

Advances in Group Theory and Applications © 2021 AGTA - www.advgrouptheory.com/journal 12 (2021), pp. 79–89 ISSN: 2499-1287 DOI: 10.32037/agta-2021-013

Basic 3-Transpositions of the Symplectic Group Sp(2n, 2) *

Jamshid Moori

(Received Nov. 16, 2020; Accepted Feb. 15, 2021 — Communicated by F. de Giovanni)

Abstract

In this paper we aim to study maximal pairwise commuting sets of 3-transpositions (transvections) of the simple symplectic group Sp(2n, 2), and to construct designs from these sets. Any maximal set of pairwise 3-transpositions is called a *basic* set of transpositions. Let G = Sp(2n, 2). It is well-known that G is a 3-transposition group with the set D, the conjugacy class consisting of its transvections, as the set of 3-transpositions of L and $1 - (\nu, k, \lambda)$ designs $\mathcal{D} = (\mathcal{P}, \mathcal{B})$, with $\mathcal{P} = D$ and $\mathcal{B} = \{L^g \mid g \in G\}$. The parameters k = |L|, λ and further properties of \mathcal{D} are determined. We also, as examples, apply the method to the symplectic simple groups Sp(6,2), Sp(8,2) and Sp(10,2).

Mathematics Subject Classification (2020): 20D05, 20D06, 05B05, 20G40

Keywords: design; simple group; symplectic group; 3-transposition group; basic transposition; commuting set; transvection

1 Introduction

Let G be a finite group generated by a class D of involutions such that any pair of non-commuting elements of D generate a dihedral group of order 6. Then D is called a class of conjugate 3-*transpositions* and G

^{*} The author would like to thank the School of Mathematics at the University of Birmingham (UK)

a 3-*transposition* group. Note that if $a, b \in D$ are such that $ab \neq ba$ then o(ab) = 3. Fischer ([6]) in his original studies on these groups considers the maximal commuting sets of 3-transpositions and denotes any such set by L. The set L is defined to be a *basic* set of transpositions. The *width* of G is defined to be the size of L and is denoted by $w_D(G)$. The normalizer $N_G(L)$, that is the stabilizer of L under conjugation, plays an important role in his classification of 3-transposition groups.

Let G = Sp(2n, 2). It is well-known that G is a 3-transposition group, where the set D of 3-transpositions is the conjugacy class of its transvections. In this paper we aim first to study the maximal pairwise commuting sets of 3-transpositions (transvections) of G. Let L be a set of basic transpositions in D. We aim to give general descriptions of L. Secondly we aim to construct $1 - (\nu, k, \lambda)$ designs $\mathcal{D} = (\mathcal{P}, \mathcal{B})$, with $\mathcal{P} = D$ and $\mathcal{B} = \{L^g | g \in G\}$. The parameters $k = |L|, \lambda$ and further properties of \mathcal{D} are determined. We also, as examples, apply the method to the symplectic simple groups Sp(6, 2), Sp(8, 2)and Sp(10, 2).

Recently in [13] we applied our method to the several 3-transposition groups, namely the Symmetric groups S_n and Fischer groups F_i for $i \in \{21, 22, 23, 24\}$. We must also add here that a good number of publications has been devoted to constructing designs and codes from finite simple groups. For example interested readers could be referred to [5],[8],[9],[10],[11],[14],[15] and [16].

2 Background, terminology and basic results

Our notation will be standard, and it is as in [2] and [12] for designs, and ATLAS [4] for groups, finite simple groups and their maximal subgroups. An incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$, with point set \mathcal{P} , block set \mathcal{B} and incidence \mathcal{I} is a t-(ν , k, λ) design, if $|\mathcal{P}| = \nu$, every block $B \in \mathcal{B}$ is incident with precisely k points, and every t distinct points are together incident with precisely λ blocks. The *complement* of \mathcal{D} is the structure $\widetilde{\mathcal{D}} = (\mathcal{P}, \mathcal{B}, \widetilde{\mathcal{I}})$, where $\widetilde{\mathcal{I}} = \mathcal{P} \times \mathcal{B} - \mathcal{I}$. The *dual* structure of \mathcal{D} is $\mathcal{D}^{t} = (\mathcal{B}, \mathcal{P}, \mathcal{I}^{t})$, where $(B, P) \in \mathcal{I}^{t}$ if and only if $(P, B) \in \mathcal{I}$. Thus the transpose of an incidence matrix for \mathcal{D} is an incidence matrix for \mathcal{D}^{t} . We will say that the design is *symmetric* if it has the same number of points and blocks, and *self dual* if it is isomorphic to its dual. The groups G.H, G:H, and G[·]H denote a general extension, a split extension and a non-split extension respectively. For a prime p, p^n denotes the elementary abelian group of order p^n .

Let G be a finite 3-transposition group generated by a class D of conjugate 3-transpositions. Fischer in [6] proved the following main theorem.

Theorem 1 Let G be a finite 3-transposition group such that

- (i) $O_2(G)$ and $O_3(G)$ lie in the centre of G,
- (ii) G' = G''.

Then G/Z(G) is isomorphic to a group in one of the following families:

- (a) S_n , the symmetric groups,
- (b) Sp(2n, 2), the symplectic groups over GF(2),
- (c) $O^{\mu}(2n, 2), \mu \in \{1, -1\}$, the orthogonal groups over GF(2),
- (d) PSU(n, 2), the projective special unitary groups over GF(4),
- (e) $O^{\mu,\pi}(n,3), \mu, \pi \in \{1,-1\}$, the orthogonal groups over GF(3),
- (f) F₂₂, F₂₃ and F₂₄. The first two groups are simple and the third one contains a simple subgroup of index 2.

Let G be one of the groups in the above list, and L be a set of basic transpositions in D. Let S be a Sylow 2-subgroup of G containing L. Then we can easily show that $L = D \cap S$ and that $N_G(L)$ contains $\langle L \rangle$. It is also well-known that $N_G(L)$ contains a Sylow 2-subgroup of G and its action (by conjugation) on L is at least 2-transitive. Furthermore from the Fischer's work we have $C_G(L) = \langle L \rangle$ and that $N_G(L)/C_G(L)$ is

- (i) $S_{|L|}$ or $A_{|L|}$ in cases (a) or (e),
- (ii) GL(n, 2) in the case (b),
- (iii) PSL([n/2], 4) in the case (d),
- (iv) the holomorph of an elementary abelian 2-group of order 2ⁿ in the case (c),
- (v) the Mathieu groups M_{2i} , $i \in \{2, 3, 4\}$, in the case (f).

For $d \in D$ we define $D_d = C_D(d) \setminus \{d\}$ and $A_d = D \setminus C_D(d)$. Then D_d is a conjugacy class of elements of the group generated by D_d . This property allowed Fischer to use induction in order to prove his results on the classification of 3-transposition groups.

Proposition 2 Assume that G is acting primitively by conjugation on D and $w_D(G) \ge 2$, then

- (i) G is rank 3 on D,
- (ii) $C_G(d)$ has three orbits {d}, D_d and A_d on D_r ,
- (iii) $\langle D_d \rangle$ is transitive on D_d ,
- (iv) $\langle C_D(d) \rangle$ is transitive on A_d .

PROOF — See [6] and [1].

3 The symplectic group Sp(2n, 2)

Assume G = Sp(2n, 2), the symplectic group acting on a 2n-dimensional symplectic space V over F = GF(2). Let D be the set of all symplectic transvections of G. There is a one-one correspondence between D and the nonzero elements of V and hence $|D| = 2^{2n} - 1$ with

$$|\mathbf{G}| = 2^{n^2} (2^2 - 1)(2^4 - 1) \dots (2^{2n} - 1).$$

Using the above identification, we can see that for $d \in D$, $C_G(d)$ is the affine subgroup of the form 2^{2n-1} :Sp(2n-2,2), see for example Mpono [17]. Furthermore, G acts primitively on D and $C_G(d)$ has three orbits $\{d\}$, D_d and A_d on D with

 $|D_d| = 2(2^{2n-2}-1), |A_d| = 2^{2n-1},$

and for $x \in A_d$ we have $\{x, d, d^x\}$ as a hyperbolic line (see Aschbacher [1]).

Let L be a set of basic 3-transpositions in D. We know that

$$N_{G}(L) = \langle L \rangle : GL(n, 2),$$

is a maximal parabolic subgroup of G (see for example Wilson [18]). In the following we study the structure of L and deduce that $\dim(\langle L \rangle) = n(n+1)/2$ with $|L| = 2^n - 1$.

Proposition 3 Let L be a set of basic transpositions of G = Sp(2n, 2). If S is a Sylow 2-subgroup of G containing L, then $S = \langle L \rangle$: T_n where T_n is a Sylow 2-subgroup of GL(n, 2). Furthermore, viewing $\langle L \rangle$ as a vector space over GF(2), $dim(\langle L \rangle) = n(n+1)/2$.

PROOF — Since $S \ge \langle L \rangle$, by Section 2 we have that $N_G(L)$ contains S and hence S is a Sylow 2-subgroup of $N_G(L)$. Since

$$N_{G}(L) = \langle L \rangle : GL(n, 2),$$

we have $S = \langle L \rangle$:T_n where T_n is a Sylow 2-subgroup of GL(2n, 2). Furthermore since $|S| = 2^{n^2}$, we must have

$$2^{n^2} = |\langle L \rangle| \times |T_n| = \langle L \rangle \times 2^{n(n-1)/2}$$

and hence $|\langle L \rangle| = 2^{n^2 - [n(n-1)/2]} = 2^{n(n+1)/2}$. Since $\langle L \rangle$ is an elementary abelian 2-group, we have dim $(\langle L \rangle) = n(n+1)/2$. \Box

Remark 4 (i) Using [7], it can be shown that $\langle L \rangle$ consists of the following $2n \times 2n$ matrices over GF(2)

$$\left(\begin{array}{c|c} I_n & \mathfrak{d}_n \\ \hline X & I_n \end{array}\right),$$

where X runs over all $n \times n$ symmetric matrices over GF(2).

(ii) As we have seen in Section 2, $L = D \cap S$. That is L is the set of all transvections in S. Let us denote by T_u , for any $0 \neq u \in V$, the corresponding transvection. Then, setting

$$H = u^{\perp}, V = \langle w \rangle \oplus H, w \notin H,$$

we have $T_u(u) = u$ and $T_u(w) = w + u$. For $T_u \in L = D \cap S$, by part (i) we must have the following matrix form for T_u

$$\left(\begin{array}{c|c} I_n & 0_n \\ \hline X_u & I_n \end{array}\right),$$

where X_u runs over all $n \times n$ symmetric matrices over GF(2) satisfying $w_2X_u = u_1$ with $u_2 = 0$, where $u = (u_1|u_2)$ and $w = (w_1|w_2)$ written as row vectors.

Let $B = \{e_1, e_2, \dots, e_n, f_1, f_2, \dots, f_n\}$ be a symplectic basis for V and let $f : V \times V \rightarrow GF(2)$ be a non-singular bilinear form on V such that all elements of B are prependicular to each other except that $f(e_i, f_i) = 1$ for $i \in \{1, 2, \dots, n\}$. Let $W_n = \langle e_1, e_2, \dots, e_n \rangle$.

Lemma 5 $D \cap S = L = \{T_u : u = (u_1|0), 0 \neq u_1 \in W_n\}$, and hence $|L| = 2^n - 1$.

PROOF — Let $0 \neq u = (u_1|u_2) \in V$ with corresponding transvection $T_u \in D$. Then by Remark 4 all the transvections in $D \cap S$ we must have $u_2 = 0$ and the matrix form of T_u with respect to B is

$$\left(\begin{array}{c|c} I_n & \mathfrak{0}_n \\ \hline X_u & I_n \end{array}\right).$$

Let $u_1 = \sum_{i=1}^n \lambda_i e_i, \lambda_i \in \{0, 1\}$. Then clearly we must have

$$T_{u}(f_{i}) = \begin{cases} f_{i} + u & \text{if } \lambda_{i} = 1 \\ f_{i} & \text{if } \lambda_{i} = 0. \end{cases}$$

Thus all the transvections in L are of the form T_u with $0 \neq u = (u_1|0)$, $u_1 \in W_n$. Therefore $|L| = |W_n| - 1 = 2^n - 1$.

Remark 6 Consider L when n = 3. Then by Lemma 5 we have $|L| = 2^3 - 1 = 7$. Here we have

$$B = \{e_1, e_2, e_3, f_1, f_2, f_3\}, W = \langle e_1, e_2, e_3 \rangle.$$

Furthermore

$$L = \{T_{e_1}, T_{e_2}, T_{e_3}, T_{e_1+e_2}, T_{e_1+e_3}, T_{e_2+e_3}, T_{e_1+e_2+e_3}\}$$

with the following corresponding matrices:

$$T_{e_{1}} \sim \begin{pmatrix} I_{3} & 0_{3} \\ \hline 1 & 0 & 0 \\ 0 & 0 & 0 & I_{3} \\ \hline 0 & 0 & 0 & I_{3} \end{pmatrix}, T_{e_{2}} \sim \begin{pmatrix} I_{3} & 0_{3} \\ \hline 0 & 0 & 0 & I_{3} \\ \hline 0 & 0 & 0 & I_{3} \\ \hline 0 & 0 & 0 & I_{3} \\ \hline 0 & 0 & 0 & I_{3} \\ \hline 0 & 0 & 0 & I_{3} \\ \hline 0 & 0 & 0 & I_{3} \end{pmatrix}, T_{e_{1}+e_{2}} \sim \begin{pmatrix} I_{3} & 0_{3} \\ \hline 1 & 1 & 0 & I_{3} \\ \hline 0 & 0 & 0 & I_{3} \\ \hline 0 & 0 & 0 & I_{3} \end{pmatrix},$$

$$T_{e_{1}+e_{3}} \sim \begin{pmatrix} I_{3} & 0_{3} \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{pmatrix}, T_{e_{2}+e_{3}} \sim \begin{pmatrix} I_{3} & 0_{3} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ \end{pmatrix},$$
$$T_{e_{1}+e_{2}+e_{3}} \sim \begin{pmatrix} I_{3} & 0_{3} \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{pmatrix}.$$

Note that, for example,

$$T_{e_1+e_3}(f_1) = f_1 + e_1 + e_3$$
, $T_{e_1+e_3}(f_3) = f_3 + e_1 + e_3$,
 $T_{e_1+e_3}(f_2) = f_2$,

and

$$T_{e_1+e_2+e_3}(f_1) = f_1 + e_1 + e_2 + e_3,$$

$$T_{e_1+e_2+e_3}(f_2) = f_2 + e_1 + e_2 + e_3,$$

$$T_{e_1+e_2+e_3}(f_3) = f_3 + e_1 + e_2 + e_3.$$

4 Designs from basic transpositions of Sp(2n, 2)

Let G = Sp(2n, 2). As we have seen in previous sections, G is a 3-transposition group with the set D, the conjugacy class consisting of its transvections, as the set of 3-transpositions. Let L be a set of basic transpositions in D. In Section 3 (see Proposition 3 and Lemma 5) we gave a general descriptions of L. In this section we aim to construct $1 - (v, k, \lambda)$ designs $\mathcal{D} = (\mathcal{P}, \mathcal{B})$, with $\mathcal{P} = D$ and $\mathcal{B} = \{L^g | g \in G\}$. The parameters $k = |L|, \lambda$ and further properties of \mathcal{D} will be determined. We also, as examples, apply the method to the symplectic simple groups Sp(6, 2), Sp(8, 2) and Sp(10, 2).

Theorem 7 Let G = Sp(2n, 2) with D as its conjugacy class of transvections and B = L a set of basic transpositions in D. Let $\mathcal{B} = \{B^g | g \in G\}$, $\mathcal{P} = D$. Then we have a $1 - (2^{2n} - 1, 2^n - 1, \lambda)$ design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ with $\prod_{i=1}^{n} (1+2^i)$ blocks where $\lambda = \prod_{i=1}^{n-1} (1+2^i)$. Furthermore, The group G acts as an automorphism group of D, primitive both on points and blocks of D.

PROOF — Note for $d \in D$ we have $|D| = [G : C_G(d)]$. As seen in Section 3, $C_G(d)$ is the affine subgroup of the form

$$2^{2n-1}$$
:Sp $(2n-2,2)$

and $|D| = 2^{2n} - 1$. If k is the size of each block, then since B = L, we have $|B| = k = |L| = 2^n - 1$ by Lemma 5. Now using Proposition 3, we have

$$G_B = \{g \in G : B^g = B\} = N_G(L) = \langle L \rangle : GL(n, 2) \simeq 2^{n(n+1)/2} : GL(n, 2).$$

Hence,

$$b = [G: N_G(L)] = |Sp(2n,2)| / [2^{n(n+1)/2} \times |GL(n,2)|] = \prod_{i=1}^{n} (1+2^i)$$

is the number of distinct blocks.

Suppose that there are λ blocks B_i containing d. If d' is another element of D, then d' = d^g for some $g \in G$ and hence the λ blocks B_i^g contain d'. Therefore we have a $1 - (\nu, k, \lambda)$ design \mathcal{D} with $\nu = |D|$. Since $kb = \lambda \nu$, we deduce that

$$\lambda = kb/\nu = |L| \times b/|D|$$

= $(2^n - 1) \times \prod_{i=1}^n (1 + 2^i)/(2^{2n} - 1)$
= $\prod_{i=1}^n (1 + 2^i)/(2^n + 1) = \prod_{i=1}^{n-1} (1 + 2^i)$

The action of G on points arises from the action of G on D. Now $\mathcal{B} = B^{G}$ implies that G is transitive on \mathcal{B} with

$$G_{B} = \{g \in G : B^{g} = B\}$$

as the stabiliser of the action on blocks. Clearly G acts as an automorphism group on \mathcal{D} , transitive both on points and blocks. Since G acts primitively on D (note $C_G(d)$ is maximal in G), G acts primitively on

points of \mathcal{D} . The action of G on \mathcal{B} is equivalent to the action of G on the cosets of $G_B = N_G(L)$. Since $N_G(L) = 2^{n(n+1)/2} \times GL(n,2)$ is maximal in G (a maximal parabolic subgroup), the action on blocks is also primitive.

Corollary 8 Let D_{2n} and D_{2n-2} be designs constructed from basic transpositions of Sp(2n, 2) and Sp(2n - 2, 2) respectively. Then

(i) \mathcal{D}_{2n} is a $1 - (2^{2n} - 1, 2^n - 1, \lambda_{2n})$ design with b_{2n} blocks, where

$$\lambda_{2n}=\mathfrak{b}_{2n}/(2^n+1)$$

and

(ii)
$$b_{2n} = (1+2^n) \times b_{2n-2}$$
 and $\lambda_{2n} = (1+2^{n-1}) \times \lambda_{2n-2} = b_{2n-2}$.

PROOF — (i) By Theorem 7, we have

$$\lambda_{2n} = \prod_{i=1}^{n} (1+2^i)/(2^n+1) = b_{2n}/(2^n+1).$$

(ii) We have

$$b_{2n} = \prod_{i=1}^{n} (1+2^i) = (1+2^n) \times \prod_{i=1}^{n-1} (1+2^i) = (1+2^n) \times b_{2n-2}.$$

Now by part (i) we have $\lambda_{2n}=b_{2n}/(2^n+1),$ and hence $\lambda_{2n}=b_{2n-2}.$ Since

$$\lambda_{2n-2} = b_{2n-2}/(2^{n-1}+1)$$
 and $\lambda_{2n} = b_{2n-2}$,

we have $\lambda_{2n-2} = \lambda_{2n}/(2^{n-1}+1)$, i.e. $\lambda_{2n} = \lambda_{2n-2} \times (2^{n-1}+1)$. \Box

We apply the results obtained in Sections 3 and 4 to Sp(6,2), Sp(8,2) and Sp(10,2). These are summarized in Table 1. Computations with Magma [3] show that $|Aut(\mathcal{D})| = |G|$, and since $Aut(\mathcal{D}) \ge G$, we must have $Aut(\mathcal{D}) = G$.

G	D	L	$\langle L \rangle$	$N_{G}(L)$	D _{2n}	$Aut(\mathcal{D}_{2n})$
Sp(6,2)	63	7	26	2 ⁶ :GL(3,2)	$1 - (63, 7, 15) \\ \lambda_6 = 15 \\ b_6 = 135$	Sp(6,2)
Sp(8,2)	255	15	2 ¹⁰	2 ¹⁰ :GL(4,2)	$1 - (255, 15, 135) \\ \lambda_8 = 135 \\ b_8 = 2295$	Sp(8,2)
Sp(10,2)	1023	31	2 ¹⁵	2 ¹⁵ :GL(5,2)	$1 - (1023, 31, 2295) \\ \lambda_{10} = 2295 \\ b_{10} = 75735$	Sp(10,2)

Table 1: Results for Sp(6, 2), Sp(8, 2), Sp(10, 2)

REFERENCES

- M. ASCHBACHER: "3-Transposition Groups", Cambridge University Press, Cambridge (1997).
- [2] E.F. ASSMUS, JR. J.D. KEY: "Designs and their Codes", Cambridge University Press, Cambridge (1993).
- [3] W. BOSMA J. CANNON: "Handbook of Magma Functions", *Department of Mathematics, University of Sydney* (November, 1994).
- [4] J.H. CONWAY R.T. CURTIS S.P. NORTON R.A. PARKER R.A. WILSON: "An Atlas of Finite Groups", Oxford University Press, Oxford (1985).
- [5] D. CRNKOVIC V. MIKULIC CRNKOVIC B. RODRIGUES: "Designs, strongly regular graphs and codes from some primitive groups", in: Information Security, Coding Theory and Related Combinatorics – Information Coding and Combinatorics, NATO Advanced Study Institute, Croatia (2011), 231–252.
- [6] B. FISCHER: "Finite groups generated by 3-transpositions", J. Combin. Theory Ser. A 62 (1993), 225–233.
- [7] R. Gow M. MARJORAM A. PREVITALI: "On the irreducible characters of a Sylow 2-subgroup of the finite symplectic group in characteristic 2", J. Algebra 241 (2001), 393–409.

- [8] W. HAEMERS C. PARKER V. PLESS V.D. TONCHEV: "A design and a code invariant under the simple group Co₃", J. Combin. Theory Ser. A 62 (1993), 225–233.
- [9] J.D. KEY J. MOORI: "Designs, codes and graphs from the Janko groups J₁ and J₂", *J. Combin. Math. Combin. Comput.* 40 (2002), 143–159.
- [10] J.D. KEY J. MOORI B.G. RODRIGUES: "On some designs and codes from primitive representations of some finite simple groups", J. Combin. Math. Combin. Comput. 45 (2003), 3–19.
- [11] T. LE J. MOORI: "On the automorphisms of designs constructed from finite simple groups", Des. Codes Cryptogr. 76 (2015), 505–517.
- [12] J. MOORI: "Finite groups, designs and codes", in: Information Security, Coding Theory and Related Combinatorics – Information Coding and Combinatorics, NATO Advanced Study Institute, Croatia (2011), 202–230.
- [13] J. MOORI: "Designs and codes from basic 3-transpositions", to appear.
- [14] J. MOORI B. G. RODRIGUES, "Some designs and codes invariant under the simple group Co₂", *J. Algebra* 316 (2007), 649–661.
- [15] J. MOORI A. SAEIDI: "Some designs and codes invariant under the Tits group", Adv. Math. Commun. 11 (2017), 77–82.
- [16] J. MOORI A. SAEIDI: "Constructing some designs invariant under PSL₂(q), q even", Comm. Algebra 46 (2018), 160–166.
- [17] Z.E. MPONO: "Fischer-Clifford Theory and Character Tables of Group Extensions", *PhD Thesis*, University of Natal, Pietermaritzburg (1998).
- [18] R.A. WILSON: "The Finite Simple Groups", Springer, London (2009).

Jamshid Moori

School of Mathematical and Physical Sciences

North-West University (Mafikeng)

P Bag X2046, Mmabatho 2735, South Africa

e-mail: jamshid.moori@nwu.ac.za