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Abstract
Let G be a group and H1, . . . ,Hs be subgroups of G of indices d1, . . . ,ds respectively.
In 1974, M. Herzog and J. Schönheim conjectured that if {Hi↵i}

i=s

i=1
, ↵i 2 G, is a coset

partition of G, then d1, . . . ,ds cannot be distinct. We consider the Herzog-Schönheim
conjecture for free groups of finite rank and propose a new approach, based on an
extension of the Mirsky-Newman, Davenport-Rado result for G = Z.
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1 Introduction

Let G be a group, s > 1 a natural number, and H1, . . . ,Hs be sub-
groups of G. If there exist ↵i 2 G such that G =

S
i=s

i=1
Hi↵i, and

the sets Hi↵i, 1 6 i 6 s, are pairwise disjoint, then {Hi↵i}
i=s

i=1
is

a coset partition of G (or a disjoint cover of G). In this case, all the
subgroups H1, . . . ,Hs can be assumed to be of finite index in G
(see [28, 29, 25]). We denote by d1, . . . ,ds the indices of H1, . . . ,Hs

respectively. The coset partition {Hi↵i}
i=s

i=1
has multiplicity if di = dj

for some i 6= j.
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In 1974, M. Herzog and J. Schönheim conjectured that any coset
partition of any group G has multiplicity. In the 1980’s, in a series
of papers, M.A. Berger, A. Felzenbaum and A.S. Fraenkel studied
the Herzog-Schönheim conjecture (see [2, 3, 4]) and in [5] they proved
the conjecture is true for the pyramidal groups, a subclass of the
finite solvable groups. Coset partitions of finite groups with addi-
tional assumptions on the subgroups of the partition have been ex-
tensively studied. We refer to [7, 44, 45, 43]. In [27], the authors very
recently proved that the conjecture is true for all groups of order less
than 1440.

The common approach to the Herzog-Schönheim (HS) conjecture
is to study it in finite groups. Indeed, given any group G, every coset
partition of G induces a coset partition of a finite quotient group
of G with the same indices (see [25]). In [8], we initiated a completely
different approach to the Herzog-Schönheim conjecture. The idea is
to study it in free groups of finite rank and from there to provide
answers for every group. This is possible since any finite or finitely
generated group is a quotient group of a free group of finite rank
and any coset partition of a quotient group F/N induces a coset par-
tition of F with the same indices (see [8]). In [8], we consider free
groups of finite rank and develop a new combinatorial approach to
the problem, based on the machinery of covering spaces. The funda-
mental group of the bouquet with n > 1 leaves (or the wedge sum
of n circles), X, is Fn, the free group of finite rank n. As X is a “good”
space (connected, locally path connected and semilocally 1-connec-
ted), X has a universal covering which can be identified with the Cay-
ley graph of Fn, an infinite simplicial tree. Furthermore, there exists
a one-to-one correspondence between the subgroups of Fn and the
covering spaces (together with a chosen point) of X.

For any subgroup H of Fn of finite index d, there exists a d-sheeted
covering space (eXH,p) with a fixed basepoint. The underlying graph
of (eXH,p) is a directed labelled graph with d vertices. We call it
the Schreier graph of H and denote it by eXH. It can be seen also as
a finite complete bi-deterministic automaton; fixing the start and the
end state at the basepoint, it recognises the set of elements in H.
It is called the Schreier coset diagram for Fn relative to the sub-
group H (see [40, p.107]) or the Schreier automaton for Fn relative to
the subgroup H (see [38, p.102]). The d vertices (or states) correspond
to the d right cosets of H, each edge (or transition) Ht

a�! Hta, t 2 Fn,
a a generator of Fn, describes the right action of a on Ht. If we fix the
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start state at H, the basepoint, and the end state at another vertex Ht,
where t denotes the label of some path from the start state to the end
state, then this automaton recognises the set of elements in Ht and
we call it the Schreier automaton of Ht and denote it by eXHt.

In general, for any automaton M, with alphabet ⌃, and d states,
there exists a square matrix A of order d⇥ d, with aij equal to the
number of directed edges from vertex i to vertex j, 1 6 i, j 6 d. This
matrix is non-negative and it is called the transition matrix [13]. If for
every 1 6 i, j 6 d, there exists m 2 Z+ such that (Am)ij > 0, the ma-
trix is irreducible. For an irreducible non-negative matrix A, the period
of A is the gcd of all m 2 Z+ such that (Am)ii > 0 (for any i). If i and j
denote respectively the start and end states of M, then the number of
words of length k (in the alphabet ⌃) accepted by M is ak = (Ak)ij.
The generating function of M is defined by p(z) =

P
k=1
k=0

ak zk. It is a
rational function: the fraction of two polynomials in z with integer
coefficients (see [13] and [39, p.575]).

The intuitive idea behind our approach in this paper is as follows.
Let Fn = h⌃i, and ⌃⇤ the free monoid generated by ⌃. Let {Hi↵i}

i=s

i=1

be a coset partition of Fn with Hi < Fn of index di > 1, ↵i 2 Fn,
1 6 i 6 s. Let eXi denote the Schreier automaton of Hi↵i, with transi-
tion matrix Ai and generating function pi(z), 1 6 i 6 s. For
each eXi, Ai is a non-negative irreducible matrix and ai,k, k > 0,
counts the number of words of length k that belong to Hi↵i \ ⌃⇤.
Since Fn is the disjoint union of the sets {Hi↵i}

i=s

i=1
, each element

in ⌃⇤ belongs to one and exactly one such set, so nk, the number of
words of length k in ⌃⇤, satisfies nk =

P
i=s

i=1
ai,k, for every k > 0. So,

k=1X

k=0

nk zk =
i=sX

i=1

pi(z).

Using this kind of counting argument, we prove that there is a repe-
tition of the maximal period h > 1 and in some cases we could prove
there is a repetition of the index also.

Theorem 1 Let Fn be the free group on n>1 generators. Let {Hi↵i}
i=s

i=1
,

s > 1, be a coset partition of Fn with Hi < Fn of index di, ↵i 2 Fn,
1 6 i 6 s, and 1 < d1 6 . . . 6 ds. Let eXi denote the Schreier graph
of Hi, with transition matrix Ai, and period hi > 1, 1 6 i 6 s. Then,
for every 1 6 i 6 s, there exists j 6= i such that hi | hj. In particular, any
period hi which does not properly divide any other period has multiplicity
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at least two.

If n = 1 in Theorem 1, {Hi↵i}
i=s

i=1
is a coset partition of Z. A

coset partition of Z is {diZ + ri}
i=s

i=1
, ri 2 Z, with each diZ + ri the

residue class of ri modulo di. These coset partitions of Z were first
introduced by P. Erdős [14] and he conjectured that if {diZ + ri}

i=s

i=1
,

ri 2 Z, is a coset partition of Z, then the largest index ds appears at
least twice. Erdős’ conjecture was proved by L. Mirsky and D. New-
man and independently by H. Davenport and R. Rado, using analy-
sis of complex function. Their proof appears in P. Erdős’ pa-
per [16, p.126]. So, with Theorem 1, we recover the Mirsky-New-
man, Davenport-Rado result for the Erdős’ conjecture. Indeed, for
every index d, the Schreier graph of dZ has a transition matrix with
period equal to d, so a repetition of the period is equivalent to a
repetition of the index: for the unique subgroup H of Z of index d,
its Schreier graph eXH is a closed directed path of length d (with each
edge labelled 1), and its transition matrix A is the permutation matrix
corresponding to the d-cycle (1, 2, . . . ,d), with period d.

Some consequences of the Mirsky-Newman, Davenport-Rado re-
sult for the Erdős’ conjecture were proved: the largest
index ds appears at least p times, where p is the smallest prime divi-
ding ds (see [29, 30, 41]), each index di divides another index dj, j 6= i,
and each index dk that does not properly divide any other index
appears at least twice (see [46]). With Theorem 1, we recover these
consequences with index replaced by period, as for the free groups in
general, the repetition of the period is not equivalent to the repetition
of the index. In Theorem 2, we prove that in some cases, the repeti-
tion of the period implies the repetition of the index. More precisely,
we have the following theorem.

Theorem 2 Let Fn be the free group on n>1 generators. Let {Hi↵i}
i=s

i=1
,

s > 1, be a coset partition of Fn with Hi < Fn of index di, ↵i 2 Fn,
1 6 i 6 s, and 1 < d1 6 . . . 6 ds. Let eXi denote the Schreier graph of Hi,
with transition matrix Ai, and period hi > 1, 1 6 i 6 s. Let hi be a period
that does not properly divide any other period. Let J = {1 6 j 6 s | hj = hi},
and let k 2 J such that dk = max{dj}j2J. If the period of Ak is dk, then dk

has multiplicity at least two.

Note that Theorems 1 and 2 can be extended to coset partitions of
finitely generated groups. Indeed, given a finitely generated
group G ' Fn/N, any coset partition of G gives rise to a coset par-
tition of Fn with subgroups of the same indices (see [8]). To each sub-
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group H of finite index d in G, there corresponds a subgroup K of
finite index d in Fn, N ✓ K, and H ' K/N. So, each coset of H gives
rise to a bi-deterministic automaton, and in turn to an irreducible
transition matrix and all the arguments applied in the case of Fn can
be applied also for G.

In [10, 11], we continue our study of the Schreier automaton and its
generating function, and our results there are based on Theorems 1
and 2. The paper is organized as follows. In Section 2, we give some
preliminaries on automata and their growth functions. In Section 3,
we prove the main result. We also refer to [8] for more preliminaries
and examples, Section 2 for free groups and covering spaces, and Sec-
tion 3.1, for graphs. We refer to [22] for a recent proof of the Erdős’
conjecture based on group representations.

2 Premilinaries on automata
2.1 Automata and generating function of their language

We refer the reader to [38, p.96], [12, p.7], [32, 33], [13]. A finite state
automaton is a quintuple (S,⌃,µ, Y, s0), where S is a finite set, called
the state set, ⌃ is a finite set, called the alphabet, µ : S⇥ ⌃ ! S is a
function, called the transition function, Y is a (possibly empty) subset
of S called the accept (or end) states, and s0 is called the start state. It is
a directed graph with vertices the states and each transition s

a�! s 0

between states s and s 0 is an edge with label a 2 ⌃. The label of a
path p of length n is the product a1a2 . . . an of the labels of the edges
of p. The finite state automaton M = (S,⌃,µ, Y, s0) is deterministic if
there is only one initial state and each state is the source of exactly
one arrow with any given label from ⌃. In a deterministic automaton,
a path is determined by its starting point and its label [38, p.105]. It
is co-deterministic if there is only one final state and each state is the
target of exactly one arrow with any given label from ⌃. The automa-
ton M = (S,⌃,µ, Y, s0) is bi-deterministic if it is both deterministic and
co-deterministic. An automaton M is complete if for each state s 2 S
and for each a 2 ⌃, there is exactly one edge from s labelled a.

Definition 3 Let M = (S,⌃,µ, Y, s0) be a finite state automaton.
Let ⌃⇤ be the free monoid generated by ⌃. Let Map(S, S) be the
monoid consisting of all maps from S to S. The map � : ⌃ ! Map(S, S)
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given by µ can be extended in a unique way to a monoid homomor-
phism � : ⌃⇤ ! Map(S, S). The range of this map is a monoid called
the transition monoid of M, which is generated by {�(a) | a 2 ⌃}.
An element w 2 ⌃⇤ is accepted by M if the corresponding element
of Map(S, S), �(w), takes s0 to an element of the accept states set Y.
The set L ✓ ⌃⇤ recognized by M is called the language accepted by M,
denoted by L(M).

For any directed graph with d vertices or any finite state automa-
ton M, with alphabet ⌃, and d states, there exists a square matrix A
of order d⇥ d, with aij equal to the number of directed edges from
vertex i to vertex j, 1 6 i, j 6 d. This matrix is non-negative and it is
called the transition matrix (as in [13]) or the adjacency matrix (as in [39,
p.575]). For any k > 1, (Ak)ij is equal to the number of directed
paths of length k from vertex i to vertex j. If for every 1 6 i, j 6 d,
there exists m 2 Z+ such that (Am)ij > 0, the matrix is irreducible.
For A an irreducible non-negative matrix, the period of A is the gcd of
all m 2 Z+ such that (Am)ii > 0 (for any i), or equivalently the gcd
of the lengths of closed (directed) loops in the underlying graph or
automaton. The period is bounded from above by d, the number of
vertices. If the period is 1, A is called aperiodic.

Let M be a bi-deterministic automaton with alphabet ⌃, d states,
start state i, accept state j and transition matrix A. Let ak = (Ak)ij,
the number of words of length k in the free monoid ⌃⇤, accepted
by M. The function pij(z) =

P
k=1
k=0

ak zk is called the generating
function of M.

Theorem 4 (see [39], p.574) The generating function pij(z) is given by

pij(z) =
(-1)i+jdet(I- zA : j, i)

det(I- zA)
,

where (B : j, i) denotes the matrix obtained by removing the jth row and ith
column of B, det(I- zA) is the reciprocal polynomial of the characteristic
polynomial of A.

2.2 The Schreier automaton of a coset of a subgroup of Fn

Let’s introduce the special automata we are interested in, i.e. the Sch-
reier coset diagram for Fn relative to the subgroup H (see [40, p.107]) or
the Schreier automaton for Fn relative to the subgroup H (see [38, p.102]).
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Definition 5 Let Fn = h⌃i and ⌃⇤ the free monoid generated by ⌃.
Let H < Fn of index d. Let (eXH,p) be the covering of the n-leaves bou-
quet with basepoint ex1 and vertices ex1,ex2, . . . ,exd. Let ti 2 ⌃⇤ denote
the label of a path from ex1 to exi. Let T = {1, ti | 1 6 i 6 d}. Let eXH be
the Schreier coset diagram for Fn relative to the subgroup H, with ex1
representing the subgroup H and the other vertices ex2, . . . ,exd repre-
senting the cosets Hti accordingly. We call eXH the Schreier graph of H,
with this correspondence between the vertices ex1,ex2, . . . ,exd and the
cosets Hti accordingly.

From its definition, eXH is a strongly-connected graph (i.e any two
vertices are connected by a directed path), so its transition matrix A

is non-negative and irreducible. As eXH is a directed n-regular graph,
the sum of the elements at each row and at each column of A is equal
to n. So, from the Perron-Frobenius result for non-negative irredu-
cible matrices, n is the Perron-Frobenius eigenvalue of A, that is the
positive real eigenvalue with maximal absolute value [20, 18, 19, 31].
If A has period h > 1, then A is similar to the matrix Ae

2⇡i

h , that is
the set �

�e
2⇡ik

h | 0 6 k 6 h- 1
 

is a set of eigenvalues of A, for each eigenvalue � of A. In particular,

�
ne

2⇡ik

h | 0 6 k 6 h- 1
 

is a set of simple eigenvalues of A (see [1, Ch.16] and [6]). This im-
plies that the period is bounded from above by the order of A.

Theorem 6 (see [17], p.343) Let A be a non-negative and irreducible
matrix of order d⇥ d. Let P(z) =

P
k=1
k=0

zkAk. Then

(1) P(z) = (I- zA)-1, since (I+ zA+ z2A2 + . . .)(I- zA) = I;

(2) All the entries of P(z) have the same radius of convergence 1

�PF
,

where �PF is the Perron-Frobenius eigenvalue of A;

(3) P(z) = I + z (AP(z)) = I + z (P(z)A).

Definition 7 Let Fn = h⌃i and ⌃⇤ the free monoid generated by ⌃.
Let H < Fn of index d. Let eXH be the Schreier graph of H. Using
the notation from Definition 5, let ex1 be the start state and exj be
the end state for some 1 6 j 6 d. We call the automaton obtained
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the Schreier automaton of Htj and denote it by bXHtj
. The language

accepted by bXHtj
is the set of elements in ⌃⇤ that belong to Htj. We

call the elements in ⌃⇤ \Htj, the positive words in Htj. The identity
may belong to this set.

In contrast with our approach in [8], as we are interested here in
counting positive words of a given length, we do not add the inverses
of the generators from ⌃ to the alphabet.

Example 8 Let ⌃ = {a,b} be an alphabet. Let ⌃⇤ be the free monoid
generated by ⌃. Let F2 = ha,bi. Let H = ha4,b4,ab-1,a2b-2,a3b-3i
be a subgroup of index 4 in F2. Let eXH be the Schreier graph of H:

Figure 1: The Schreier graph eXH

of H = ha4,b4,ab-1,a2b-2,a3b-3i.

The transition matrix of eXH is
0

BB@

0 2 0 0
0 0 2 0
0 0 0 2
2 0 0 0

1

CCA

and its period is 4. If H is both the start and accept state, then the
language accepted, L, is the set of elements in ⌃⇤ that belong to H,
that is the set of positive words in H. The generating function is
then p(z) = 1

1-16z4
, with p(0) = 1, since it contains 1. If H is the start

state and Ha the accept state, then L is the set of positive words in
the coset Ha, and p(z) = 2z

1-16z4
.
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3 The generating functions of Schreier automata
3.1 Properties of the Schreier automaton

For H < Fn of index d, we prove some properties of its Schreier
automaton, its transition matrix and its generating function. We use
the following notation: eXH is the Schreier graph of H, A its transi-
tion matrix with period h > 1, and pij(z) denotes the generating
function of the Schreier automaton, with i and j the start and end
states respectively. First, we show the following correlation between
the generating functions of the Schreier automaton, with start state i
fixed and and j running over all the possible end states.

Lemma 9 For |z| < 1

n
, and every 1 6 i 6 d,

j=dX

j=1

pij(z) =
j=dX

j=1

(-1)i+jdet(I- zA : j, i)
det(I- zA)

=
1

1-nz

Proof — The number of positive words of length k > 0 in Fn
is nk, so the generating function of Fn is

P
k=1
k=0

nkzk = 1

1-nz
, for z

with |z| < 1

n
. As Fn is the disjoint union of the d cosets of H, the gen-

erating function of Fn is equal to the sum of the generating functions
corresponding to each coset of H. ut

Lemma 10 Let � be a non-zero eigenvalue of A of algebraic multiplic-
ity n�. Then 1

�
is a pole of 1

det(I-zA) of order n�. Moreover,

�
1

n
e

2⇡im

h

��� 0 6 m 6 h- 1

�

is a set of simple poles of 1

det(I-zA) of minimal absolute value.

Proof — For any eigenvalue � of A with algebraic multiplici-
ty n�, 1 - �z is an eigenvalue of I - zA with same algebraic mul-
tiplicity n�. And if � 6= 0, 1

�
is a pole of 1

det(I-zA) of order n�.
From the Perron-Frobenius result for non-negative irreducible ma-
trices, n is the Perron-Frobenius eigenvalue of A. So, 1

n
is a simple

pole of 1

det(I-zA) . As n is the eigenvalue of A of maximal absolute
value, 1

n
is the pole of 1

det(I-zA) of minimal absolute value. The

same holds for 1

n
e

2⇡im

h . ut
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Note that if 1

�
, � 6= 0, is a pole of 1

det(I-zA) , then it may occur
that for some generating function pij(z), it may not be a pole any-
more. Indeed, if 1

�
is not in the domain of convergence of the power

series
P

k=1
k=0

(zkAk)ij, there is no correlation anymore between the
power series and the function pij(z), and a simplification may occur
between the numerator and the denumerator of pij(z).

Lemma 11 For every 1 6 i, j 6 d, pij(z) have the same radius of conver-
gence 1

n
. Furthermore, for every 1 6 i, j 6 d,

�
1

n
e

2⇡im

h | 0 6 m 6 h- 1
 

is a set of simple poles of pij(z) of minimal absolute value.

Proof — It results directly from Theorem 6 (2), that pij(z) have the
same radius of convergence 1

n
, for every 1 6 i, j 6 d. So,

pij(z) =
k=1X

k=0

(zkAk)ij,

for z with |z| < 1

n
. Let v 2 Cd be an eigenvector of A with eigen-

value ne
2⇡i(-m)

h , for some 0 6 m 6 h- 1. So, on one hand,

(I+ zA+ z2A2 + . . .)(I- zA) v = Iv = v.

On the second hand,

(I+ zA+ z2A2 + . . .)(I- zA) v = (I+ zA+ z2A2 + . . .)
�
(I- zA) v

�
,

and if z ! 1

n
e

2⇡im

h , then

(I- zA) v !
✓
I-

1

n
e

2⇡im

h A

◆
v ! 0.

By definition, v 6= ~0, so if, whenever z ! 1

n
e

2⇡im

h , all the elements
in the matrix (I- zA)-1 are finite, we get a contradiction. So, there
exists 1 6 i, j 6 d, such that (I- zA)-1

ij
! 1, whenever z ! 1

n
e

2⇡im

h .
From Theorem 6 (3), each entry of P(z) is positively linearly related
to any other entry, that is the pij(z) must all become infinite as soon
as one of them does. So, for every 1 6 i, j 6 d,

�
1

n
e

2⇡im

h

��� 0 6 m 6 h- 1

�
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is a set of poles of pij(z), and from Lemma 10, these are simple poles
of minimal absolute value. ut

3.2 Proof of Theorems 1 and 2

Let Fn be the free group on n > 1 generators. Let {Hi↵i}
i=s

i=1
, s > 1,

be a coset partition of Fn with Hi < Fn of index di, ↵i 2 Fn,1 6 i 6 s,
and 1 < d1 6 . . . 6 ds. Let eXi denote the Schreier graph of Hi,
with transition matrix Ai of period hi > 1, 1 6 i 6 s. Let bXHi↵i

denote the Schreier automaton of Hi↵i, with generating func-
tion pi(z),1 6 i 6 s. We prove some properties of the generating func-
tions.

Lemma 12 Let |z| < 1

n
.

(1)
k=sX

k=1

pk(z) =
1

1-nz
(3.1)

(2) For every 1 6 k 6 s,
�

1

n
e

2⇡im

h
k | 0 6 m 6 hk - 1

 
is a set of simple

poles of pk(z) of minimal absolute value.

Proof — (1) The generating function of Fn is 1

1-nz
, for |z| < 1

n
.

As {Hi↵i}
i=s

i=1
is a coset partition of Fn, the generating function of Fn

is equal to the sum of the corresponding generating functions.

(2) This follows from Lemma 11. ut

Lemma 13 Let h > 1, where h = max{hi | 1 6 i 6 s}. Assume hk = h.
Let J = {j | 1 6 j 6 s, hj = h}.

(1) There exists (at least one) j 6= k such that 1

n
e

2⇡i

h is also a pole of pj(z)
and hj = h.

(2)
P
j2J

Res
�
pj(z), 1

n
e

2⇡i

h

�
=0 and moreover

P
j2J

Res
�
pj(z), 1

n
e

2⇡im

h

�
=0,

for every m with gcd(m,h) = 1 .

Proof — (1) From Lemma 11,
�

1

n
e

2⇡im

h | 0 6 m 6 h- 1
 

is a set of
simple poles of pk(z). Let z ! 1

n
e

2⇡i

h in (3.1). Then pk(z) ! 1 and
the left-hand side of (3.1) also, while the right-hand side of (3.1) is a
finite number, a contradiction. So, there exists j 6= k such that 1

n
e

2⇡i

h

is a simple pole of pj(z) which implies that hj = h.
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(2) From Lemma 12(i),

i=sX

i=1

Res(pi(z),
1

n
e

2⇡i

h ) = Res(
1

1-nz
,
1

n
e

2⇡i

h ) = 0.

For every l /2 J, as 1

n
e

2⇡i

h is not a pole of pl(z), Res
�
pl(z), 1

n
e

2⇡i

h

�
= 0.

So,
P
j2J

Res
�
pj(z), 1

n
e

2⇡i

h

�
= 0. Clearly,

P
j2J

Res(pj(z), 1

n
e

2⇡im

h ) = 0, for

every m with gcd(m,h) = 1. ut

Proof of Theorem 1 — We prove that for every hk, there exists j 6= k
such that either hj = hk or hk | hj. If hk = 1, then clearly hk divides
every period hj, 1 6 j 6 s. Assume hk > 1 and assume by contradic-
tion that hk does not divide any period hl, 1 6 l 6 s, l 6= k. That is,
for every m > 1,

e

2⇡i�
h
l

m

�
6= e

2⇡im

h
k

for every hl, 1 6 l 6 s, l 6= k. Using the same argument as in the

proof of Lemma 13, with z ! 1

n
e

2⇡i

h
k in (3.1), we get a contradiction.

So, there exists j 6= k such that hk | hj, and if hk does not properly
divide any other period, hk has multiplicity at least two. ut

Proof of Theorem 2 — If the period of Ak is dk, then from Theo-
rem 1, there exists j 2 J such that hj = dk. As hj 6 dj 6 dk, since the
period is bounded from above by the index, we have dj = dk. ut
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