Basic 3-Transpositions of the Symplectic Group
 $\operatorname{Sp}(2 n, 2)$ *
 Jamshid Moori

(Received Nov. 16, 2020; Accepted Feb. 15, 2021 - Communicated by F. de Giovanni)

Abstract

In this paper we aim to study maximal pairwise commuting sets of 3-transpositions (transvections) of the simple symplectic group $\operatorname{Sp}(2 n, 2)$, and to construct designs from these sets. Any maximal set of pairwise 3-transpositions is called a basic set of transpositions. Let $\mathrm{G}=\operatorname{Sp}(2 \mathrm{n}, 2)$. It is well-known that G is a 3 -transposition group with the set D, the conjugacy class consisting of its transvections, as the set of 3-transpositions. Let L be a set of basic transpositions in D . We aim to give general descriptions of L and $1-(v, k, \lambda)$ designs $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, with $\mathcal{P}=D$ and $\mathcal{B}=\left\{L^{g} \mid g \in G\right\}$. The parameters $k=|\mathrm{L}|, \lambda$ and further properties of \mathcal{D} are determined. We also, as examples, apply the method to the symplectic simple groups $\operatorname{Sp}(6,2), \operatorname{Sp}(8,2)$ and $\operatorname{Sp}(10,2)$.

Mathematics Subject Classification (2020): 20Do5, 20Do6, 05Bo5, 20G40
Keywords: design; simple group; symplectic group; 3-transposition group; basic transposition; commuting set; transvection

1 Introduction

Let G be a finite group generated by a class D of involutions such that any pair of non-commuting elements of D generate a dihedral group of order 6. Then D is called a class of conjugate 3-transpositions and G

[^0]a 3-transposition group. Note that if $\mathrm{a}, \mathrm{b} \in \mathrm{D}$ are such that $\mathrm{ab} \neq \mathrm{ba}$ then $o(a b)=3$. Fischer ([6]) in his original studies on these groups considers the maximal commuting sets of 3-transpositions and denotes any such set by L. The set L is defined to be a basic set of transpositions. The width of G is defined to be the size of L and is denoted by $w_{\mathrm{D}}(\mathrm{G})$. The normalizer $\mathrm{N}_{\mathrm{G}}(\mathrm{L})$, that is the stabilizer of L under conjugation, plays an important role in his classification of 3-transposition groups.

Let $G=\operatorname{Sp}(2 n, 2)$. It is well-known that G is a 3 -transposition group, where the set D of 3-transpositions is the conjugacy class of its transvections. In this paper we aim first to study the maximal pairwise commuting sets of 3 -transpositions (transvections) of G. Let L be a set of basic transpositions in D. We aim to give general descriptions of L. Secondly we aim to construct $1-(v, k, \lambda)$ designs $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, with $\mathcal{P}=\mathrm{D}$ and $\mathcal{B}=\left\{\mathrm{L}^{\mathrm{g}} \mid \mathrm{g} \in \mathrm{G}\right\}$. The parameters $\mathrm{k}=|\mathrm{L}|, \lambda$ and further properties of \mathcal{D} are determined. We also, as examples, apply the method to the symplectic simple groups $\operatorname{Sp}(6,2), \operatorname{Sp}(8,2)$ and $S p(10,2)$.

Recently in [13] we applied our method to the several 3-transposition groups, namely the Symmetric groups S_{n} and Fischer groups F_{i} for $i \in\{21,22,23,24\}$. We must also add here that a good number of publications has been devoted to constructing designs and codes from finite simple groups. For example interested readers could be referred to [5],[8],[9],[10],[11],[14],[15] and [16].

2 Background, terminology and basic results

Our notation will be standard, and it is as in [2] and [12] for designs, and ATLLAS [4] for groups, finite simple groups and their maximal subgroups. An incidence structure $\mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{J})$, with point set \mathcal{P}, block set \mathcal{B} and incidence \mathcal{J} is a $t-(v, k, \lambda)$ design, if $|\mathcal{P}|=v$, every block $\mathrm{B} \in \mathcal{B}$ is incident with precisely k points, and every t distinct points are together incident with precisely λ blocks. The complement of \mathcal{D} is the structure $\widetilde{\mathcal{D}}=(\mathcal{P}, \mathcal{B}, \widetilde{\mathcal{J}})$, where $\widetilde{\mathcal{J}}=\mathcal{P} \times \mathcal{B}-\mathcal{J}$. The dual structure of \mathcal{D} is $\mathcal{D}^{\mathfrak{t}}=\left(\mathcal{B}, \mathcal{P}, \mathcal{J}^{\mathfrak{t}}\right)$, where $(\mathrm{B}, \mathrm{P}) \in \mathcal{J}^{\mathfrak{t}}$ if and only if $(\mathrm{P}, \mathrm{B}) \in \mathcal{J}$. Thus the transpose of an incidence matrix for \mathcal{D} is an incidence matrix for \mathcal{D}^{t}. We will say that the design is symmetric if it has the same number of points and blocks, and self dual if it is isomorphic to its dual.

The groups G.H, G:H, and G•H denote a general extension, a split extension and a non-split extension respectively. For a prime p, p^{n} denotes the elementary abelian group of order p^{n}.

Let G be a finite 3-transposition group generated by a class D of conjugate 3-transpositions. Fischer in [6] proved the following main theorem.

Theorem 1 Let G be a finite 3-transposition group such that
(i) $\mathrm{O}_{2}(\mathrm{G})$ and $\mathrm{O}_{3}(\mathrm{G})$ lie in the centre of G ,
(ii) $\mathrm{G}^{\prime}=\mathrm{G}^{\prime \prime}$.

Then $\mathrm{G} / \mathrm{Z}(\mathrm{G})$ is isomorphic to a group in one of the following families:
(a) S_{n}, the symmetric groups,
(b) $\operatorname{Sp}(2 n, 2)$, the symplectic groups over $G F(2)$,
(c) $\mathrm{O}^{\mu}(2 n, 2), \mu \in\{1,-1\}$, the orthogonal groups over $\operatorname{GF}(2)$,
(d) $\operatorname{PSU}(\mathrm{n}, 2)$, the projective special unitary groups over GF(4),
(e) $\mathrm{O}^{\mu, \pi}(\mathrm{n}, 3), \mu, \pi \in\{1,-1\}$, the orthogonal groups over $\mathrm{GF}(3)$,
(f) F_{22}, F_{23} and F_{24}. The first two groups are simple and the third one contains a simple subgroup of index 2.

Let G be one of the groups in the above list, and L be a set of basic transpositions in D. Let S be a Sylow 2-subgroup of G containing L. Then we can easily show that $L=D \cap S$ and that $N_{G}(L)$ contains $\langle\mathrm{L}\rangle$. It is also well-known that $\mathrm{N}_{\mathrm{G}}(\mathrm{L})$ contains a Sylow 2-subgroup of G and its action (by conjugation) on L is at least 2-transitive. Furthermore from the Fischer's work we have $\mathrm{C}_{\mathrm{G}}(\mathrm{L})=\langle\mathrm{L}\rangle$ and that $\mathrm{N}_{\mathrm{G}}(\mathrm{L}) / \mathrm{C}_{\mathrm{G}}(\mathrm{L})$ is
(i) $S_{|\mathrm{L}|}$ or $A_{|\mathrm{L}|}$ in cases (a) or (e),
(ii) $\mathrm{GL}(\mathrm{n}, 2)$ in the case (b),
(iii) $\operatorname{PSL}([n / 2], 4)$ in the case (d),
(iv) the holomorph of an elementary abelian 2-group of order 2^{n} in the case (c),
(v) the Mathieu groups $M_{2 i}, i \in\{2,3,4\}$, in the case (f).

For $d \in D$ we define $D_{d}=C_{D}(d) \backslash\{d\}$ and $A_{d}=D \backslash C_{D}(d)$. Then D_{d} is a conjugacy class of elements of the group generated by D_{d}. This property allowed Fischer to use induction in order to prove his results on the classification of 3-transposition groups.
Proposition 2 Assume that G is acting primitively by conjugation on D and $w_{\mathrm{D}}(\mathrm{G}) \geqslant 2$, then
(i) G is rank 3 on D ,
(ii) $\mathrm{C}_{\mathrm{G}}(\mathrm{d})$ has three orbits $\{\mathrm{d}\}, \mathrm{D}_{\mathrm{d}}$ and A_{d} on D ,
(iii) $\left\langle\mathrm{D}_{\mathrm{d}}\right\rangle$ is transitive on D_{d},
(iv) $\left\langle C_{D}(d)\right\rangle$ is transitive on A_{d}.

Proof - See [6] and [1].

3 The symplectic group $\operatorname{Sp}(2 n, 2)$

Assume $G=S p(2 n, 2)$, the symplectic group acting on a $2 n$-dimensional symplectic space V over $F=G F(2)$. Let D be the set of all symplectic transvections of G. There is a one-one correspondence between D and the nonzero elements of V and hence $|D|=2^{2 n}-1$ with

$$
|G|=2^{n^{2}}\left(2^{2}-1\right)\left(2^{4}-1\right) \ldots\left(2^{2 n}-1\right) .
$$

Using the above identification, we can see that for $d \in D, C_{G}(d)$ is the affine subgroup of the form $2^{2 n-1}: \operatorname{Sp}(2 n-2,2)$, see for example Mpono [17]. Furthermore, G acts primitively on D and $C_{G}(d)$ has three orbits $\{d\}, D_{d}$ and A_{d} on D with

$$
\left|D_{d}\right|=2\left(2^{2 n-2}-1\right),\left|A_{d}\right|=2^{2 n-1}
$$

and for $x \in A_{d}$ we have $\left\{x, d, d^{x}\right\}$ as a hyperbolic line (see Aschbacher [1]).

Let L be a set of basic 3-transpositions in D. We know that

$$
\mathrm{N}_{\mathrm{G}}(\mathrm{~L})=\langle\mathrm{L}\rangle: \mathrm{GL}(\mathrm{n}, 2),
$$

is a maximal parabolic subgroup of G (see for example Wilson [18]). In the following we study the structure of L and deduce that $\operatorname{dim}(\langle L\rangle)=n(n+1) / 2$ with $|L|=2^{n}-1$.

Proposition 3 Let L be a set of basic transpositions of $\mathrm{G}=\operatorname{Sp}(2 \mathrm{n}, 2)$. If S is a Sylow 2-subgroup of G containing L , then $\mathrm{S}=\langle\mathrm{L}\rangle: \mathrm{T}_{\mathrm{n}}$ where T_{n} is a Sylow 2-subgroup of $\mathrm{GL}(\mathrm{n}, 2)$. Furthermore, viewing $\langle\mathrm{L}\rangle$ as a vector space over $\mathrm{GF}(2), \operatorname{dim}(\langle\mathrm{L}\rangle)=\mathrm{n}(n+1) / 2$.

Proof - Since $S \geqslant\langle L\rangle$, by Section 2 we have that $N_{G}(L)$ contains S and hence S is a Sylow 2-subgroup of $N_{G}(L)$. Since

$$
\mathrm{N}_{\mathrm{G}}(\mathrm{~L})=\langle\mathrm{L}\rangle: \mathrm{GL}(\mathrm{n}, 2),
$$

we have $S=\langle\mathrm{L}\rangle: \mathrm{T}_{\mathrm{n}}$ where T_{n} is a Sylow 2-subgroup of $\mathrm{GL}(2 \mathrm{n}, 2)$. Furthermore since $|S|=2^{n^{2}}$, we must have

$$
2^{n^{2}}=|\langle\mathrm{L}\rangle| \times\left|T_{n}\right|=\langle\mathrm{L}\rangle \times 2^{n(n-1) / 2}
$$

and hence $|\langle L\rangle|=2^{n^{2}-[n(n-1) / 2]}=2^{n(n+1) / 2}$. Since $\langle L\rangle$ is an elementary abelian 2-group, we have $\operatorname{dim}(\langle\mathrm{L}\rangle)=\mathfrak{n}(n+1) / 2$.

Remark 4 (i) Using [7], it can be shown that $\langle\mathrm{L}\rangle$ consists of the following $2 \mathrm{n} \times 2 \mathrm{n}$ matrices over GF(2)

$$
\left(\begin{array}{c|c}
\mathrm{I}_{\mathrm{n}} & O_{\mathrm{n}} \\
\hline \mathrm{X} & \mathrm{I}_{\mathrm{n}}
\end{array}\right),
$$

where X runs over all $n \times n$ symmetric matrices over GF(2).
(ii) As we have seen in Section 2, $\mathrm{L}=\mathrm{D} \cap \mathrm{S}$. That is L is the set of all transvections in S. Let us denote by T_{u}, for any $0 \neq u \in V$, the corresponding transvection. Then, setting

$$
H=u^{\perp}, V=\langle w\rangle \oplus H, w \notin H,
$$

we have $T_{u}(u)=u$ and $T_{u}(w)=w+u$. For $T_{\mathfrak{u}} \in L=D \cap S$, by part (i) we must have the following matrix form for T_{u}

$$
\left(\begin{array}{c|c}
\mathrm{I}_{\mathrm{n}} & O_{\mathrm{n}} \\
\hline \mathrm{X}_{\mathrm{u}} & \mathrm{I}_{\mathrm{n}}
\end{array}\right),
$$

where X_{u} runs over all $n \times n$ symmetric matrices over $G F(2)$ satisfying $w_{2} X_{u}=u_{1}$ with $u_{2}=0$, where $u=\left(u_{1} \mid u_{2}\right)$ and $w=\left(w_{1} \mid w_{2}\right)$ written as row vectors.

Let $B=\left\{e_{1}, e_{2}, \ldots, e_{n}, f_{1}, f_{2}, \ldots, f_{n}\right\}$ be a symplectic basis for V and let $\mathrm{f}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{GF}(2)$ be a non-singular bilinear form on V such that all elements of B are prependicular to each other except that $f\left(e_{i}, f_{i}\right)=1$ for $\mathfrak{i} \in\{1,2, \ldots, n\}$. Let $W_{n}=\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle$.
Lemma $5 \mathrm{D} \cap \mathrm{S}=\mathrm{L}=\left\{\mathrm{T}_{\mathrm{u}}: u=\left(u_{1} \mid 0\right), 0 \neq u_{1} \in W_{n}\right\}$, and hence $|\mathrm{L}|=2^{\mathrm{n}}-1$.

Proof - Let $0 \neq u=\left(u_{1} \mid \mathfrak{u}_{2}\right) \in \mathrm{V}$ with corresponding transvection $T_{u} \in D$. Then by Remark 4 all the transvections in $D \cap S$ we must have $u_{2}=0$ and the matrix form of T_{u} with respect to B is

$$
\left(\begin{array}{c|c}
\mathrm{I}_{\mathrm{n}} & O_{\mathrm{n}} \\
\hline \mathrm{X}_{\mathrm{u}} & \mathrm{I}_{\mathrm{n}}
\end{array}\right) .
$$

Let $u_{1}=\sum_{i=1}^{n} \lambda_{i} e_{i}, \lambda_{i} \in\{0,1\}$. Then clearly we must have

$$
T_{u}\left(f_{\mathfrak{i}}\right)= \begin{cases}f_{\mathfrak{i}}+u & \text { if } \lambda_{i}=1 \\ f_{\mathfrak{i}} & \text { if } \lambda_{\mathfrak{i}}=0 .\end{cases}
$$

Thus all the transvections in L are of the form T_{u} with $0 \neq \mathfrak{u}=\left(u_{1} \mid 0\right)$, $u_{1} \in W_{n}$. Therefore $|L|=\left|W_{n}\right|-1=2^{n}-1$.
Remark 6 Consider L when $n=3$. Then by Lemma 5 we have $|L|=2^{3}-1=7$. Here we have

$$
B=\left\{e_{1}, e_{2}, e_{3}, f_{1}, f_{2}, f_{3}\right\}, W=\left\langle e_{1}, e_{2}, e_{3}\right\rangle .
$$

Furthermore

$$
\mathrm{L}=\left\{\mathrm{T}_{e_{1}}, \mathrm{~T}_{e_{2}}, \mathrm{~T}_{e_{3}}, \mathrm{~T}_{e_{1}+e_{2}}, \mathrm{~T}_{e_{1}+e_{3}}, \mathrm{~T}_{e_{2}+e_{3}}, \mathrm{~T}_{e_{1}+e_{2}+e_{3}}\right\}
$$

with the following corresponding matrices:

$$
\begin{gathered}
\mathrm{T}_{e_{1}} \sim\left(\begin{array}{ccc|c}
& \mathrm{I}_{3} & 0_{3} \\
\hline 1 & 0 & 0 & \\
0 & 0 & 0 & \mathrm{I}_{3} \\
0 & 0 & 0 &
\end{array}\right), \mathrm{T}_{e_{2}} \sim\left(\begin{array}{ccc|c}
\mathrm{I}_{3} & O_{3} \\
\hline 0 & 0 & 0 & \\
0 & 1 & 0 & \mathrm{I}_{3} \\
0 & 0 & 0 &
\end{array}\right), \\
\mathrm{T}_{e_{3}} \sim\left(\begin{array}{ccc|c}
\mathrm{I}_{3} & O_{3} \\
\hline 0 & 0 & 0 & \\
0 & 0 & 0 & \mathrm{I}_{3} \\
0 & 0 & 1 &
\end{array}\right), \mathrm{T}_{e_{1}+e_{2}} \sim\left(\begin{array}{ccc|c}
\mathrm{I}_{3} & 0_{3} \\
\hline 1 & 1 & 0 & \\
1 & 1 & 0 & \mathrm{I}_{3} \\
0 & 0 & 0 &
\end{array}\right),
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{T}_{e_{1}+e_{3}} \sim\left(\begin{array}{ccc|c}
\mathrm{I}_{3} & 0_{3} \\
\hline 1 & 0 & 1 & \\
0 & 0 & 0 & \mathrm{I}_{3} \\
1 & 0 & 1 &
\end{array}\right), \mathrm{T}_{e_{2}+e_{3}} \sim\left(\begin{array}{ccc|c}
& \mathrm{I}_{3} & 0_{3} \\
0 & 0 & 0 & \\
0 & 1 & 1 & \mathrm{I}_{3} \\
0 & 1 & 1 &
\end{array}\right), \\
\mathrm{T}_{e_{1}+e_{2}+e_{3}} \sim\left(\begin{array}{ccc|c}
\mathrm{I}_{3} & 0_{3} \\
\hline 1 & 1 & 1 & \\
1 & 1 & 1 & \mathrm{I}_{3} \\
1 & 1 & 1 &
\end{array}\right) .
\end{gathered}
$$

Note that, for example,

$$
\begin{gathered}
T_{e_{1}+e_{3}}\left(f_{1}\right)=f_{1}+e_{1}+e_{3}, T_{e_{1}+e_{3}}\left(f_{3}\right)=f_{3}+e_{1}+e_{3}, \\
T_{e_{1}+e_{3}}\left(f_{2}\right)=f_{2},
\end{gathered}
$$

and

$$
\begin{aligned}
& \mathrm{T}_{e_{1}+e_{2}+e_{3}}\left(\mathrm{f}_{1}\right)=\mathrm{f}_{1}+e_{1}+e_{2}+e_{3}, \\
& \mathrm{~T}_{e_{1}+e_{2}+e_{3}}\left(\mathrm{f}_{2}\right)=\mathrm{f}_{2}+e_{1}+e_{2}+e_{3}, \\
& \mathrm{~T}_{e_{1}+e_{2}+e_{3}}\left(\mathrm{f}_{3}\right)=\mathrm{f}_{3}+e_{1}+e_{2}+e_{3} .
\end{aligned}
$$

4 Designs from basic transpositions of $\operatorname{Sp}(2 n, 2)$

Let $\mathrm{G}=\mathrm{Sp}(2 \mathrm{n}, 2)$. As we have seen in previous sections, G is a 3-transposition group with the set D , the conjugacy class consisting of its transvections, as the set of 3-transpositions. Let L be a set of basic transpositions in D. In Section 3 (see Proposition 3 and Lemma 5) we gave a general descriptions of L. In this section we aim to construct $1-(v, k, \lambda)$ designs $\mathcal{D}=(\mathcal{P}, \mathcal{B})$, with $\mathcal{P}=D$ and $\mathcal{B}=\left\{L^{g} \mid g \in G\right\}$. The parameters $k=|\mathrm{L}|, \lambda$ and further properties of \mathcal{D} will be determined. We also, as examples, apply the method to the symplectic simple groups $S p(6,2), S p(8,2)$ and $S p(10,2)$.

Theorem 7 Let $\mathrm{G}=\mathrm{Sp}(2 \mathrm{n}, 2)$ with D as its conjugacy class of transvections and $\mathrm{B}=\mathrm{L}$ a set of basic transpositions in D . Let $\mathcal{B}=\left\{\mathrm{B}^{\mathrm{g}} \mid \mathrm{g} \in \mathrm{G}\right\}$, $\mathcal{P}=\mathrm{D}$. Then we have a $1-\left(2^{2 n}-1,2^{n}-1, \lambda\right)$ design $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ with $\prod_{i=1}^{n}\left(1+2^{i}\right)$ blocks where $\lambda=\prod_{i=1}^{n-1}\left(1+2^{i}\right)$. Furthermore, The
group G acts as an automorphism group of \mathcal{D}, primitive both on points and blocks of \mathcal{D}.

Proof - Note for $d \in D$ we have $|D|=\left[G: C_{G}(d)\right]$. As seen in Section $3, C_{G}(d)$ is the affine subgroup of the form

$$
2^{2 n-1}: S p(2 n-2,2)
$$

and $|D|=2^{2 n}-1$. If k is the size of each block, then since $B=L$, we have $|\mathrm{B}|=\mathrm{k}=|\mathrm{L}|=2^{\mathrm{n}}-1$ by Lemma 5 . Now using Proposition 3, we have

$$
G_{B}=\left\{g \in G: B^{g}=B\right\}=N_{G}(L)=\langle L\rangle: G L(n, 2) \simeq 2^{n(n+1) / 2}: G L(n, 2) .
$$

Hence,

$$
\mathrm{b}=\left[\mathrm{G}: \mathrm{N}_{\mathrm{G}}(\mathrm{~L})\right]=|\operatorname{Sp}(2 \mathrm{n}, 2)| /\left[2^{\mathfrak{n}(n+1) / 2} \times|\mathrm{GL}(n, 2)|\right]=\prod_{i=1}^{n}\left(1+2^{i}\right)
$$

is the number of distinct blocks.
Suppose that there are λ blocks B_{i} containing d. If d^{\prime} is another element of D, then $d^{\prime}=d^{g}$ for some $g \in G$ and hence the λ blocks B_{i}^{g} contain d^{\prime}. Therefore we have a $1-(v, k, \lambda)$ design \mathcal{D} with $v=|\mathrm{D}|$. Since $k b=\lambda v$, we deduce that

$$
\begin{gathered}
\lambda=\mathrm{kb} / v=|\mathrm{L}| \times \mathrm{b} /|\mathrm{D}| \\
=\left(2^{n}-1\right) \times \prod_{i=1}^{n}\left(1+2^{i}\right) /\left(2^{2 n}-1\right) \\
=\prod_{i=1}^{n}\left(1+2^{i}\right) /\left(2^{n}+1\right)=\prod_{i=1}^{n-1}\left(1+2^{i}\right) .
\end{gathered}
$$

The action of G on points arises from the action of G on D. Now $\mathcal{B}=B^{G}$ implies that G is transitive on \mathcal{B} with

$$
\mathrm{G}_{\mathrm{B}}=\left\{\mathrm{g} \in \mathrm{G}: \mathrm{B}^{\mathrm{g}}=\mathrm{B}\right\}
$$

as the stabiliser of the action on blocks. Clearly G acts as an automorphism group on \mathcal{D}, transitive both on points and blocks. Since G acts primitively on D (note $C_{G}(d)$ is maximal in G), G acts primitively on
points of \mathcal{D}. The action of G on \mathcal{B} is equivalent to the action of G on the cosets of $G_{B}=N_{G}(L)$. Since $N_{G}(L)=2^{n(n+1) / 2} \times \operatorname{GL}(n, 2)$ is maximal in G (a maximal parabolic subgroup), the action on blocks is also primitive.

Corollary 8 Let $\mathcal{D}_{2 n}$ and $\mathcal{D}_{2 n-2}$ be designs constructed from basic transpositions of $\operatorname{Sp}(2 n, 2)$ and $\operatorname{Sp}(2 n-2,2)$ respectively. Then
(i) $\mathcal{D}_{2 n}$ is a $1-\left(2^{2 n}-1,2^{n}-1, \lambda_{2 n}\right)$ design with $b_{2 n}$ blocks, where

$$
\lambda_{2 n}=b_{2 n} /\left(2^{n}+1\right),
$$

and
(ii) $b_{2 n}=\left(1+2^{n}\right) \times b_{2 n-2}$ and $\lambda_{2 n}=\left(1+2^{n-1}\right) \times \lambda_{2 n-2}=b_{2 n-2}$.

Proof - (i) By Theorem 7, we have

$$
\lambda_{2 n}=\prod_{i=1}^{n}\left(1+2^{i}\right) /\left(2^{n}+1\right)=b_{2 n} /\left(2^{n}+1\right) .
$$

(ii) We have

$$
b_{2 n}=\prod_{i=1}^{n}\left(1+2^{i}\right)=\left(1+2^{n}\right) \times \prod_{i=1}^{n-1}\left(1+2^{i}\right)=\left(1+2^{n}\right) \times b_{2 n-2} .
$$

Now by part (i) we have $\lambda_{2 n}=b_{2 n} /\left(2^{n}+1\right)$, and hence $\lambda_{2 n}=b_{2 n-2}$. Since

$$
\lambda_{2 n-2}=b_{2 n-2} /\left(2^{n-1}+1\right) \quad \text { and } \quad \lambda_{2 n}=b_{2 n-2},
$$

we have $\lambda_{2 n-2}=\lambda_{2 n} /\left(2^{n-1}+1\right)$, i.e. $\lambda_{2 n}=\lambda_{2 n-2} \times\left(2^{n-1}+1\right)$.
We apply the results obtained in Sections 3 and 4 to $\operatorname{Sp}(6,2), \operatorname{Sp}(8,2)$ and $\operatorname{Sp}(10,2)$. These are summarized in Table 1. Computations with Magma [3] show that $|\operatorname{Aut}(\mathcal{D})|=|G|$, and since $\operatorname{Aut}(\mathcal{D}) \geqslant G$, we must have $\operatorname{Aut}(\mathcal{D})=G$.

Table 1: Results for $\operatorname{Sp}(6,2), \operatorname{Sp}(8,2), S p(10,2)$

G	$\|\mathrm{D}\|$	$\|\mathrm{L}\|$	$\langle\mathrm{L}\rangle$	$\mathrm{N}_{\mathrm{G}}(\mathrm{L})$	$\mathcal{D}_{2 n}$	$\operatorname{Aut}\left(\mathcal{D}_{2 n}\right)$
$\operatorname{Sp}(6,2)$	63	7	2^{6}	$2^{6}: \mathrm{GL}(3,2)$	$1-(63,7,15)$ $\lambda_{6}=15$ $b_{6}=135$	$\operatorname{Sp}(6,2)$
$\operatorname{Sp}(8,2)$	255	15	2^{10}	$2^{10}: G \mathrm{G}(4,2)$	$1-(255,15,135)$ $\lambda_{8}=135$ $b_{8}=2295$	$\operatorname{Sp}(8,2)$
$\operatorname{Sp}(10,2)$	1023	31	2^{15}	$2^{15}: G L(5,2)$	$1-(1023,31,2295)$ $\lambda_{10}=2295$ $b_{10}=75735$	$\operatorname{Sp}(10,2)$

REFERENCES

[1] M. Aschbacher: "3-Transposition Groups", Cambridge University Press, Cambridge (1997).
[2] E.F. Assmus, Jr. - J.D. Key: "Designs and their Codes", Cambridge University Press, Cambridge (1993).
[3] W. Bosma - J. Cannon: "Handbook of Magma Functions", Department of Mathematics, University of Sydney (November, 1994).
[4] J.H. Conway - R.T. Curtis - S.P. Norton - R.A. Parker R.A. Wilson: "An Atlas of Finite Groups", Oxford University Press, Oxford (1985).
[5] D. Crnkovic - V. Mikulic Crnkovic - B. Rodrigues: "Designs, strongly regular graphs and codes from some primitive groups", in: Information Security, Coding Theory and Related Combinatorics - Information Coding and Combinatorics, NATO Advanced Study Institute, Croatia (2011), 231-252.
[6] B. Fischer: "Finite groups generated by 3-transpositions", J. Combin. Theory Ser. A 62 (1993), 225-233.
[7] R. Gow - M. Marjoram - A. Previtali: "On the irreducible characters of a Sylow 2-subgroup of the finite symplectic group in characteristic 2", J. Algebra 241 (2001), 393-409.
[8] W. Haemers - C. Parker - V. Pless - V.D. Tonchev: "A design and a code invariant under the simple group $\mathrm{Co}_{3}{ }^{\prime \prime}$, J. Combin. Theory Ser. A 62 (1993), 225-233.
[9] J.D. Key - J. Moori: "Designs, codes and graphs from the Janko groups J_{1} and $\mathrm{J}_{2} "$, J. Combin. Math. Combin. Comput. 40 (2002), 143-159.
[io] J.D. Key - J. Moori - B.G. Rodrigues: "On some designs and codes from primitive representations of some finite simple groups", J. Combin. Math. Combin. Comput. 45 (2003), 3-19.
[11] T. Le - J. Moori: "On the automorphisms of designs constructed from finite simple groups", Des. Codes Cryptogr. 76 (2015), 505-517.
[12] J. Moori: "Finite groups, designs and codes", in: Information Security, Coding Theory and Related Combinatorics - Information Coding and Combinatorics, NATO Advanced Study Institute, Croatia (2011), 202-230.
[13] J. Moori: "Designs and codes from basic 3-transpositions", to appear.
[14] J. Moori - B. G. Rodrigues, "Some designs and codes invariant under the simple group $\mathrm{Co}_{2}{ }^{\prime \prime}$, J. Algebra 316 (2007), 649-661.
[15] J. Moori - A. Saeidi: "Some designs and codes invariant under the Tits group", Adv. Math. Commun. 11 (2017), 77-82.
[16] J. Moori - A. Saeidi: "Constructing some designs invariant under PSL $_{2}(\mathrm{q})$, q even", Comm. Algebra 46 (2018), 160-166.
[17] Z.E. Mpono: "Fischer-Clifford Theory and Character Tables of Group Extensions", PhD Thesis, University of Natal, Pietermaritzburg (1998).
[18] R.A. Wilson: "The Finite Simple Groups", Springer, London (2009).

[^1]
[^0]: * The author would like to thank the School of Mathematics at the University of Birmingham (UK)

[^1]: Jamshid Moori
 School of Mathematical and Physical Sciences
 North-West University (Mafikeng)
 P Bag X2046, Mmabatho 2735, South Africa
 e-mail: jamshid.moori@nwu.ac.za

