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Abstract
In this paper we aim to study maximal pairwise commuting sets of 3-transpositions
(transvections) of the simple symplectic group Sp(2n, 2), and to construct designs
from these sets. Any maximal set of pairwise 3-transpositions is called a basic set
of transpositions. Let G = Sp(2n, 2). It is well-known that G is a 3-transposition
group with the set D, the conjugacy class consisting of its transvections, as the set
of 3-transpositions. Let L be a set of basic transpositions in D. We aim to give general
descriptions of L and 1- (v, k, �) designs D = (P,B), with P = D and B = {Lg |g 2 G}.
The parameters k = |L|, � and further properties of D are determined. We also,
as examples, apply the method to the symplectic simple groups Sp(6, 2), Sp(8, 2)
and Sp(10, 2).

Mathematics Subject Classification (2020): 20D05, 20D06, 05B05, 20G40
Keywords: design; simple group; symplectic group; 3-transposition group;

basic transposition; commuting set; transvection

1 Introduction

Let G be a finite group generated by a class D of involutions such that
any pair of non-commuting elements of D generate a dihedral group
of order 6. Then D is called a class of conjugate 3-transpositions and G
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a 3-transposition group. Note that if a,b 2 D are such that ab 6= ba
then o(ab) = 3. Fischer ([6]) in his original studies on these groups
considers the maximal commuting sets of 3-transpositions and de-
notes any such set by L. The set L is defined to be a basic set of trans-
positions. The width of G is defined to be the size of L and is denoted
by wD(G). The normalizer NG(L), that is the stabilizer of L under
conjugation, plays an important role in his classification of 3-trans-
position groups.

Let G = Sp(2n, 2). It is well-known that G is a 3-transposition
group, where the set D of 3-transpositions is the conjugacy class of
its transvections. In this paper we aim first to study the maximal pair-
wise commuting sets of 3-transpositions (transvections) of G. Let L be
a set of basic transpositions in D. We aim to give general descriptions
of L. Secondly we aim to construct 1 - (v, k, �) designs D = (P,B),
with P = D and B = {Lg |g 2 G}. The parameters k = |L|, � and
further properties of D are determined. We also, as examples, ap-
ply the method to the symplectic simple groups Sp(6, 2), Sp(8, 2)
and Sp(10, 2).

Recently in [13] we applied our method to the several 3-transposi-
tion groups, namely the Symmetric groups Sn and Fischer groups Fi
for i 2 {21, 22, 23, 24}. We must also add here that a good number
of publications has been devoted to constructing designs and codes
from finite simple groups. For example interested readers could be
referred to [5],[8],[9],[10],[11],[14],[15] and [16].

2 Background, terminology and basic results

Our notation will be standard, and it is as in [2] and [12] for designs,
and ATLAS [4] for groups, finite simple groups and their maximal
subgroups. An incidence structure D = (P,B, I), with point set P,
block set B and incidence I is a t-(v, k, �) design, if |P| = v, every
block B 2 B is incident with precisely k points, and every t distinct
points are together incident with precisely � blocks. The complement
of D is the structure eD = (P,B,eI), where eI = P⇥B- I. The dual struc-
ture of D is D

t = (B,P, It), where (B,P) 2 I
t if and only if (P,B) 2 I.

Thus the transpose of an incidence matrix for D is an incidence ma-
trix for Dt. We will say that the design is symmetric if it has the same
number of points and blocks, and self dual if it is isomorphic to its
dual.
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The groups G.H, G:H, and G·H denote a general extension, a split
extension and a non-split extension respectively. For a prime p, pn
denotes the elementary abelian group of order pn.

Let G be a finite 3-transposition group generated by a class D of
conjugate 3-transpositions. Fischer in [6] proved the following main
theorem.

Theorem 1 Let G be a finite 3-transposition group such that

(i) O2(G) and O3(G) lie in the centre of G,

(ii) G 0 = G 00.

Then G/Z(G) is isomorphic to a group in one of the following families:

(a) Sn, the symmetric groups,

(b) Sp(2n, 2), the symplectic groups over GF(2),

(c) Oµ(2n, 2),µ 2 {1,-1}, the orthogonal groups over GF(2),

(d) PSU(n, 2), the projective special unitary groups over GF(4),

(e) Oµ,⇡(n, 3),µ,⇡ 2 {1,-1}, the orthogonal groups over GF(3),

(f) F22, F23 and F24. The first two groups are simple and the third one
contains a simple subgroup of index 2.

Let G be one of the groups in the above list, and L be a set of
basic transpositions in D. Let S be a Sylow 2-subgroup of G con-
taining L. Then we can easily show that L = D \ S and that NG(L)
contains hLi. It is also well-known that NG(L) contains a Sylow 2-sub-
group of G and its action (by conjugation) on L is at least 2-transitive.
Furthermore from the Fischer’s work we have CG(L) = hLi and
that NG(L)/CG(L) is

(i) S|L| or A|L| in cases (a) or (e),

(ii) GL(n, 2) in the case (b),

(iii) PSL([n/2], 4) in the case (d),

(iv) the holomorph of an elementary abelian 2-group of order 2n in
the case (c),

(v) the Mathieu groups M2i, i 2 {2, 3, 4}, in the case (f).
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For d 2 D we define Dd = CD(d) \ {d} and Ad = D \ CD(d).
Then Dd is a conjugacy class of elements of the group generated
by Dd. This property allowed Fischer to use induction in order to
prove his results on the classification of 3-transposition groups.

Proposition 2 Assume that G is acting primitively by conjugation on D
and wD(G) > 2, then

(i) G is rank 3 on D,

(ii) CG(d) has three orbits {d},Dd and Ad on D,

(iii) hDdi is transitive on Dd,

(iv) hCD(d)i is transitive on Ad.

Proof — See [6] and [1]. ut

3 The symplectic group Sp(2n, 2)

Assume G = Sp(2n, 2), the symplectic group acting on a 2n-dimen-
sional symplectic space V over F = GF(2). Let D be the set of all
symplectic transvections of G. There is a one-one correspondence
between D and the nonzero elements of V and hence |D| = 22n - 1
with

|G| = 2n
2

(22 - 1)(24 - 1) . . . (22n - 1).

Using the above identification, we can see that for d 2 D, CG(d)
is the affine subgroup of the form 22n-1:Sp(2n- 2, 2), see for exam-
ple Mpono [17]. Furthermore, G acts primitively on D and CG(d) has
three orbits {d}, Dd and Ad on D with

|Dd| = 2(22n-2 - 1), |Ad| = 22n-1,

and for x 2 Ad we have {x,d,dx
} as a hyperbolic line (see Aschba-

cher [1]).
Let L be a set of basic 3-transpositions in D. We know that

NG(L) = hLi:GL(n, 2),

is a maximal parabolic subgroup of G (see for example Wilson [18]).
In the following we study the structure of L and deduce
that dim(hLi) = n(n+ 1)/2 with |L| = 2n - 1.
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Proposition 3 Let L be a set of basic transpositions of G = Sp(2n, 2).
If S is a Sylow 2-subgroup of G containing L, then S = hLi:Tn where Tn
is a Sylow 2-subgroup of GL(n, 2). Furthermore, viewing hLi as a vector
space over GF(2), dim(hLi) = n(n+ 1)/2.

Proof — Since S > hLi, by Section 2 we have that NG(L) contains S
and hence S is a Sylow 2-subgroup of NG(L). Since

NG(L) = hLi:GL(n, 2),

we have S = hLi:Tn where Tn is a Sylow 2-subgroup of GL(2n, 2).
Furthermore since |S| = 2n

2 , we must have

2n
2

= |hLi|⇥ |Tn| = hLi ⇥ 2n(n-1)/2

and hence |hLi| = 2n
2-[n(n-1)/2] = 2n(n+1)/2. Since hLi is an ele-

mentary abelian 2-group, we have dim(hLi) = n(n+ 1)/2. ut

Remark 4 (i) Using [7], it can be shown that hLi consists of the
following 2n⇥ 2n matrices over GF(2)

✓
In 0n
X In

◆
,

where X runs over all n⇥n symmetric matrices over GF(2).

(ii) As we have seen in Section 2, L = D \ S. That is L is the set of
all transvections in S. Let us denote by Tu, for any 0 6= u 2 V ,
the corresponding transvection. Then, setting

H = u?, V = hwi �H, w 62 H,

we have Tu(u) = u and Tu(w) = w+ u. For Tu 2 L = D \ S, by
part (i) we must have the following matrix form for Tu

✓
In 0n
Xu In

◆
,

where Xu runs over all n⇥n symmetric matrices over GF(2) sat-
isfying w2Xu = u1 with u2 = 0, where u = (u1|u2)
and w = (w1|w2) written as row vectors.
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Let B = {e1, e2, . . . , en, f1, f2, . . . , fn} be a symplectic basis for V
and let f : V ⇥ V ! GF(2) be a non-singular bilinear form on V
such that all elements of B are prependicular to each other except
that f(ei, fi) = 1 for i 2 {1, 2, . . . ,n}. Let Wn = he1, e2, . . . , eni.

Lemma 5 D \ S = L = {Tu : u = (u1|0), 0 6= u1 2 Wn}, and
hence |L| = 2n - 1.

Proof — Let 0 6= u = (u1|u2) 2 V with corresponding transvec-
tion Tu 2 D. Then by Remark 4 all the transvections in D\S we must
have u2 = 0 and the matrix form of Tu with respect to B is

✓
In 0n
Xu In

◆
.

Let u1 =
P

n

i=1
�iei, �i 2 {0, 1}. Then clearly we must have

Tu(fi) =

�
fi + u if �i = 1
fi if �i = 0.

Thus all the transvections in L are of the form Tu with 0 6=u=(u1|0),
u1 2 Wn. Therefore |L| = |Wn|- 1 = 2n - 1. ut

Remark 6 Consider L when n = 3. Then by Lemma 5 we have
|L| = 23 - 1 = 7. Here we have

B = {e1, e2, e3, f1, f2, f3},W = he1, e2, e3i.

Furthermore

L = {Te1
, Te2

, Te3
, Te1+e2

, Te1+e3
, Te2+e3

, Te1+e2+e3
}

with the following corresponding matrices:

Te1
⇠

0

BB@

I3 03
1 0 0
0 0 0
0 0 0

I3

1

CCA , Te2
⇠

0

BB@

I3 03
0 0 0
0 1 0
0 0 0

I3

1

CCA ,

Te3
⇠

0

BB@

I3 03
0 0 0
0 0 0
0 0 1

I3

1

CCA , Te1+e2
⇠

0

BB@

I3 03
1 1 0
1 1 0
0 0 0

I3

1

CCA ,
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Te1+e3
⇠

0

BB@

I3 03
1 0 1
0 0 0
1 0 1

I3

1

CCA , Te2+e3
⇠

0

BB@

I3 03
0 0 0
0 1 1
0 1 1

I3

1

CCA ,

Te1+e2+e3
⇠

0

BB@

I3 03
1 1 1
1 1 1
1 1 1

I3

1

CCA .

Note that, for example,

Te1+e3
(f1) = f1 + e1 + e3, Te1+e3

(f3) = f3 + e1 + e3,

Te1+e3
(f2) = f2,

and
Te1+e2+e3

(f1) = f1 + e1 + e2 + e3,

Te1+e2+e3
(f2) = f2 + e1 + e2 + e3,

Te1+e2+e3
(f3) = f3 + e1 + e2 + e3.

4 Designs from basic transpositions of Sp(2n, 2)

Let G = Sp(2n, 2). As we have seen in previous sections, G is a 3-trans-
position group with the set D, the conjugacy class consisting of its
transvections, as the set of 3-transpositions. Let L be a set of basic
transpositions in D. In Section 3 (see Proposition 3 and Lemma 5)
we gave a general descriptions of L. In this section we aim to con-
struct 1- (v, k, �) designs D = (P,B), with P = D and B = {Lg |g 2 G}.
The parameters k = |L|, � and further properties of D will be deter-
mined. We also, as examples, apply the method to the symplectic
simple groups Sp(6, 2), Sp(8, 2) and Sp(10, 2).

Theorem 7 Let G = Sp(2n, 2) with D as its conjugacy class of transvec-
tions and B = L a set of basic transpositions in D. Let B = {Bg

|g 2 G},
P = D. Then we have a 1 - (22n - 1, 2n - 1, �) design D = (P,B)

with
Q

n

i=1
(1 + 2i) blocks where � =

Q
n-1

i=1
(1 + 2i). Furthermore, The
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group G acts as an automorphism group of D, primitive both on points and
blocks of D.

Proof — Note for d 2 D we have |D| = [G : CG(d)]. As seen in Sec-
tion 3, CG(d) is the affine subgroup of the form

22n-1:Sp(2n- 2, 2)

and |D| = 22n - 1. If k is the size of each block, then since B = L, we
have |B| = k = |L| = 2n - 1 by Lemma 5. Now using Proposition 3,
we have

GB= {g 2 G : Bg = B} = NG(L) = hLi:GL(n, 2) ' 2n(n+1)/2:GL(n, 2).

Hence,

b = [G : NG(L)] = |Sp(2n, 2)|/
⇥
2n(n+1)/2 ⇥ |GL(n, 2)|

⇤
=

nY

i=1

(1+ 2i)

is the number of distinct blocks.
Suppose that there are � blocks Bi containing d. If d0 is another

element of D, then d0 = dg for some g 2 G and hence the � blocks Bg

i

contain d0. Therefore we have a 1 - (v, k, �) design D with v = |D|.
Since kb = �v, we deduce that

� = kb/v = |L|⇥ b/|D|

= (2n - 1)⇥
nY

i=1

(1+ 2i)/(22n - 1)

=
nY

i=1

(1+ 2i)/(2n + 1) =
n-1Y

i=1

(1+ 2i).

The action of G on points arises from the action of G on D.
Now B = BG implies that G is transitive on B with

GB = {g 2 G : Bg = B}

as the stabiliser of the action on blocks. Clearly G acts as an automor-
phism group on D, transitive both on points and blocks. Since G acts
primitively on D (note CG(d) is maximal in G), G acts primitively on
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points of D. The action of G on B is equivalent to the action of G

on the cosets of GB = NG(L). Since NG(L) = 2n(n+1)/2 ⇥GL(n, 2) is
maximal in G (a maximal parabolic subgroup), the action on blocks
is also primitive. ut

Corollary 8 Let D2n and D2n-2 be designs constructed from basic trans-
positions of Sp(2n, 2) and Sp(2n- 2, 2) respectively. Then

(i) D2n is a 1- (22n - 1, 2n - 1, �2n) design with b2n blocks, where

�2n = b2n/(2
n + 1),

and

(ii) b2n = (1+ 2n)⇥b2n-2 and �2n = (1+ 2n-1)⇥ �2n-2 = b2n-2.

Proof — (i) By Theorem 7, we have

�2n =
nY

i=1

(1+ 2i)/(2n + 1) = b2n/(2
n + 1).

(ii) We have

b2n =
nY

i=1

(1+ 2i) = (1+ 2n)⇥
n-1Y

i=1

(1+ 2i) = (1+ 2n)⇥ b2n-2.

Now by part (i) we have �2n = b2n/(2
n + 1), and hence

�2n = b2n-2. Since

�2n-2 = b2n-2/(2
n-1 + 1) and �2n = b2n-2,

we have �2n-2 = �2n/(2
n-1 + 1), i.e. �2n = �2n-2 ⇥ (2n-1 + 1). ut

We apply the results obtained in Sections 3 and 4 to Sp(6, 2), Sp(8, 2)
and Sp(10, 2). These are summarized in Table 1. Computations
with Magma [3] show that |Aut(D)| = |G|, and since Aut(D) > G,
we must have Aut(D) = G.
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Table 1: Results for Sp(6, 2), Sp(8, 2), Sp(10, 2)
G |D| |L| hLi NG(L) D2n Aut(D2n)

Sp(6,2) 63 7 2
6

2
6:GL(3,2) 1- (63,7,15) Sp(6,2)

�6 = 15

b6 = 135

Sp(8,2) 255 15 2
10

2
10:GL(4,2) 1- (255,15,135) Sp(8,2)

�8 = 135

b8 = 2295

Sp(10,2) 1023 31 2
15

2
15:GL(5,2) 1- (1023,31,2295) Sp(10,2)

�10 = 2295

b10 = 75735
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