb] = �2b.

Since �2 6= 0, we obtain that the subalgebra generated by �a + µb
includes Fb. Since L/Fb is abelian, h�a+ µbi is an ideal. Hence every
cyclic subalgebra of L is an ideal. It follows that every subalgebra
of L is an ideal.
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As we shall see later, any non-abelian Leibniz algebra, whose sub-
algebras are ideals, is constructed from such algebras as from bricks.
Here are more details.

A Leibniz algebra L is called an extraspecial algebra if it satisfies the
following condition: ⇣(L) is non-trivial and has dimension 1, L/⇣(L)
is abelian.

It is important to observe that there are extraspecial Leibniz alge-
bras in which not every subalgebra is an ideal. The following exam-
ple of an extraspecial Leibniz algebra from [45] shows this. Moreover,
the existence of subalgebras that are not ideals depends on the choice
of the field.

Example 8.1 Let F be a field, put L = Fa � Fb � Fc. Define on L
an operation [·, ·] by the following rules: c = [a,a] = [b,b] = [a,b],
[c, c] = [c,a] = [c,b] = [a, c] = [b, c] = [b,a] = 0. From this definition
it follows that [L, L] 6 Fc, c 2 ⇣(L), hci = Fc. The equality

[[x,y], z] = [x, [y, z]]- [y, [x, z]]

occurs automatically, because [x,y], [y, z], [x, z] 2 ⇣(L). Thus L is a Leib-
niz algebra. Let x be an arbitrary element of L, then

x = �a+ µb+ ⌫c

for some �,µ,⌫ 2 F. We have

[x, x] = [�a+ µb+ ⌫c, �a+ µb+ ⌫c]

= �2[a,a] + �µ[a,b] + �⌫[a, c] + �µ[b,a] + µ2
[b,b]

+µ⌫[b, c] + �⌫[c,a] + µ⌫[c,b] + ⌫2[c, c]

= �2c+ �µc+ µ2c = (�2 + �µ+ µ2
)c.

Let F = F2. If (�,µ) 6= (0, 0), then �2 + �µ+ µ2
= 1, that is, [x, x] = c

whenever x 62 Fc. It follows that ⇣(L) = Fc and hxi = Fx � Fc. It
follows that hxi is an ideal of L. Since Fc is an ideal, we obtain that
every subalgebra of L is an ideal.

Let F = F5. Suppose that �2 + �µ+ µ2
= 0. It follows that

⇣
�+

1

2
µ
⌘2

= µ2

⇣1
4
- 1

⌘
.

In F5 the solution of the equation 4x = 1 is 4, so that 1

4
- 1 = 3.
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But the equation x2 = 3 has no solutions in F5. This shows that the
equality

�2 + �µ+ µ2
= 0

is true only when � = µ = 0. Thus if (�,µ) 6= (0, 0), then [x, x] 6= 0
and [x, x] 2 Fc. Hence, in this case, every subalgebra of L is an ideal.

If F = Q, then using the similar arguments we obtain again that
every subalgebra of L is an ideal and the center of L is Fc.

Consider now the case when F = F3. For element x = a + b we
have

[a+ b,a+ b] = 3c = 0.

It follows that hxi = Fx. But [x,a] = [a+ b,a] = c 62 Fx, which shows
that a cyclic subalgebra hxi is not an ideal.

The following theorem concerned with Leibniz algebras whose ev-
ery subalgebra is an ideal was proved in [45].

Theorem 8.2 Let L be a Leibniz algebra over a field F, all of whose subalge-
bras are ideals. If L is non-abelian, then L = E�Z where Z 6 ⇣(L), and E is
an extraspecial subalgebra such that [a,a] 6= 0 for every element a 62 ⇣(E).

To any extraspecial algebra we can link a bilinear form in the fol-
lowing way. Let Z = ⇣(L), V = L/Z, and c be a fixed non-zero element
of Z. Define the mapping

� : V ⇥ V ! F

by the following rule: if x,y 2 L, then [x,y] 2 Z, so that [x,y] = ↵c for
some element ↵ 2 F. Put

�(x+Z,y+Z) = ↵.

This definition is correct. Indeed, let x1,y1 be elements of L such
that x1 + Z = x + Z, y1 + Z = y + Z. This means that x1 = x + c1,
y1 = y+ c2 for some elements c1, c2 2 Z. Then

[x1,y1] = [x+ c1,y+ c2] = [x,y] + [x, c2] + [c1,y] + [c1, c2] = [x,y].

The mapping � is bilinear. In fact, let x,y,u 62 Z, [x,u] = �c,
[y,u] = µc. Then

[x+ y,u] = [x,u] + [y,u] = �c+ µc = (�+ µ)c,
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so that

�(x+Z+ y+Z,u+Z) = �(x+ y+Z,u+Z)

= �+ µ = �(x+Z,u+Z) +�(y+Z,u+Z).

Similarly, we can show that

�(x+Z,y+Z+ u+Z) = �(x+Z,y+Z) +�(x+Z,u+Z).

Let � 2 F, then [�x,y] = �[x,y] = �(↵c) = (�↵)c. Thus

�(�(x+Z),y+Z) = �(�x+Z,y+Z) = �↵ = ��(x+Z,y+Z).

Likewise we can show that �(x+Z,�(y+Z)) = ��(x+Z,y+Z).
By the definition of an extraspecial algebra we obtain that a bi-

linear form � is non-degenerate. Moreover, Theorem 8.2 shows that
�(x, x) 6= 0 for every non-zero element x.

Conversely, let V be a vector space over a field F and � be a bilinear
form on V such that �(x, x) 6= 0 for every non-zero element x 2 V .
Put L = V � F. Define the operation [·, ·] on L by the following rule:
if a,b 2 V , ↵,� 2 F, then [(a,↵), (b,�)] = (0,�(a,b)).

Put C = {(0,↵)| ↵ 2 F}. Then dimF(C) = 1. By this definition,

[L, L] = [L,C] = [C, L] = [C,C] = h0i.

It follows from here that the constructed algebra a Leibniz algebra.
Furthermore, C 6 ⇣(L). Moreover, C = ⇣(L). Indeed, let (z,�) 2 ⇣(L)
and suppose that z 6= 0. Then

[(z,�), (a,↵)] = [(a,↵), (z,�)] = (0, 0),

in particular, [(z,�), (z,�)] = (0, 0). But

[(z,�), (z,�)] = (0,�(z, z)).

Since z 6= 0, �(z, z) 6= 0, and we obtain a contradiction. This contra-
diction proves the equality C = ⇣(L). The properties of this bilinear
form were considered in details in the survey [40]. Here is one of the
corollaries.

Corollary 8.3 Let L be an extraspecial Leibniz algebra over a field F, hav-
ing countable dimension. If [a,a] 6= 0 for every element a 62 ⇣(L), then L
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has a basis {c, en| n 2 N} such that [c, en] = [en, c] = 0, 0 6= [en, en] 2 Fc
for all n 2 N, [ej, ek] = 0 whenever j > k and [ej, ek] = 0 when-
ever k > j+ 3, j, k 2 N.

Let us now consider some other natural questions of the general
theory of Leibniz algebras.

Note that the relation “to be a subalgebra of a Leibniz algebra”
is transitive. However, the relation “to be an ideal” is not transitive
even for Lie algebras.

Therefore it is natural to ask the question about the structure
of Leibniz algebras, in which the relation “to be an ideal” is tran-
sitive.

In this context, the following important type of subalgebras natu-
rally arises. A subalgebra A is called a left (respectively right) subideal
of L if there is a finite series of subalgebras

A = A0 6 A1 6 . . . 6 An = L

such that Aj-1 is a left (respectively right) ideal of Aj, 1 6 j 6 n.
Similarly, a subalgebra A is called a subideal of L, if there is a finite

series of subalgebras

A = A0 6 A1 6 . . . 6 An = L

such that Aj-1 is an ideal of Aj, 1 6 j 6 n.
We note the following property of nilpotent Leibniz algebras.

Proposition 8.4 Let L be a nilpotent Leibniz algebra over a field F. Then
every subalgebra of L is a subideal of L.

A Leibniz algebra L is called a T -algebra, if the relation “to be an
ideal” is transitive. In other words, if A is an ideal of L and B is an
ideal of A, then B is an ideal of L. It follows that in a Leibniz T -alge-
bra every subideal is an ideal.

Lie algebras, in which relation “to be an ideal” is transitive have
been studied by I. Stewart [63] and A.G. Gejn and Yu.N. Mukhin [34].
In particular, soluble T -algebras and finite dimensional T -algebras
over a field of characteristic 0 have been described.

As in the mentioned above cases, the situation in Leibniz algebras
is much more complex and diverse than it was in Lie algebras. Here
are few simple examples illustrating this point. Let F be an arbitrary
field, L be a vector space over F with a basis {a, c}. Define the opera-
tion [·, ·] on L by the following rule: [a,a] = c, [c,a] = [a, c] = [c, c] = 0.
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Then L is a cyclic Leibniz algebra, Fc is an unique its non-zero subal-
gebra. Moreover, Fc is the center of L, in particular, Fc is an ideal of L.
Thus every subalgebra of L is an ideal.

Let now F = F2 and L be the Leibniz algebra constructed above.
Put

A = L� Fv

and let [v, v] = [v, c] = [c, v] = 0, [v,a] = [a, v] = a. It is not hard to
check that A is a Leibniz algebra and L is an ideal of A. Moreover, if B
is a non-zero ideal of A and L does not include B, then B = A. As we
have seen above, Fc is an unique non-zero ideal of L. But Fc = ⇣(L),
thus Fc is an ideal of A. Thus A is a Leibniz T -algebra.

Let F = F2 and D = L� Fu. Put now [u,u] = [u, c] = [c,u] = 0,
[u,a] = [a,u] = a + c. It is not hard to check that D is a Leibniz
algebra and L is an ideal of D. As we did above, we can check that D
is a Leibniz T -algebra.

As we will see further, these examples are typical in some sense.
The subalgebra Ba(L) generated by all nilpotent subideals of L is

called the Baer radical of L. It is possible to show that Ba(L) is an ideal
of L and Nil(L) 6 Ba(L). If L = Ba(L), then L is called a Leibniz Baer
algebra. Every nil-algebra is a Baer algebra, but the converse is not
true even for a Lie algebra (see, for example, [3, Theorem 6.4.5]).

As in the cases mentioned above, the situation for the Leibniz alge-
bra is much more complex and diverse than it was for Lie algebras.
Here are few simple examples illustrating this point.

Let F be an arbitrary field, L be a vector space over F with a
basis {a, c}. Define the operation [·, ·] on L by the following rules:
[a,a] = c, [c,a] = [a, c] = [c, c] = 0. Then L is a cyclic Leibniz alge-
bra, Fc is its unique non-zero subalgebra. Moreover, Fc is the center
of L, in particular, Fc is an ideal of L. Thus every subalgebra of L is
an ideal.

Let now F = F2 and L be the Leibniz algebra constructed above.
Put

A = L� Fv

and let [v, v] = [v, c] = [c, v] = 0, [v,a] = [a, v] = a. It is not hard to
check that A is a Leibniz algebra and L is an ideal of A. Moreover, if B
is a non-zero ideal of A and L does not include B, then B = A. As we
have seen above, Fc is an unique non-zero ideal of L. But Fc = ⇣(L),
thus Fc is an ideal of A. Thus A is a Leibniz T -algebra.
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Let F = F2 and D = L� Fu. Put now

[u,u] = [u, c] = [c,u] = 0, [u,a] = [a,u] = a+ c.

It is not hard to check that D is a Leibniz algebra and L is an ideal
of D. As above, we can check that D is a Leibniz T -algebra.

As we will see, these examples are typical in some sense. The de-
scription of Leibniz T -algebras has been obtained in the paper [49].
Here are the main results of this paper.

Theorem 8.5 Let L be a Leibniz T -algebra over a field F. If L is a Baer
algebra, then either L is abelian, or L = E� Z where Z 6 ⇣(L) and E is an
extraspecial subalgebra such that [a,a] 6= 0 for every element a 62 ⇣(E).

A Leibniz algebra L is called hyperabelian if it has an ascending
series

h0i = L0 6 L1 6 . . . L↵ 6 L↵+1 6 . . . L� = L

of ideals whose factors L↵+1/L↵ are abelian for all ↵ < �. If this
series is finite, then we obtain a soluble Leibniz algebra.

The structure of a Leibniz T -algebra essentially depends on the
structure of its nil-radical.

Theorem 8.6 Let L be a hyperabelian Leibniz T -algebra over a field F.
If L is non-nilpotent and Nil(L) = D is abelian, then L = D� V where
V = Fv, [v, v] = 0, [v,d] = d = -[d, v] for every element d 2 Nil(L). In
particular, L is a Lie algebra.

Theorem 8.7 Let L be a hyperabelian Leibniz T -algebra over a field F.
If char(F) 6= 2, then Nil(L) is abelian.

In other words, if char(F) 6= 2, then every Leibniz T -algebra is a Lie
algebra. Thus we can see that the case when char(F) = 2 is very
specific here. We will consider this case with the following additional
restriction.

We say that a field F is 2-closed, if the equation x2 = a has a solution
in F for every element a 6= 0. We note that every locally finite (in
particular, finite) field of characteristic 2 is 2-closed.

Theorem 8.8 Let L be a hyperabelian Leibniz T -algebra over a field F. Sup-
pose that L is non-nilpotent and Nil(L) is non-abelian. If a field F is 2-closed
and char(F) = 2, then L = (Fe� Fc)� Fv where

[e, e] = c, [c, e] = [e, c] = [c, v] = [v, c] = 0,

[v, v] = 0, [v, e] = e+ �c = [e, v],� 2 F.
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Two ideals are naturally associated with each subalgebra A of
a Leibniz algebra L: the ideal AL which is the intersection of all ideals
including A (that is an ideal, generated by A); and the ideal CoreL(A)

which is the sum of all ideals that are contained in A.
A subalgebra A of L is called a contraideal of L if AL

= L.
From the definition it follows that the contraideals are natural an-

tipodes to the concepts of ideals. Therefore, the study of Leibniz al-
gebras whose subalgebras are either ideals or contraideals seems to
us very natural. The description of such Leibniz algebras has been
obtained in paper [50].

A Leibniz algebra L is called quasisimple if the central factor-alge-
bra L/⇣(L) is simple and L = [L, L].

Let L be a quasisimple Leibniz algebra and A be a non-trivial sub-
algebra of L. If ⇣(L) does not include A, then (A+ ⇣(L))/⇣(L) is non-
trivial. The fact that the factor-algebra L/⇣(L) is simple implies that

(A+ ⇣(L)/⇣(L))L/⇣(L) = (A+ ⇣(L))L/⇣(L)

= (AL
+ ⇣(L))/⇣(L) = L/⇣(L),

that is AL
+ ⇣(L) = L. If we suppose that AL 6= L, then the isomor-

phism
L/AL

= (AL
+ ⇣(L))/AL ' ⇣(L)/(AL \ ⇣(L))

shows that L/AL is abelian, which is impossible. Hence AL
= L. Thus,

every subalgebra of a quasisimple Leibniz algebra is either an ideal
or a contraideal.

Theorem 8.9 Let L be a Leibniz algebra, whose subalgebras are either
ideals or contraideals. If L is not soluble, then L is a simple Lie algebra or a
quasisimple Leibniz algebra.

Theorem 8.10 Let L be a soluble Leibniz algebra, whose subalgebras are
either ideals or contraideals. Then L is an algebra of one of the following
types:

(i) L is abelian;

(ii) L = E� Z where E is an extraspecial subalgebra such that [e, e] 6= 0
for each element e 62 ⇣(E) and Z 6 ⇣(L);

(iii) L = D � Fb where [y,y] = 0 = [b,b], [b,y] = y = -[y,b] for
every y 2 D, in particular, L is a Lie algebra;
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(iv) L = D� Fb where [y,y] = [y,b] = [b,b] = 0, [b,y] = y for eve-
ry y 2 D, in particular, D = [L, L] = Leib(L);

(v) L = B � A where A = Fa1 � Fc1, [a1,a1] = c1, [c1,a1] = 0,
[a1, c1] = c1 and [b,b] = [b,a1] = [b, c1] = [c1,b] = 0, [a1,b] = b
for every b 2 B, in particular, B� Fc1 = [L, L] = Leib(L);

(vi) char(F) = 2, L = D � Fa where D has a basis {z,b�| � 2 ⇤}

such that [a,a] = ↵z, [a,b�] = b� = [b�,a], [a, z] = [z,a] = 0,
[z,b�] = [b�, z] = 0 and 0 6= [b�,b�] 2 Fz, � 2 ⇤, [b�,bµ] = 0 for
all �,µ 2 ⇤, � 6= µ, in particular, D = [L, L], Fz = Leib(L).

Corollary 8.11 Let L be a Lie algebra, whose subalgebras are either ideals
or contraideals. Then L is an algebra of one of the following types:

(i) L is simple;

(ii) L is quasisimple;

(iii) L is abelian;

(iv) L = D � Fb where [y,y] = 0 = [b,b], [b,y] = y = -[y,b] for
every y 2 D.

A subalgebra A of L is called core-free in L if CoreL(A) = h0i. From
the definition it follows that the core-free subalgebras are natural
antipodes to the concepts of ideals. Therefore, the study of Leibniz
algebras whose subalgebras are either core-free or ideals seems to
us a very natural task. The description of such Leibniz algebras has
been obtained in [22].

First example of such algebras are Leibniz algebras whose subal-
gebras are ideals.

Note also that a Lie algebra, whose subalgebras are ideals, are
abelian.

On the other hand, if L is a simple Leibniz algebra, then every its
proper subalgebra is core-free. We note that in this case L is a Lie
algebra.

We would like to show another example, which is typical in some
sense.

Let L be a cyclic nilpotent Leibniz algebra of dimension 3. That is

L = Fa� Fb� Fc
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where b = [a,a], c = [a,b]. Here Leib(L) = Fb� Fc. If A is a subalge-
bra of L such that Leib(L) does not include A, then A = L.
If A 6 Leib(L) and Fc 6 A, then A is an ideal of L. If A does not in-
clude Fc, then A is not an ideal, dimF(A)=1, therefore CoreL(A)=h0i.

Let L be a Leibniz algebra. The intersection of all non-zero ide-
als Mon(L) of L is called the monolith of the Leibniz algebra L.
If Mon(L) 6= h0i, then the Leibniz algebra L is called monolithic, and,
in this case, Mon(L) is the least non-zero ideal of L.

Thus we can see that the following natural cases appear here: L is
a non-monolithic Leibniz algebra; L is a monolithic Leibniz algebra.

As the following results show, the second case is essential.

Theorem 8.12 Let L be a non-monolithic Leibniz algebra. If every subal-
gebra of L, which is not an ideal, is core-free, then every subalgebra of L is
an ideal.

Corollary 8.13 Let L be a non-monolithic Lie algebra. If every subalgebra
of L, which is not an ideal, is core-free, then L is abelian.

The monolithic case splits naturally into two subcases: the Leibniz
algebra L has a non-zero center; the Leibniz algebra L has a zero
center.

Theorem 8.14 Let L be a Leibniz algebra. Suppose that L includes a subal-
gebra, which is not an ideal and that every subalgebra of L, which is not an
ideal, is core-free. If the center of L is non-zero, then L satisfies the following
conditions:

(i) L is monolithic and Mon(L) = ⇣(L) = �3(L), in particular,
dimF(⇣(L)) = 1;

(ii) �2(L) = [L, L] 6 ⇣2(L) and �2(L) has dimension 2;

(iii) every subalgebra of L, which is not an ideal, is abelian;

(iv) every subalgebra of L/⇣(L) is an ideal.

Conversely, if L is a Leibniz algebra, satisfying the above conditions, then
every subalgebra of L either is core-free or an ideal.

Corollary 8.15 Let L be a monolithic non-abelian Lie algebra, having non-
trivial center. Then every subalgebra of L, which is not an ideal, is core-free
if and only if L is an extraspecial algebra.
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The situation when L has a non-central monolith was considered
in the following theorem.

Theorem 8.16 Let L be a monolithic Leibniz algebra whose center is zero.
Suppose that every subalgebra of L, which is not an ideal, is core-free. If L
is a not Lie algebra, then the following conditions hold:

(i) Mon(L) is a minimal ideal of L;

(ii) Mon(L) is a maximal abelian ideal of L;

(iii) L = Mon(L)�A for some abelian subalgebra A;

(iv) AnnL(Mon(L)) = Annleft
L

(Mon(L)) = Mon(L).

Conversely, if L is a Leibniz algebra satisfying the above conditions, then
every subalgebra of L either is core-free or an ideal.

We note also that in this case a core-free subalgebra can be non-a-
belian, as the following example shows it.

Example 8.17 Let F be an arbitrary field, L be a vector space over F
with a basis {a,b,a1,a2}. Define the operation [·, ·] on L in the follow-
ing way:

[a,a] = a1, [a,a1] = a2, [a,a2] = -a1 - a2, [a,b] = 0,

[b,a] = a1 + a2, [b,b] = 0, [b,a1] = -a1, [b,a2] = -a2,

[a1,a] = 0, [a1,b] = 0, [a2,a] = 0, [a2,b] = 0,

[a1,a1] = 0, [a1,a2] = 0, [a2,a1] = 0, [a2,a2] = 0.

It is possible to check that L is a Leibniz algebra, Leib(L) = Fa1+ Fa2,
Leib(L) = Mon(L), factor-algebra L/Mon(L) is abelian. We note that
every subalgebra of L, which is not an ideal, is core-free. But the
subalgebra hb,a1i is a not ideal, is not abelian and is core-free.

For Lie algebras we obtained the following result.

Proposition 8.18 Let L be a monolithic Lie algebra whose center is zero.
Suppose that every subalgebra of L, which is not an ideal, is core-free.
Then Mon(L) is a minimal ideal of L such that AnnL(Mon(L)) = Mon(L)
and the factor-algebra L/Mon(L) is abelian. Moreover, every core-free sub-
algebra of L is abelian.
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If Mon(L) is abelian, the description is more comprehensive.
Let L be a Leibniz algebra and a be a fixed element of L. Consider

the mapping
ra : L ! L

defined by the rule ra(x) = [x,a], x 2 L. It is not hard to see that ra
is a linear mapping, � ra = r�a and ra+ rb = ra+b for all a,b 2 L
and � 2 F. Put ca(x) = x + [x,a], x 2 L, that is ca(x) = i+ ra(x)
where i is an identity permutation of L. Clearly ca is also linear map-
ping.

Theorem 8.19 Let L be a monolithic Lie algebra whose center is zero.
Suppose that every subalgebra of L, which is not an ideal, is core-free. If the
monolith of L is abelian, then the following conditions hold:

(i) Mon(L) is a minimal ideal of L;

(ii) Mon(L) is a maximal abelian ideal of L;

(iii) AnnL(Mon(L)) = Mon(L);

(iv) L = Mon(L)�A for some abelian subalgebra A;

(v) if L = Mon(L)� C for some subalgebra C, then there exists an ele-
ment v 2 A such that C = cv(A); moreover, cv is an automorphism
of algebra L.

Like Lie algebras, Leibniz algebras are also associated with asso-
ciative algebras, but this connection is a little more complicated.

Let A be an associative algebra over a field F and let f : A ! A
be an endomorphism of A such that f2 = f. Define the binary o-
peration [·, ·] on A by the following rule: [a,b] = f(a)b - bf(a) for
all a,b 2 A. We have

[[a,b], c] = [f(a)b- bf(a), c]

= f(f(a)b- bf(a))c- cf(f(a)b- bf(a))

= f(f(a)b)c- f(bf(a))c- cf(f(a)b) + cf(bf(a))

= f(a)f(b)c- f(b)f(a)c- cf(a)f(b) + cf(b)f(a);

[a, [b, c]] = [a, f(b)c- cf(b)]

= f(a)(f(b)c- cf(b))- (f(b)c- cf(b))f(a)

= f(a)f(b)c- f(a)cf(b)- f(b)cf(a) + cf(b)f(a);
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[b, [a, c]] = [b, f(a)c- cf(a)]

= f(b)(f(a)c- cf(a))- (f(a)c- cf(a))f(b)

= f(b)f(a)c- f(b)cf(a)- f(a)cf(b) + cf(a)f(b).

Then

[a, [b, c]]- [b, [a, c]] = f(a)f(b)c- f(a)cf(b)- f(b)cf(a) + cf(b)f(a)

-(f(b)f(a)c- f(b)cf(a)- f(a)cf(b) + cf(a)f(b))

= f(a)f(b)c- f(a)cf(b)- f(b)cf(a) + cf(b)f(a)

-f(b)f(a)c+ f(b)cf(a) + f(a)cf(b)- cf(a)f(b))

= f(a)f(b)c+ cf(b)f(a)- f(b)f(a)c- cf(a)f(b)

= [[a,b], c].

Thus, with respect to the operations + and [·, ·] A becomes a Leib-
niz algebra. Note that if f is the identity permutation of A, then we
obtain a standard transition from associative algebras to Lie algebras.

We did not talk about the links of Leibniz algebras with other alge-
braic structures. However, in conclusion, we would like to note one
such link of Leibniz algebras with not very ordinary but interesting
algebraic structures that were introduced by J.-L. Loday (see [53]).

Let D be a vector space over a field F. Then D is called a dialgebra if
two associative binary operation ` and a are defined on D and they
satisfy the following conditions:

(D1) x ` (y a z) = (x ` y) a z;

(D2) x a (y ` z) = x a (y a z);

(D3) (x a y) ` z = (x ` y) ` z for all x,y, z 2 D.

Note that our use of ` and a in this bracket is the opposite of that
of J.-L. Loday. This convention matches our preference for left Leib-
niz algebras instead of right Leibniz algebras.

For a given a dialgebra D we define the operation [·, ·] by the rule

[x,y] = x ` y- y a x, x,y 2 D.

One can check that D becomes a Leibniz algebra relatively the opera-
tions + and [·, ·]. This algebra is called a Leibniz algebra associated with
dialgebra D. And conversely, J.-L. Loday proved that for any Leibniz



116 L.A. Kurdachenko – N.N. Semko – I.Ya. Subbotin

algebra L there exists a dialgebra D(L) such that a Leibniz algebra as-
sociated with D(L) includes a subalgebra, which is isomorphic to L.
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