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Abstract
In this paper, the Schur multiplier and irreducible projective character tables
IrrProj(G,↵i) with corresponding factor sets ↵i for each maximal subgroup G of the
sporadic simple Mathieu groups M11, M12 and the automorphism group Aut(M12)
of M12 are computed. These tables IrrProj(G,↵i) are obtained from a so-called rep-
resentation group R of G with the aid of a code which is written in the computational
algebra system GAP. In fact, this GAP code can be used to compute the projective
character tables for any finite group G on condition that we can find a representation
group R of G and its ordinary irreducible characters Irr(R).
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1 Introduction

In [1], it is shown that the Schur multipliers of the sporadic sim-
ple Mathieu groups M11 and M12 are trivial and cyclic of order 2,
respectively. In addition, the Schur multiplier of the automorphism
group Aut(M12) of M12 (which is cyclic of order 2) and the projec-
tive character tables of M12 and Aut(M12) were computed in [5].
In this paper, the Schur multiplier and irreducible projective charac-
ter tables IrrProj(G,↵i) with corresponding factor sets ↵i for each
maximal subgroup G of M11, M12 and Aut(M12) are computed. For
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this purpose, we will compute the sets IrrProj(G,↵i), i = 1, 2, . . . ,m,
from a so-called representation group R ' M(G).G of the group G,
where M(G) denotes the Schur multiplier of the group G and m
the number of cohomology classes [↵i] in M(G). A code written
in GAP [3] is used for this purpose.

In Section 2, preliminary results on projective character theory are
discussed. In Section 3, a proposition and its proof which says that
the number |IrrProj(G,↵)| of any set of irreducible projective charac-
ters IrrProj(G,↵) with corresponding factor set ↵ of a finite group G
is always less or equal to the number |Irr(G)| of ordinary irreducible
characters of G, are given. This proposition and its proof has its ori-
gin in a question posed by the current author in [10] and then an-
swered by the author in [16]. From this proposition, a GAP code was
written in [17] to determine the number |IrrProj(G,↵)| of irreducible
projective characters of a finite group G for any factor set ↵. Further-
more, this GAP code by [17] is modified and extended in this cur-
rent paper to compute all the sets IrrProj(G,↵i) for any given finite
group G on condition that one can compute the ordinary character
table of the representation group R (Schur cover). As the group G be-
comes larger it becomes very difficult to compute R and its ordinary
irreducible character table in GAP. Readers are also referred to the
current author’s work in [11], [12], [13] and [14] on the computation
of irreducible projective characters of some finite groups.

In Section 4, the GAP code given in Section 3 is used to compute all
sets IrrProj(G,↵i) of irreducible projective characters with associated
factor sets ↵i for each maximal subgroup of the groups M11, M12

and Aut(M12). The details of these sets are tabulated in Section 4.

Computations are carried out with the aid of GAP and notations
in both GAP and the ATLAS [2] are followed.

2 Preliminary results on projective characters

In this section, a brief overview of some basic projective character
theory pertaining to our study, is given. In what will follows, it will
be understood that G is a finite group, C the field of complex num-
bers, C⇤ the nonzero complex numbers, GL(n, C) the group of non-
singular n⇥n matrices over the complex numbers C, Z(G) the center
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of G, G 0 the derived subgroup of G, Irr(G) the set of ordinary irre-
ducible characters of G and IrrProj(G,↵) the irreducible projective
characters of G with associated factor set ↵. The author will closely
follows the work in [9]. Interested readers are referred to [4], [6], [8],
[7] and [15] for a detailed treatment on ordinary and projective char-
acter theory.

Definition 1 A projective representation of a group G of degree n
over the complex numbers is a map P : G ! GL(n, C), such that

(i) P(1) = In, and

(ii) given x,y 2 G, there exists ↵(x,y) 2 C⇤ such that

P(x)P(y) = ↵(x,y)P(xy).

Since multiplication in G and GL(n, C) is associative it follows that

↵(xy, z)↵(x,y) = ↵(x,yz)↵(y, z)

for all x,y, z 2 G. In addition, a map

↵ : G⇥G ! C⇤

that satisfies this condition is called a factor set (or 2-cocycle) ↵ of G
in C. We say that P is a projective representation with factor set ↵. Define
⇠(g) = Trace(P(g)) for all g 2 G, then ⇠ is called a projective character
of G with factor set ↵. We say that ⇠ is irreducible if P is irreducible.
An irreducible projective representation P of a group G is essentially
defined in a similar way then an ordinary irreducible representation
of G.

Definition 2 Two projective representations P1 and P2 of G of de-
gree n with factor sets ↵1 and ↵2 respectively are said to be projec-
tively equivalent if there exist a mapping � : G ! C⇤ and a matrix T
in GL(n, C) such that

P1(x) = �(g)T-1P2(g)T , 8x 2 G.

If P1 and P2 are projectively equivalent, then it follows from Defi-
nition 2 that, 8x,y 2 G,

↵2(x,y) = �(x)�(y)(�(xy))-1↵1(x,y)
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This is an equivalence relation and the equivalence class of the fac-
tor set ↵1 is denoted by [↵1]. The set of all equivalence classes of
factor sets of G has a finite abelian group structure, and is called
the Schur multiplier M(G) (also known as the second cohomology
group H2(G, C⇤) of G). The product of two elements [↵1] and [↵2]
in M(G) is defined as their pointwise product [↵1][↵2] = [↵1↵2].
The class [1] is the identity element of M(G) where 1 is the factor
set 1(x,y) = 1 for all x,y 2 G and [↵1]

-1 = [↵-1

1
].

Definition 3 A group C = A.G is a central extension for G if there
exists a homomorphism ⇡ from C onto G such that

A = ker(⇡) 6 Z(C)\C
0
.

In addition, if A ' M(G), then we call the central extension C a
representation group R of G.

Now we will describe how the irreducible projective representa-
tions of a group G can be obtained from the ordinary irreducible rep-
resentations of a central extension C = A.G of G. Let C = A.G be a
central extension of the group G with A = ker(⇡). Let X = {xg|g 2 G}

be a set of coset representatives of A in C, such that ⇡(xg) = g (one-to-
one correspondence of elements of X with the elements of G). There-
fore,

C =
[

g2G

Axg.

Then, for all g,h 2 G, let a(g,h) be the unique element in A such that

xgxh = a(g,h)xgh.

Since the product operation to combine two elements in C and G
is associative, then it follows that a(g,h)a(gh, k) = a(g,hk)a(h, k)
for all g,h, k 2 G. Now, let � be a linear character of the abelian
group A and put ↵(g,h) = �(a(g,h)) for all g,h 2 G, then it follows
from the relation in the previous sentence that ↵ is a factor set of G.
Now, let T be an ordinary irreducible representation of C of degree n
and let P(g) = T(xg) for all g 2 G, then P is a irreducible projective
representation of G with factor set ↵, i.e. P(g)P(h) = �(a(g,h))P(gh)
for all g,h 2 G. Hence we can formulate the following definition.

Definition 4 A projective representation P of G constructed from
an ordinary irreducible representation T of C in the above manner is
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said to be linearized by the ordinary representation T (or lifted to C).
Furthermore, P is irreducible if and only if T is irreducible.

Each irreducible projective representation of G with corresponding
factor set ↵ can be linearized by an ordinary irreducible representa-
tion of a representation group R of G. So the problem of constructing
all irreducible projective characters of a finite group G reduces to
that of finding the ordinary irreducible characters of a representa-
tion group R of G.

Definition 5 A covering group D for G will normally be a quo-
tient D ' R/B of a representation group R = M(G).G of G by a sub-
group B of M(G). If M(G)/B has order n we sometimes refer to the
covering group as a n-fold cover of G.

Projective representations of G are found in the representation
group R for all the equivalence classes of factors sets in M(G) but
however in a n-fold cover D of G only the n equivalence classes
which D covers will be represented [4].

Definition 6 An element x 2 G is said to be ↵-regular if

↵(x, g) = ↵(g, x)

for all g 2 CG(x).

Notice that, it is well known that g 2 G is ↵-regular if and only
if ⇠(g) 6= 0 for some ⇠ 2 IrrProj(G,↵) or equivalently that g is ↵-irre-
gular if and only if ⇠(g) = 0 for all ⇠ 2 IrrProj(G,↵).

Now, if x 2 G is ↵-regular, then so is every conjugate of x and
therefore it is meaningful to speak about ↵-regular classes of G. The
number of IrrProj(G,↵) equals the number of ↵-regular classes of
a group G. Projective characters also satisfy the usual orthogonality
relations and have analogues to ordinary characters.

3 A GAP code to compute IrrProj(G,↵i)

In this section, a result in the form of a proposition (due to the author
in [16]) is given and it basically tells us under which condition the
number |IrrProj(G,↵)| of irreducible projective characters of G with
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factor set ↵ is equal or strictly less then the number |Irr(G)| of ordi-
nary irreducible characters of G. The GAP code given in [17] has its
origin in this proposition and is computing the number
|IrrProj(G,↵i)| of all irreducible projective characters of G found in
each set IrrProj(G,↵i) of G. In this section, the current author is ex-
tending on this GAP code to give a GAP code that can computes
directly all the distinct sets IrrProj(G,↵i) of G, i.e., extracting each
distinct set IrrProj(G,↵i) of G with associated factor set ↵i from a
representation group R of G.

Proposition 7 (see [16]) Let R = M(G).G be a representation group
of a finite group G, where M(G) denotes the Schur multiplier of G. Then
the number of irreducible characters Irr(R) of R which lies over a linear
character ✓ of M(G) is less or equal to |Irr(G)|.

Proof — The number of irreducible characters Irr(R) of R which lies
over a linear character ✓ 2 IrrM(G) is given by

X

�2Irr(R)

< � #M(G), ✓ >

�(1)
.

It is known that the quantity

X

�2Irr(R)

�(x)

�(1)

is non-negative for each x 2 M(G), and it is non-zero if x is a com-
mutator in R. For any ✓ 2 Irr(M(G)), we have

X

x2M(G)

X

�2Irr(R)

�(x)✓(x-1)

�(1)
6

X

x2M(G)

X

�2Irr(R)

�(x)

�(1)

= |M(G)||[g]R/M(G)|,

where |[g]R/M(G)| is the number of conjugacy classes of R/M(G) ' G.
The last equality follows because the irreducible characters of R
with M(G) in their kernels are precisely those which contain the triv-
ial character on the restriction to M(G). Hence

1

|M(G)|

X

x2M(G)

X

�2Irr(R)

�(x)✓(x-1)

�(1)



Projective character tables of maximal subgroups 53

=
X

�2Irr(R)

1

|M(G)|

X

x2M(G)

�(x)✓(x-1)

�(1)

=
X

�2Irr(R)

< � #M(G), ✓ >

�(1)
6 |[g]R/M(G)| = |Irr(G)|.

Furthermore, if there is a non-identity element x 2 M(G) \ ker(✓)
which is a commutator in R, then the inequality becomes strict. ut

Now the below GAP code can computes directly all the distinct
sets IrrProj(G,↵i) of G from a suitable representation group R (full
covering group) of G. Especially, if the finite group G has a rela-
tively small order then the representation group (Schur cover) of G
can be computed easily in GAP. But if the group G becomes too
large then GAP experiences difficulties to compute the Schur cover
of G and then we have to employ additional techniques in comput-
ing these sets IrrProj(G,↵i). Fortunately, the orders of the groups
under consideration in this paper are not too large and the afore-
mentioned GAP code is implemented successfully to compute all the
sets IrrProj(G,↵i) of the groups.

The first and most important part of the GAP code will results
in |Irr(M(G)| blocks coming from a representation group R (denoted
as “Source(f)” in the below code), where each block will contains
one of the sets IrrProj(G,↵i), i = 1, 2, . . . , |Irr(M(G)|. In this code the
Schur multiplier M(G) of G is labelled as "z". The crucial part of
the code is the line of the code starting with "n" which is based on
the fact that each � 2 IrrProj(G,↵i) can be linearized (as explained
in Section 2) to an ordinary irreducible character � of R = M(G).G
such that � 2 Irr(M(G)) is an irreducible constituent of �M(G), that
is,

< �M(G), � >6= 0.

We also say that � lies under � or equivalent by the Frobenius reci-
procity that � lies over �. In this manner we can obtain all the sets
IrrProj(G,↵i) of G associated with a factor set ↵i.
gap> h := G;;

# G is a permutation group with generators found

# in [18] or can be generated in GAP

gap> f := EpimorphismSchurCover(h);;

gap> z := Kernel(f);;

gap> x := Source(f);;

gap> I1:=ImagesSource(f);;
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# Quotient group I1 ' G

gap> t:=Irr(I1);;

gap> 2t:=Irr(x);;

gap> F:=FusionConjugacyClassesOp(f);

gap> map:=ProjectionMap(F);

gap> N:=[];

gap> for i in [1..Size(Irr(z))] do

> n:=Filtered(Irr(x),chi->

> not IsZero(ScalarProduct(RestrictedClassFunction

> (chi,z),Irr(z)[i])));

> s:=List(n,x->x{map});

> Add(N,s);

> od;

gap> N;

# The sets IrrProj(G,↵-1
i
) partitioned into Size(Irr(z))

# blocks according to factor set ↵i.

The following part of the GAP code will display the irreducible
projective character tables with associated factor sets individually,
for each maximal subgroup of M11, M12 and Aut(M12).
gap> Cen:=SizesCentralizers(CharacterTable(I1));

gap> Cl:=OrdersClassRepresentatives(CharacterTable(I1));

gap> for i in [1..Size(Irr(z))] do

> ct:=function()local ct ;ct:=rec();

> ct.SizesCentralizers:=Cen;;

> ct.OrdersClassRepresentatives:=Cl;;

> ct.Irr:=N[i];;

> ct.UnderlyingCharacteristic:=0;ct.Id:="G";

> ConvertToLibraryCharacterTableNC(ct);return ct;end;

> ct:=ct();

> SetInfoLevel(InfoCharacterTable,2);

> Display(ct);

> od;

4 The sets IrrProj(G,↵i) for the maximal subgroups
of M11, M12 and Aut(M12)

In this section, all the sets IrrProj(G,↵i) of irreducible projective char-
acters for each maximal subgroup G of M11, M12 and Aut(M12) are
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computed with the GAP code presented in Section 3 of this paper
and they are found in the tables below.

For example, the maximal subgroup G = 21+4:S3 of M12 has
a Schur multiplier M(G) ' 22 which is isomorphic to the elemen-
tary abelian group 22 of order 4. Therefore, M(G) contains three
cohomology classes [↵i] of order 2 and the trivial class [1]. Hence
we have three sets of projective characters IrrProj(G,↵i) lying above
the non-trivial factor sets ↵i 2 [↵i], i = 2, 3, 4, such that ↵2

i
⇠ 1

and where the set of ordinary irreducible characters Irr(G) is as-
sociated with the identity class [1] of M(G). Using the GAP code
in Section 3, the representation group R ' 22.(21+4:S3) of G will
be subdivided into 4 blocks and where each block contains a set
IrrProj(G,↵i). The sizes of the sets IrrProj(G,↵i), i = 1, 2, 3, 4, are 13,
10, 8 and 6. The set IrrProj(G,↵1) with 13 projective characters is the
ordinary irreducible characters of G whereas the other sets are the
irreducible projective characters of G associated with the nontrivial
factor sets ↵i. These characters are found in Table 2 with the first
block the set Irr(G) and the other three blocks at the bottom are the
sets IrrProj(G,↵i) with ↵2

i
⇠ 1, i = 2, 3, 4 (as in [4]). The first two

rows of Table 2 list the class orders and centralizer sizes for the con-
jugacy classes of G. For the interested reader, the sets IrrProj(G,↵i)
of Table 2 can be view in GAP by using the second part of the GAP
code in Section 3. All the other sets IrrProj(G,↵i) for each maxi-
mal subgroup G (with nontrivial Schur multipliers) of M11, M12

and Aut(M12) are tabulated below except the ones for the groups
L2(11), L2(11):2, S5,M11 and M12 which can be found in the ATLAS.
These tables have the same format as Table 2. The ordinary character
tables of the maximal subgroups with trivial Schur multipliers are
uploaded in the GAP library. In addition, the information concern-
ing the structures of the Schur Multipliers M(G) and the number of
sets IrrProj(G,↵i) for all the maximal subgroups of M11, M12 and
Aut(M12) are summarized in Table 1. Note that the structure of the
Schur Multiplier M(G) for each group G can also be determined by
the GAP command AbelianInvariantsMultiplier(G).

Also, it is worthwhile to mention that the Schur multiplier of the
maximal subgroup A6.23 of M11 is cyclic of order three and will
have two sets IrrProj(A6.23,↵i) with nontrivial factor sets ↵2 and ↵2

2

of order three. The trivial factor set ↵1 = ↵3

2
= 1 is associated

with the ordinary irreducible characters Irr(A6.23) of A6.23. Since
↵2

2
= ↵-1

2
= ↵2 the entries of the set IrrProj(A6.23,↵2) of A6.23
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in the second block of Table 3 are just the complex conjugates of
the entries of the set IrrProj(A6.23,↵2

2
) given in the third block of

Table 3. Therefore, we will found that in the ATLAS only one set
IrrProj(A6.23,↵i) of irreducible projective characters with nontrivial
factor set ↵i is given for the automorphism group A6.23 of A6. The
sets IrrProj(A6.23,↵i) in Table 3 which were obtained with the GAP
code in Section 3 confirmed those of A6.23 found in the ATLAS.

Table 1: Schur Multipliers M(G) and |IrrProj(G,↵i)| of maximal sub-
groups G of M11, M12 and Aut(M12)

Maximal subgroups of M11 |G| [M11:G] M(G) |IrrProj(G,↵i)|
M10 ' A6.23 720 11 3 [8,7,7]

L2(11) 660 12 2 [8,7]
M9:2 ' 32:Q8.2 144 55 1 [9]

S5 120 66 2 [7,5]
M8:S3 ' 2·S4 48 165 1 [8]

Maximal subgroups of M12 |G| [M12:G] M(G) |IrrProj(G,↵i)|
M11 7920 12 1 [10]
M11 7920 12 1 [10]

A6
·22 ' M10:2 1440 66 2 [13,10]

A6
·22 ' M10:2 1440 66 2 [13,10]
L2(11) 660 144 2 [8,7]

32:2S4 ' M9:3 432 220 1 [11]
32:2S4 ' M9:3 432 220 1 [11]

2⇥ S5 240 396 22 [14,10,5,4]
21+4:S3 ' M8.S4 192 495 22 [13,6,10,8]

42:D12 192 495 22 [14,7,7,8]
A4 ⇥ S3 72 1320 2 [12,9]

Maximal subgroups of Aut(M12) |G| [Aut(M12):G] M(G) |IrrProj(G,↵i)|
M12 95040 2 2 [15,11]

L2(11):2 1320 144 2 [13,11]
L2(11):2 1320 144 2 [13,11]

(22 ⇥A5):2 480 396 22 [19,5,14,7]
(21+4:S3).2 384 495 22 [17,13,14,10]
(42:D12).2 384 495 22 [16,7,11,8]
31+2:D8 216 880 2 [13,10]
S4⇥S3 144 1320 22 [15,6,9,9]
S5 120 1584 2 [7,5]
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Table 2: IrrProj(G,↵i) of 21+4:S3
↵1 = ↵2

2
= ↵2

3
= ↵2

4
= 1

[g]G 1a 4a 3a 2a 2b 2c 8a 8b 6a 4b 4c 4d 2d
|CG(g)| 192 16 6 16 32 8 8 8 6 32 32 16 192

�1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 1
�3 2 0 -1 2 2 0 0 0 -1 2 2 0 2
�4 3 1 0 -1 -1 -1 -1 1 0 3 -1 1 3
�5 3 -1 0 -1 -1 1 1 -1 0 3 -1 -1 3
�6 3 -1 0 -1 3 -1 1 1 0 -1 -1 -1 3
�7 3 1 0 -1 3 1 -1 -1 0 -1 -1 1 3
�8 3 1 0 -1 -1 -1 1 -1 0 -1 3 1 3
�9 3 -1 0 -1 -1 1 -1 1 0 -1 3 -1 3
�10 4 -2 1 0 0 0 0 0 -1 0 0 2 -4
�11 4 2 1 0 0 0 0 0 -1 0 0 -2 -4
�12 6 0 0 2 -2 0 0 0 0 -2 -2 0 6
�13 8 0 -1 0 0 0 0 0 1 0 0 0 -8
�1 4 0 1 0 0 0 0 -2 1 0 0 0 -4
�2 4 0 1 0 0 0 0 2 1 0 0 0 -4
�3 4 0 1 0 0 0 -2 0 -1 0 0 0 4
�4 4 0 1 0 0 0 2 0 -1 0 0 0 4
�5 8 0 -1 0 0 0 0 0 1 0 0 0 8
�6 8 0 -1 0 0 0 0 0 -1 0 0 0 -8
�1 2 A -1 0 0 0 0 A 1 -2 0 -A -2
�2 2 -A -1 0 0 0 0 -A 1 -2 0 A -2
�3 2 A -1 0 0 0 A 0 -1 0 2 A 2
�4 2 -A -1 0 0 0 -A 0 -1 0 2 -A 2
�5 4 0 1 0 0 0 0 0 -1 -4 0 0 -4
�6 4 0 1 0 0 0 0 0 1 0 4 0 4
�7 6 A 0 0 0 0 -A 0 0 0 -2 A 6
�8 6 -A 0 0 0 0 A 0 0 0 -2 -A 6
�9 6 A 0 0 0 0 0 -A 0 2 0 -A -6
�10 6 -A 0 0 0 0 0 A 0 2 0 A -6
�1 2 0 -1 0 2 0 A A 1 0 0 0 2
�2 2 0 -1 0 2 0 -A -A 1 0 0 0 2
�3 4 0 1 0 4 0 0 0 -1 0 0 0 4
�4 4 0 1 0 0 -2 0 0 1 0 0 0 -4
�5 4 0 1 0 0 2 0 0 1 0 0 0 -4
�6 6 0 0 0 -2 0 -A A 0 0 0 0 6
�7 6 0 0 0 -2 0 A -A 0 0 0 0 6
�8 8 0 -1 0 0 0 0 0 -1 0 0 0 -8

where A = -
p
2i
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Table 3: IrrProj(G,↵i) of A6.23
↵1 = ↵3

2
= ↵3

3
= 1

[g]G 1a 4a 5a 2a 8a 8b 3a 4b
|CG(g)| 720 4 5 16 8 8 9 8

�1 1 1 1 1 1 1 1 1
�2 1 -1 1 1 -1 -1 1 1
�3 9 1 -1 1 -1 -1 0 1
�4 9 -1 -1 1 1 1 0 1
�5 10 0 0 2 0 0 1 -2
�6 10 0 0 -2 A -A 1 0
�7 10 0 0 -2 -A A 1 0
�8 16 0 1 0 0 0 -2 0
�1 6 0 1 -2 0 0 0 2
�2 6 0 1 2 A -A 0 0
�3 6 0 1 2 -A A 0 0
�4 9 1 -1 1 -1 -1 0 1
�5 9 -1 -1 1 1 1 0 1
�6 15 -1 0 -1 -1 -1 0 -1
�7 15 1 0 -1 1 1 0 -1
�1 6 0 1 -2 0 0 0 2
�2 6 0 1 2 A -A 0 0
�3 6 0 1 2 -A A 0 0
�4 9 1 -1 1 -1 -1 0 1
�5 9 -1 -1 1 1 1 0 1
�6 15 -1 0 -1 -1 -1 0 -1
�7 15 1 0 -1 1 1 0 -1

where A = -
p
2i
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Table 4: IrrProj(G,↵i) of A6
·22

↵1 = ↵2

2
= 1

[g]G 1a 2a 4a 8a 8b 2b 5a 10a 4b 4c 3a 2c 6a
|CG(g)| 1440 32 16 8 8 40 10 10 16 8 18 48 6

�1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 1 1 -1 -1 -1 1 -1 1 -1 1 1 1
�3 1 1 1 -1 1 -1 1 -1 -1 1 1 -1 -1
�4 1 1 1 1 -1 1 1 1 -1 -1 1 -1 -1
�5 9 1 1 1 -1 -1 -1 -1 -1 1 0 3 0
�6 9 1 1 1 1 -1 -1 -1 1 -1 0 -3 0
�7 9 1 1 -1 -1 1 -1 1 1 1 0 -3 0
�8 9 1 1 -1 1 1 -1 1 -1 -1 0 3 0
�9 10 2 -2 0 0 0 0 0 2 0 1 2 -1
�10 10 2 -2 0 0 0 0 0 -2 0 1 -2 1
�11 16 0 0 0 0 -4 1 1 0 0 -2 0 0
�12 16 0 0 0 0 4 1 -1 0 0 -2 0 0
�13 20 -4 0 0 0 0 0 0 0 0 2 0 0
�1 2 2 -2 0 0 0 2 0 0 0 2 0 0
�2 10 2 2 0 0 0 0 0 0 0 1 4 1
�3 10 2 2 0 0 0 0 0 0 0 1 -4 -1
�4 10 -2 0 A A 0 0 0 0 0 1 2 -1
�5 10 -2 0 -A -A 0 0 0 0 0 1 2 -1
�6 10 -2 0 -A A 0 0 0 0 0 1 -2 1
�7 10 -2 0 A -A 0 0 0 0 0 1 -2 1
�8 16 0 0 0 0 0 1 B 0 0 -2 0 0
�9 16 0 0 0 0 0 1 -B 0 0 -2 0 0
�10 18 2 -2 0 0 0 -2 0 0 0 0 0 0

where A = -
p
2, B = -

p
5



60 A.L. Prins

Table 5: IrrProj(G,↵i) of 2⇥S5
↵1 = ↵2

2
= ↵2

3
= ↵2

4
= 1

[g]G 1a 2a 3a 2b 4a 6a 5a 2c 2d 6b 2e 4b 6c 10a
|CG(g)| 240 24 12 16 8 12 10 240 24 12 16 8 12 10

�1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 -1 1 1 -1 -1 1 -1 1 -1 -1 1 1 -1
�3 1 -1 1 1 -1 -1 1 1 -1 1 1 -1 -1 1
�4 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
�5 4 -2 1 0 0 1 -1 -4 2 -1 0 0 -1 1
�6 4 -2 1 0 0 1 -1 4 -2 1 0 0 1 -1
�7 4 2 1 0 0 -1 -1 -4 -2 -1 0 0 1 1
�8 4 2 1 0 0 -1 -1 4 2 1 0 0 -1 -1
�9 5 -1 -1 1 1 -1 0 -5 1 1 -1 -1 1 0
�10 5 -1 -1 1 1 -1 0 5 -1 -1 1 1 -1 0
�11 5 1 -1 1 -1 1 0 -5 -1 1 -1 1 -1 0
�12 5 1 -1 1 -1 1 0 5 1 -1 1 -1 1 0
�13 6 0 0 -2 0 0 1 6 0 0 -2 0 0 1
�14 6 0 0 -2 0 0 1 -6 0 0 2 0 0 -1
�1 4 0 2 0 0 0 -1 4 0 2 0 0 0 -1
�2 4 0 2 0 0 0 -1 -4 0 -2 0 0 0 1
�3 4 0 -1 0 0 B -1 -4 0 1 0 0 -B 1
�4 4 0 -1 0 0 -B -1 -4 0 1 0 0 B 1
�5 4 0 -1 0 0 B -1 4 0 -1 0 0 B -1
�6 4 0 -1 0 0 -B -1 4 0 -1 0 0 -B -1
�7 6 0 0 0 A 0 1 -6 0 0 0 -A 0 -1
�8 6 0 0 0 -A 0 1 -6 0 0 0 A 0 -1
�9 6 0 0 0 A 0 1 6 0 0 0 A 0 1
�10 6 0 0 0 -A 0 1 6 0 0 0 -A 0 1
�1 2 0 2 2 0 0 2 0 0 0 0 0 0 0
�2 6 0 0 -2 0 0 1 0 0 0 0 0 0 C
�3 6 0 0 -2 0 0 1 0 0 0 0 0 0 -C
�4 8 0 2 0 0 0 -2 0 0 0 0 0 0 0
�5 10 0 -2 2 0 0 0 0 0 0 0 0 0 0
�1 4 0 2 0 0 0 -1 0 0 0 0 0 0 C
�2 4 0 2 0 0 0 -1 0 0 0 0 0 0 -C
�3 8 0 -2 0 0 0 -2 0 0 0 0 0 0 0
�4 12 0 0 0 0 0 2 0 0 0 0 0 0 0

where A = -
p
2i, B = -

p
3i, C= -

p
5.
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Table 6: IrrProj(G,↵i) of 42:D12

↵1 = ↵2

2
= ↵2

3
= ↵2

4
= 1

[g]G 1a 2a 2b 3a 4a 2c 2d 6a 2e 8a 4b 4c 8b 4d
|CG(g)| 192 48 16 6 32 64 16 6 16 8 16 32 8 16

�1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1
�3 1 -1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1
�4 1 1 -1 1 1 1 -1 1 1 -1 -1 1 -1 -1
�5 2 -2 0 -1 2 2 0 1 -2 0 0 2 0 0
�6 2 2 0 -1 2 2 0 -1 2 0 0 2 0 0
�7 3 -3 -1 0 -1 3 1 0 1 1 -1 -1 -1 1
�8 3 -3 1 0 -1 3 -1 0 1 -1 1 -1 1 -1
�9 3 3 -1 0 -1 3 -1 0 -1 1 -1 -1 1 -1
�10 3 3 1 0 -1 3 1 0 -1 -1 1 -1 -1 1
�11 6 0 -2 0 2 -2 0 0 0 0 2 -2 0 0
�12 6 0 0 0 -2 -2 -2 0 0 0 0 2 0 2
�13 6 0 0 0 -2 -2 2 0 0 0 0 2 0 -2
�14 6 0 2 0 2 -2 0 0 0 0 -2 -2 0 0
�1 2 -2 0 -1 0 -2 0 1 0 A 0 0 -A 0
�2 2 -2 0 -1 0 -2 0 1 0 -A 0 0 A 0
�3 2 2 0 -1 0 -2 0 -1 0 A 0 0 A 0
�4 2 2 0 -1 0 -2 0 -1 0 -A 0 0 -A 0
�5 4 -4 0 1 0 -4 0 -1 0 0 0 0 0 0
�6 4 4 0 1 0 -4 0 1 0 0 0 0 0 0
�7 12 0 0 0 0 4 0 0 0 0 0 0 0 0
�1 4 0 0 -2 0 -4 0 0 0 0 0 0 0 0
�2 4 0 0 1 0 -4 0 B 0 0 0 0 0 0
�3 4 0 0 1 0 -4 0 -B 0 0 0 0 0 0
�4 6 0 0 0 0 2 0 0 C -A 0 0 D 0
�5 6 0 0 0 0 2 0 0 C A 0 0 -D 0
�6 6 0 0 0 0 2 0 0 -C -A 0 0 -D 0
�7 6 0 0 0 0 2 0 0 -C A 0 0 D 0
�1 2 0 0 2 2 2 0 0 0 0 0 2 0 0
�2 2 0 0 -1 2 2 0 B 0 0 0 2 0 0
�3 2 0 0 -1 2 2 0 -B 0 0 0 2 0 0
�4 6 0 0 0 -2 6 0 0 0 0 0 -2 0 0
�5 6 0 0 0 2 -2 0 0 0 -2 0 -2 0 0
�6 6 0 0 0 2 -2 0 0 0 2 0 -2 0 0
�7 6 0 0 0 -2 -2 0 0 0 0 0 2 C 0
�8 6 0 0 0 -2 -2 0 0 0 0 0 2 -C 0

where A =
p
2i, B = -

p
3i, C= -2i, D =

p
2
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Table 7: IrrProj(G,↵i) of (22⇥A5):2

↵1 = ↵2

2
= ↵2

3
= ↵2

4
= 1

[g]G 1a 4a 4b 3a 2a 10a 2b 4c 2c 6a 6b 10b 6c 5a 10c 2d 12a 2e 2f
|CG(g)| 480 8 8 24 32 20 16 24 32 12 24 20 12 20 20 24 12 480 240

�1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 -1 -1 1 1 1 1 -1 1 -1 1 1 1 1 1 -1 -1 1 1
�3 1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1
�4 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 1 -1
�5 2 0 0 2 -2 0 0 0 2 0 -2 0 0 2 -2 0 0 -2 0
�6 4 0 0 1 0 -1 0 -2 0 1 1 -1 1 -1 -1 -2 1 4 4
�7 4 0 0 1 0 1 0 -2 0 -1 1 1 -1 -1 -1 2 1 4 -4
�8 4 0 0 1 0 1 0 2 0 1 1 1 -1 -1 -1 -2 -1 4 -4
�9 4 0 0 1 0 -1 0 2 0 -1 1 -1 1 -1 -1 2 -1 4 4
�10 5 1 -1 -1 1 0 -1 -1 1 1 -1 0 1 0 0 1 -1 5 -5
�11 5 -1 -1 -1 1 0 1 1 1 1 -1 0 -1 0 0 1 1 5 5
�12 5 1 1 -1 1 0 1 -1 1 -1 -1 0 -1 0 0 -1 -1 5 5
�13 5 -1 1 -1 1 0 -1 1 1 -1 -1 0 1 0 0 -1 1 5 -5
�14 6 0 0 0 -2 -1 2 0 -2 0 0 -1 0 1 1 0 0 6 -6
�15 6 0 0 0 -2 1 -2 0 -2 0 0 1 0 1 1 0 0 6 6
�16 6 0 0 0 2 D 0 0 -2 0 0 -D 0 1 -1 0 0 -6 0
�17 6 0 0 0 2 -D 0 0 -2 0 0 D 0 1 -1 0 0 -6 0
�18 8 0 0 2 0 0 0 0 0 0 -2 0 0 -2 2 0 0 -8 0
�19 10 0 0 -2 -2 0 0 0 2 0 2 0 0 0 0 0 0 -10 0
�1 8 0 0 -4 0 0 0 0 0 0 0 0 0 -2 0 0 0 0 0
�2 8 0 0 2 0 0 0 0 0 0 0 0 0 -2 0 0 G 0 0
�3 8 0 0 2 0 0 0 0 0 0 0 0 0 -2 0 0 -G 0 0
�4 12 A 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
�5 12 -A 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
�1 4 0 0 -2 0 -1 0 0 0 0 -2 -1 -2 -1 -1 0 0 4 4
�2 4 0 0 -2 0 1 0 0 0 0 -2 1 2 -1 -1 0 0 4 -4
�3 4 0 0 -2 0 D 0 0 0 0 2 -D 0 -1 1 0 0 -4 0
�4 4 0 0 -2 0 -D 0 0 0 0 2 D 0 -1 1 0 0 -4 0
�5 4 0 0 1 0 -1 0 0 0 F 1 -1 1 -1 -1 0 F 4 4
�6 4 0 0 1 0 -1 0 0 0 -F 1 -1 1 -1 -1 0 -F 4 4
�7 4 0 0 1 0 1 0 0 0 -F 1 1 -1 -1 -1 0 F 4 -4
�8 4 0 0 1 0 1 0 0 0 F 1 1 -1 -1 -1 0 -F 4 -4
�9 6 B -B 0 0 -1 0 0 0 0 0 -1 0 1 1 0 0 6 -6
�10 6 -B B 0 0 -1 0 0 0 0 0 -1 0 1 1 0 0 6 -6
�11 6 -B -B 0 0 1 0 0 0 0 0 1 0 1 1 0 0 6 6
�12 6 B B 0 0 1 0 0 0 0 0 1 0 1 1 0 0 6 6
�13 8 0 0 2 0 0 0 0 0 0 -2 0 0 -2 2 0 0 -8 0
�14 12 0 0 0 0 0 0 0 0 0 0 0 0 2 -2 0 0 -12 0
�1 2 C 0 2 0 0 0 C 2 0 0 0 0 2 0 0 -C 0 0
�2 2 -C 0 2 0 0 0 -C 2 0 0 0 0 2 0 0 C 0 0
�3 8 0 0 2 0 0 0 E 0 0 0 0 0 -2 0 0 C 0 0
�4 8 0 0 2 0 0 0 -E 0 0 0 0 0 -2 0 0 -C 0 0
�5 10 -C 0 -2 0 0 0 C 2 0 0 0 0 0 0 0 -C 0 0
�6 10 C 0 -2 0 0 0 -C 2 0 0 0 0 0 0 0 C 0 0
�7 12 0 0 0 0 0 0 0 -4 0 0 0 0 2 0 0 0 0 0

where A = -2i, B =
p
2i, C = -

p
2, D =

p
5,

E = -2
p
2, F = -

p
3i, G = -

p
6i
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Table 8: IrrProj(G,↵i) of (21+4:S3).2
↵1 = ↵2

2
= ↵2

3
= ↵2

4
= 1

[g]G 1a 4a 2a 3a 4b 2b 12a 2c 4c 6a 2d 4d 12b 4e 8a 2e 4f
|CG(g)| 384 16 16 12 32 64 12 16 8 12 384 16 12 16 8 32 48

�1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 1 -1
�3 1 1 -1 1 1 1 -1 1 -1 1 1 -1 -1 -1 1 1 -1
�4 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 1 1 -1 1 1
�5 2 0 0 -1 2 2 1 0 0 -1 2 0 1 -2 0 2 -2
�6 2 0 0 -1 2 2 -1 0 0 -1 2 0 -1 2 0 2 2
�7 3 -1 -1 0 -1 3 0 -1 1 0 3 -1 0 -1 1 -1 3
�8 3 1 1 0 -1 3 0 1 -1 0 3 1 0 -1 -1 -1 3
�9 3 -1 1 0 -1 3 0 -1 -1 0 3 1 0 1 1 -1 -3
�10 3 1 -1 0 -1 3 0 1 1 0 3 -1 0 1 -1 -1 -3
�11 6 -2 0 0 2 -2 0 2 0 0 6 0 0 0 0 -2 0
�12 6 0 2 0 -2 -2 0 0 0 0 6 -2 0 0 0 2 0
�13 6 0 -2 0 -2 -2 0 0 0 0 6 2 0 0 0 2 0
�14 6 2 0 0 2 -2 0 -2 0 0 6 0 0 0 0 -2 0
�15 8 0 0 2 0 0 0 0 0 -2 -8 0 0 0 0 0 0
�16 8 0 0 -1 0 0 A 0 0 1 -8 0 -A 0 0 0 0
�17 8 0 0 -1 0 0 -A 0 0 1 -8 0 A 0 0 0 0
�1 4 0 0 -2 0 4 0 0 0 -2 4 0 0 0 0 0 0
�2 4 0 0 1 0 0 1 2 0 -1 -4 -2 1 0 0 0 -2
�3 4 0 0 1 0 0 -1 -2 0 -1 -4 -2 -1 0 0 0 2
�4 4 0 0 1 0 0 1 -2 0 -1 -4 2 1 0 0 0 -2
�5 4 0 0 1 0 0 -1 2 0 -1 -4 2 -1 0 0 0 2
�6 4 0 0 1 0 4 A 0 0 1 4 0 -A 0 0 0 0
�7 4 0 0 1 0 4 -A 0 0 1 4 0 A 0 0 0 0
�8 6 0 0 0 0 -2 0 0 B 0 6 0 0 -2 B 0 0
�9 6 0 0 0 0 -2 0 0 -B 0 6 0 0 -2 -B 0 0
�10 6 0 0 0 0 -2 0 0 -B 0 6 0 0 2 B 0 0
�11 6 0 0 0 0 -2 0 0 B 0 6 0 0 2 -B 0 0
�12 8 0 0 -1 0 0 -1 0 0 1 -8 0 -1 0 0 0 -4
�13 8 0 0 -1 0 0 1 0 0 1 -8 0 1 0 0 0 4
�1 2 0 0 2 2 -2 0 0 0 -2 -2 0 0 0 0 -2 0
�2 2 0 0 -1 2 -2 A 0 0 1 -2 0 -A 0 0 -2 0
�3 2 0 0 -1 2 -2 -A 0 0 1 -2 0 A 0 0 -2 0
�4 4 -2 2 1 0 0 1 0 0 1 4 0 1 0 0 0 -2
�5 4 -2 -2 1 0 0 -1 0 0 1 4 0 -1 0 0 0 2
�6 4 2 -2 1 0 0 1 0 0 1 4 0 1 0 0 0 -2
�7 4 2 2 1 0 0 -1 0 0 1 4 0 -1 0 0 0 2
�8 6 0 0 0 -2 -6 0 0 0 0 -6 0 0 0 0 2 0
�9 6 0 0 0 -2 2 0 0 -2 0 -6 0 0 0 0 -2 0
�10 6 0 0 0 -2 2 0 0 2 0 -6 0 0 0 0 -2 0
�11 6 0 0 0 2 2 0 0 0 0 -6 0 0 0 -2 2 0
�12 6 0 0 0 2 2 0 0 0 0 -6 0 0 0 2 2 0
�13 8 0 0 -1 0 0 -1 0 0 -1 8 0 -1 0 0 0 -4
�14 8 0 0 -1 0 0 1 0 0 -1 8 0 1 0 0 0 4
�1 2 0 0 -1 0 -2 1 0 B 1 -2 0 1 0 B 0 -2
�2 2 0 0 -1 0 -2 1 0 -B 1 -2 0 1 0 -B 0 -2
�3 2 0 0 -1 0 -2 -1 0 -B 1 -2 0 -1 0 B 0 2
�4 2 0 0 -1 0 -2 -1 0 B 1 -2 0 -1 0 -B 0 2
�5 4 0 0 1 0 -4 -1 0 0 -1 -4 0 -1 0 0 0 -4
�6 4 0 0 1 0 -4 1 0 0 -1 -4 0 1 0 0 0 4
�7 8 0 0 2 0 0 0 0 0 2 8 0 0 0 0 0 0
�8 8 0 0 -1 0 0 A 0 0 -1 8 0 -A 0 0 0 0
�9 8 0 0 -1 0 0 -A 0 0 -1 8 0 A 0 0 0 0
�10 12 0 0 0 0 4 0 0 0 0 -12 0 0 0 0 0 0

where A =
p
3, B = -

p
2i
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Table 9: IrrProj(G,↵i) for (42:D12).2
↵1 = ↵2

2
= ↵2

3
= ↵2

4
= 1

[g]G 1a 2a 2b 2c 3a 4a 2d 4b 8a 4c 6a 4d 6b 2e 4e 6c
|CG(g)| 384 16 48 96 12 32 128 8 8 16 12 16 12 32 8 12

�1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1
�3 1 1 -1 1 1 1 1 -1 1 1 -1 -1 1 1 -1 -1
�4 1 -1 1 1 1 1 1 -1 -1 -1 1 1 1 1 -1 1
�5 2 0 -2 2 -1 2 2 0 0 0 1 -2 -1 2 0 1
�6 2 0 2 2 -1 2 2 0 0 0 -1 2 -1 2 0 -1
�7 2 0 0 -2 2 2 2 0 0 0 0 0 -2 -2 0 0
�8 2 0 0 -2 -1 2 2 0 0 0 D 0 1 -2 0 -D
�9 2 0 0 -2 -1 2 2 0 0 0 -D 0 1 -2 0 D
�10 3 -1 -3 3 0 -1 3 1 1 -1 0 1 0 -1 -1 0
�11 3 1 -3 3 0 -1 3 -1 -1 1 0 1 0 -1 1 0
�12 3 -1 3 3 0 -1 3 -1 1 -1 0 -1 0 -1 1 0
�13 3 1 3 3 0 -1 3 1 -1 1 0 -1 0 -1 -1 0
�14 6 0 0 -6 0 -2 6 0 0 0 0 0 0 2 0 0
�15 12 -2 0 0 0 0 -4 0 0 2 0 0 0 0 0 0
�16 12 2 0 0 0 0 -4 0 0 -2 0 0 0 0 0 0
�1 2 0 0 0 2 2 2 A 0 0 0 0 0 0 A 0
�2 2 0 0 0 2 2 2 -A 0 0 0 0 0 0 -A 0
�3 4 0 0 0 -2 4 4 0 0 0 0 0 0 0 0 0
�4 6 0 0 0 0 -2 6 A 0 0 0 0 0 0 -A 0
�5 6 0 0 0 0 -2 6 -A 0 0 0 0 0 0 A 0
�6 12 0 0 0 0 0 -4 0 B 0 0 0 0 0 0 0
�7 12 0 0 0 0 0 -4 0 -B 0 0 0 0 0 0 0
�1 2 0 -2 2 -1 0 2 0 C 0 1 0 -1 0 -C 1
�2 2 0 -2 2 -1 0 2 0 -C 0 1 0 -1 0 C 1
�3 2 0 2 2 -1 0 2 0 C 0 -1 0 -1 0 C -1
�4 2 0 2 2 -1 0 2 0 -C 0 -1 0 -1 0 -C -1
�5 4 0 4 4 1 0 4 0 0 0 1 0 1 0 0 1
�6 4 0 -4 4 1 0 4 0 0 0 -1 0 1 0 0 -1
�7 4 0 0 -4 -2 0 4 0 0 0 0 0 2 0 0 0
�8 4 0 0 -4 1 0 4 0 0 0 D 0 -1 0 0 -D
�9 4 0 0 -4 1 0 4 0 0 0 -D 0 -1 0 0 D
�10 12 0 0 0 0 0 -4 -2 0 0 0 0 0 0 0 0
�11 12 0 0 0 0 0 -4 2 0 0 0 0 0 0 0 0
�1 4 0 0 0 -2 0 4 0 0 0 0 0 0 0 B 0
�2 4 0 0 0 -2 0 4 0 0 0 0 0 0 0 -B 0
�3 6 0 0 0 0 0 -2 -A A 0 0 -2 0 -2 0 0
�4 6 0 0 0 0 0 -2 A -A 0 0 -2 0 -2 0 0
�5 6 0 0 0 0 0 -2 A A 0 0 2 0 -2 0 0
�6 6 0 0 0 0 0 -2 -A -A 0 0 2 0 -2 0 0
�7 8 0 0 0 2 0 8 0 0 0 0 0 0 0 0 0
�8 12 0 0 0 0 0 -4 0 0 0 0 0 0 4 0 0

where A = -
p
2, B = -2i,

C = -
p
2i, D = -

p
3i
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Table 10: IrrProj(G,↵i) of A4⇥S3
↵1 = ↵2

2
= 1

[g]G 1a 2a 3a 2b 3b 6a 2c 3c 3d 6b 6c 3e
|CG(g)| 72 24 18 24 36 6 8 18 9 12 6 9

�1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 -1 1 1 1 -1 -1 1 1 1 -1 1
�3 1 -1 A 1 1 -A -1 A A 1 -A A
�4 1 -1 A 1 1 A -1 A A 1 -A A
�5 1 1 A 1 1 A 1 A A 1 A A
�6 1 1 A 1 1 A 1 A A 1 A A
�7 2 0 2 2 -1 0 0 2 -1 -1 0 -1
�8 2 0 B 2 -1 0 0 B -A -1 0 -A
�9 2 0 B 2 -1 0 0 B -A -1 0 -A
�10 3 -3 0 -1 3 0 1 0 0 -1 0 0
�11 3 3 0 -1 3 0 -1 0 0 -1 0 0
�12 6 0 0 -2 -3 0 0 0 0 1 0 0
�1 2 -2 -1 0 2 1 0 -1 -1 0 1 -1
�2 2 2 -1 0 2 -1 0 -1 -1 0 -1 -1
�3 2 -2 -A 0 2 A 0 -A -A 0 A -A
�4 2 -2 -A 0 2 A 0 -A -A 0 A -A
�5 2 2 -A 0 2 -A 0 -A -A 0 -A -A
�6 2 2 -A 0 2 -A 0 -A -A 0 -A -A
�7 4 0 -2 0 -2 0 0 -2 1 0 0 1
�8 4 0 -B 0 -2 0 0 -B A 0 0 A
�9 4 0 -B 0 -2 0 0 -B A 0 0 A

where A = -1-
p
3i

2
, B = -1-

p
3i
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Table 11: IrrProj(G,↵i) of 31+2:D8

↵1 = ↵2

2
= 1

[g]G 1a 2a 2b 2c 3a 4a 6a 6b 6c 12a 12b 3b 3c
|CG(g)| 216 12 12 24 18 12 6 6 12 12 12 18 108

�1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 -1 -1 1 1 1 -1 -1 1 1 1 1 1
�3 1 -1 1 1 1 -1 -1 1 1 -1 -1 1 1
�4 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 1
�5 2 0 0 -2 2 0 0 0 -2 0 0 2 2
�6 4 -2 0 0 -2 0 1 0 0 0 0 1 4
�7 4 0 -2 0 1 0 0 1 0 0 0 -2 4
�8 4 0 2 0 1 0 0 -1 0 0 0 -2 4
�9 4 2 0 0 -2 0 -1 0 0 0 0 1 4
�10 6 0 0 -2 0 2 0 0 1 -1 -1 0 -3
�11 6 0 0 -2 0 -2 0 0 1 1 1 0 -3
�12 6 0 0 2 0 0 0 0 -1 -C C 0 -3
�13 6 0 0 2 0 0 0 0 -1 C -C 0 -3
�1 2 0 0 0 2 A 0 0 0 A A 2 2
�2 2 0 0 0 2 -A 0 0 0 -A -A 2 2
�3 4 0 0 0 -2 0 B 0 0 0 0 1 4
�4 4 0 0 0 -2 0 -B 0 0 0 0 1 4
�5 4 0 0 0 1 0 0 B 0 0 0 -2 4
�6 4 0 0 0 1 0 0 -B 0 0 0 -2 4
�7 6 0 0 0 0 A 0 0 C D E 0 -3
�8 6 0 0 0 0 A 0 0 -C E D 0 -3
�9 6 0 0 0 0 -A 0 0 C -D -E 0 -3
�10 6 0 0 0 0 -A 0 0 -C -E -D 0 -3

where A = -
p
2, B = -

p
3i, C =

p
3,

D = E(24)17-E(24)19, E = E(24)-E(24)11
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Table 12: IrrProj(G,↵i) for S4⇥S3
↵1 = ↵2

2
= ↵2

3
= ↵2

4
= 1

[g]G 1a 6a 2a 3a 2b 3b 2c 4a 6b 2d 3c 6c 4b 2e 12a
|CG(g)| 144 6 8 72 48 18 24 8 24 48 9 12 24 16 12

�1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 -1 1 1 1 1 -1 1 1 -1 1 -1 -1 -1 -1
�3 1 1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 -1
�4 1 -1 -1 1 1 1 1 -1 1 -1 1 1 1 -1 1
�5 2 0 0 -1 2 2 -2 0 -1 0 -1 1 -2 0 1
�6 2 1 0 2 2 -1 0 0 2 -2 -1 0 0 -2 0
�7 2 -1 0 2 2 -1 0 0 2 2 -1 0 0 2 0
�8 2 0 0 -1 2 2 2 0 -1 0 -1 -1 2 0 -1
�9 3 0 1 3 -1 0 -1 -1 -1 -3 0 -1 1 1 1
�10 3 0 -1 3 -1 0 -1 1 -1 3 0 -1 1 -1 1
�11 3 0 -1 3 -1 0 1 1 -1 -3 0 1 -1 1 -1
�12 3 0 1 3 -1 0 1 -1 -1 3 0 1 -1 -1 -1
�13 4 0 0 -2 4 -2 0 0 -2 0 1 0 0 0 0
�14 6 0 0 -3 -2 0 -2 0 1 0 0 1 2 0 -1
�15 6 0 0 -3 -2 0 2 0 1 0 0 -1 -2 0 1
�1 4 0 0 4 0 -2 0 0 0 0 -2 0 0 0 0
�2 4 0 0 -2 0 -2 0 0 0 0 1 0 0 0 E
�3 4 0 0 -2 0 -2 0 0 0 0 1 0 0 0 -E
�4 4 A 0 4 0 1 0 0 0 0 1 0 0 0 0
�5 4 -A 0 4 0 1 0 0 0 0 1 0 0 0 0
�6 8 0 0 -4 0 2 0 0 0 0 -1 0 0 0 0
�1 2 0 0 2 2 2 0 0 2 0 2 0 0 0 0
�2 2 A 0 2 2 -1 0 0 2 0 -1 0 0 0 0
�3 2 -A 0 2 2 -1 0 0 2 0 -1 0 0 0 0
�4 2 0 0 -1 2 2 0 0 -1 0 -1 C 0 0 C
�5 2 0 0 -1 2 2 0 0 -1 0 -1 -C 0 0 -C
�6 4 0 0 -2 4 -2 0 0 -2 0 1 0 0 0 0
�7 6 0 0 6 -2 0 0 0 -2 0 0 0 0 0 0
�8 6 0 0 -3 -2 0 0 0 1 0 0 C 0 0 -C
�9 6 0 0 -3 -2 0 0 0 1 0 0 -C 0 0 C
�1 2 1 0 2 0 -1 0 B 0 -2 -1 0 -B 0 -B
�2 2 1 0 2 0 -1 0 -B 0 -2 -1 0 B 0 B
�3 2 -1 0 2 0 -1 0 -B 0 2 -1 0 -B 0 -B
�4 2 -1 0 2 0 -1 0 B 0 2 -1 0 B 0 B
�5 4 -1 0 4 0 1 0 0 0 -4 1 0 0 0 0
�6 4 1 0 4 0 1 0 0 0 4 1 0 0 0 0
�7 4 0 0 -2 0 -2 0 0 0 0 1 0 D 0 B
�8 4 0 0 -2 0 -2 0 0 0 0 1 0 -D 0 -B
�9 8 0 0 -4 0 2 0 0 0 0 -1 0 0 0 0

where A=-
p
3i, B =

p
2i, C =

p
3,

D = -2
p
2i, E =-

p
6i
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In [17] it is mentioned that the sets IrrProj(G,↵i) of G are only
defined universally up to sign and it is possible that one can ob-
tain different signs if the sets IrrProj(G,↵i) are re-calculated using a
different representation group R = M(G).G. But these signs are cal-
culated consistently with a “special factor set” (as explained in Sec-
tion 2) and so the inner product and conjugacy results of [4] apply to
the sets IrrProj(G,↵i).
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