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Abstract
A relevant theorem of B.H. Neumann states that if a group G has boundedly finite
conjugacy classes, then its commutator subgroup G 0 is finite. This result has been
generalized in [1], where it is proved in particular that if the orbits of a group G under
the action of G 0 by conjugation are boundedly finite, then the subgroup �3(G) has
boundely finite order. The aim of this paper is to prove a corresponding statement
when boundedly finite orbits are replaced by boundedly Černikov orbits.
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1 Introduction

A group G is said to be a CC-group, or to have Černikov conjugacy
classes, if G/CG(hgiG) is a Černikov group for each element g of G.
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Groups with such a property were introduced as a natural general-
ization of FC-groups by Polovickiı̆ in [8], where he proved in partic-
ular that a group G is a CC-group if and only if for every element g
of G the factor group G/CG(hgiG) is periodic and [g, G] is a Černikov
group. It follows in particular that the commutator subgroup G 0 of
any CC-group G is periodic and it is covered by Černikov G-invariant
subgroups.

Several authors have investigated the structure of groups with
the CC-property, with the purpose of extending known results con-
cerning FC-groups to this more general situation (see for instance
[2],[3],[4],[7]). A relevant theorem of B.H. Neumann [6] states that if a
group G has boundedly finite conjugacy classes (i.e. it is a BFC-group),
then its commutator subgroup G 0 is finite. This result has been gener-
alized in [1], where it is proved in particular that if in a group G the
orbits under the action of G 0 by conjugation have finite bounded or-
ders, then the subgroup �3(G) is finite and has bounded order. The
aim of this paper is to obtain a corresponding result for groups in
which the action by conjugation of the commutator subgroup deter-
mines bounded Černikov orbits. The first problem in this context is
of course to choose in which sense a CC-group may have bounded
conjugacy classes.

Any Černikov group Q contains a divisible abelian normal sub-
group J(Q) (its finite residual, actually), which is the direct product
of a finite number m(Q) of groups of Prüfer type, such that the fac-
tor group Q/J(Q) is finite, of order i(Q) say. The non-negative inte-
gers m = m(Q) and i = i(Q) are invariants of Q, and the pair (m, i)
is usually called the size of Q. Of course, a Černikov group Q is finite
if and only if m(Q) = 0. Notice also that m(Q) is the minimax rank of
the divisible abelian group J(Q), so that both the rank of Q and the
number of primes involved in Q are bounded by m(Q) + i(Q).

If h and k are non-negative integers (with k 6= 0), a group G is
called a BCC-group of size (h, k) if for each element g of G the factor
group G/CG(hgiG) is a Černikov group with

m
�
G/CG(hgiG)

�
6 h and i

�
G/CG(hgiG)

�
6 k,

and h,k are the smallest integers with such a property. Thus a group G
has the BFC-property considered by Neumann if and only if it is
a BCC-group of size (0, k) for some positive integer k. It was claimed
in the statement of the Main Theorem of [5] that every BCC-group
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has a Černikov commutator subgroup; on the other hand, in the re-
view of that paper Tresch pointed out a serious mistake in the proof
of the crucial Lemma 2 (see MR1956638). Afterwards, Tresch himself
proposed in [11] a different proof of the same result, but unfortu-
nately also in this case a wrong argument occurred in the last part of
the proof. Our first result shows that the above quoted statement is
actually true.

Theorem A Let G be a BCC-group of size (h, k). Then the commutator
subgroup G 0 of G is a Černikov group and its size is bounded in terms of h
and k.

We shall say that a group G is a BCC2-group if there are inte-
gers h > 0 and k > 0 such that G/CG(hgiG) is a BCC-group of size
at most (h, k) for every element g of G, and (h, k) is the size of G
if h and k are the smallest integers with such a property. Our sec-
ond main result corresponds to the above mentioned theorem in [1],
when one moves from finite to Černikov orbits under the action by
conjugation of the commutator subgroup.

Theorem B Let G be a BCC2-group of size (h, k). Then �3(G) = [G 0, G]
is a Černikov group and its size is bounded in terms of h and k.

Our notation is mostly standard and can be found in [9]. In par-
ticular, for any group G, we will denote by ⇡(G) the set of all prime
numbers p for which G contains elements of order p.

2 Proofs

If X is any group class, the XC-centre of a group G is the subset con-
sisting of all elements g of G such that the factor group G/CG(hgiG)
belongs to X, and G is called an XC-group if it coincides with its
XC-centre. In particular, if we choose as X the class F of finite groups,
we obtain the usual definitions of FC-centre and FC-group, respec-
tively; similarly, the choice of X as the class C of Černikov groups
gives rise to the concepts of CC-centre and CC-group, respectively.
Notice here that the XC-centre of a group G need not in general be
a subgroup; this is for instance the case if X is the class F [A of all
groups which are either finite or abelian. On the other hand, it is
straightforward to show that the XC-centre of any group is a sub-
group, provided that the group class X is closed with respect to sub-
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groups, homomorphic images and direct products of finitely many
factors.

Lemma 1 Let X be a group class, and let G be a group such that the
factor group G/CG(hgiG) has the XC-property for each element g of G. If x
and y are elements of G, then G/CG(h[x, y]iG) is isomorphic to a section
of a direct product of two X-groups.

Proof — Since G/CG(hxiG) and G/CG(hyiG) are XC-groups, there
exist normal subgroups M and N of G such that G/M and G/N be-
long to X with

[M, hyiG] 6 CG(hxiG) and [N, hxiG] 6 CG(hyiG).

Then
[M\N, hxiG, hyiG] = [hyiG, M\N, hxiG] = {1}

and so it follows from the Three Subgroup Lemma that

[hxiG, hyiG, M\N] = {1}.

In particular, M\N is contained in the centralizer CG(h[x, y]iG), and
hence the group G/CG(h[x, y]iG) is isomorphic to a section of the
direct product G/M⇥G/N. ut

The above statement has the following obvious consequence,
where r is any positive integer and Rr denotes the class consisting
of all groups of rank at most r.

Corollary 2 Let r be a positive integer, and let G be a group such
that G/CG(hgiG) is an RrC-group for each element g of G. Then the factor
group G/CG(h[x, y]iG) has rank at most 2r for all elements x and y of G.

It is well-known that any abelian-by-finite FC-group is finite over
its centre, and a corresponding easy result holds for groups with
the CC-property.

Lemma 3 Let G be a CC-group containing an abelian normal subgroup A
of finite index m. Then G/Z(G) is a Černikov group. Moreover, if the
group G/CG(hgiG) has minimax rank at most h for each g 2 G, then
the minimax rank of G/Z(G) is at most mh.
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Proof — Let {g1, . . . , gm} be a transversal to A in G. The intersection

C = A\
⇣ m\

i=1

CG(hgiiG)
⌘

is obviously contained in the centre of G, and the factor group G/C
embeds into the direct product

G/A⇥
⇣ m

Dr
i=1

G/CG(hgiiG)
⌘

.

Therefore G/Z(G) is a Černikov group, and its minimax rank is at
most mh if the second condition is satisfied. ut

Lemma 4 Let G be a group such that G/Z(G) is a Černikov group of
size (h, k). Then G 0 is a Černikov group and its size is bounded by a func-
tion c1 = c1(h, k).

Proof — Let J/Z(G) be the finite residual of G/Z(G), so that J/Z(G)
is the direct product of h Prüfer subgroups and G/J has order k.
Since J/Z(G) is a periodic divisible abelian group and J 0 is a ho-
momorphic image of the tensor product J/Z(G)⌦ J/Z(G), it follows
that J is abelian. Let {g1, . . . , gk} be a transversal to J in G. Then

[J, G] =
⌦
[J, g1], . . . , [J, gk]

↵
= [J, g1] · . . . · [J, gk].

For each i = 1, . . . , k the subgroup [J, gi] ' J/CJ(gi) is a homo-
morphic image of J/Z(G), and hence it is a direct product of at
most h Prüfer subgroups. It follows that [J, G] is a direct product
of at most hk Prüfer subgroups. Put G = G/[J, G]. Then G/Z(G) is
finite of order at most k, so that the quantitative version of Schur’s
theorem yields that the commutator subgroup G

0 is finite and its or-
der is bounded by a function of k (see for instance [9] Part 1, p.103).
Therefore G 0 is a Černikov group and its size is bounded in terms
of h and k. ut

Notice that if we use the bound for the order of the commutator
subgroup of a central-by-finite group obtained by Wiegold in [12],
the function c1 in the above statement can be chosen as

c1(h, k) = (hk, k
1

2
log

p
k-1),
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where p is the least prime number dividing k.

Lemma 5 Let G be a metabelian group, and let g be any element of G.
Then:

(a) the subgroup [g, G 0] is normal in G and hgiG 0
= hgi[g, G 0];

(b) the subgroup CG 0(g) is normal in G and G 0/CG 0(g) ' [g, G 0].

Proof — Since G 0 is abelian, we have

[g, G 0] = [hg, G 0i, G 0] and CG 0(g) = CG 0(hg, G 0i),

and so the subgroups [g, G 0] and CG 0(g) are normal in G. Moreover,
the groups G 0/CG 0(g) and [g, G 0] are isomorphic, because

[g, y1y2] = [g, y1][g, y2]

for all elements y1, y2 of G 0. ut

Lemma 6 Let r and s be positive integers, and let G be a finite metabelian
group such that G/CG(hgiG) has the RrC-property and G 0/CG 0(g) has
rank at most s for each element g of G. Then the rank of the subgroup �3(G)
is bounded by (2rs+ 1)s.

Proof — Put A = �3(G), and let p be a prime number such that the
rank of A coincides with that of its p-component. Then A
and A/ApOp 0(A) have the same rank, and so the replacement of G
by G/ApOp 0(A) allows us to assume that A has exponent p. Let x be
an element of G such that G 0/CG 0(x) has maximal rank s.
Since G 0/CG 0(x) ' [x, G 0] has exponent p, there exist s commu-
tators a1, . . . , as such that

G 0/CG 0(x) = ha1CG 0(x), . . . , asCG 0(x)i,

and so
[x, G 0] = [x, ha1, . . . , asi].

Write C = CG(ha1, . . . , asiG). It follows from Corollary 2 that the
group G/CG(haiiG) has rank at most 2r for all i, and hence G/C
has rank at most 2rs. In particular, G/C admits a set of generators
{g1C, . . . , gtC} with t 6 2rs.
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Assume for a contradiction that [C, G 0] is not contained in [x, G 0],
so that there exist elements c of C and y of G 0 such that [c, y] does
not belong to [x, G 0]. If a is any element of ha1, . . . , asi, we have

[cx, a] = [c, a]x[x, a] = [x, a]

and hence [x, G 0] is contained in [cx, G 0]. On the other hand,

[cx, y] = [c, y]x[x, y]

is not in [x, G 0], so that [x, G 0] is properly contained in [cx, G 0], which
is impossible by the choice of x. This contradiction shows that [C, G 0]
is a subgroup of [x, G 0], and so it has rank at most s. If G = G/[C, G 0],
we have [C, G’] = {1}, so that

�3(G) =
⌦
[g1, G 0

], . . . , [gt, G 0
]
↵

and hence �3(G) has rank at most ts 6 2rs2. Therefore the rank
of A = �3(G) is bounded by (2rs+ 1)s. ut

Lemma 7 Let G be a group and let N = hXi be a normal subgroup of G.
If [g, N] is a Černikov subgroup of Z(N) and |⇡([g, N])| 6 t for every
element g of G, then there exists a finite subset Y of X of order at most t
such that the order of ⇡([CG(hYiG), N]) is bounded by t. In particular,
if [G, N] has finite rank, then [CG(hYiG), N] is a Černikov group.

Proof — Let z be an element of G such that the set

⇡([z, N]) = {p1, . . . , ps}

has largest order s. Clearly,

[z, N] =
⌦
[z, x] | x 2 X

↵N
=

⌦
[z, x] | x 2 X

↵
,

and so for each i = 1, . . . , s there exists an element xi of X such that
the commutator [z, xi] has order divisible by pi. Put Y = {x1, . . . , xs}

and C = CG(hYiG), so that ⇡([z, hYi]) = {p1, . . . , ps}.
Assume for a contradiction that the set ⇡([C, N]) contains a prime

number q which is not in {p1, . . . , ps}. Since

[C, N] =
⌦
[c, N] | c 2 C

↵
,
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there exist elements a of N and b of C and such that [b, a] has or-
der q, and clearly q divides the order of [bz, a] = [b, a]z[z, a]. Moreo-
ver, [bz, hYi] = [z, hYi] so that

{p1, . . . , ps} = ⇡([z, hYi]) = ⇡([bz, hYi]) ✓ ⇡([bz, N])

and hence the set ⇡([bz, N]) contains more than s elements, which
is impossible by the choice of z. Therefore ⇡([C, N]) is contained
in {p1, . . . , ps}, and so it has order at most t.

We will also use the well-known fact that every finitely generated
metabelian group is residually finite (see for instance [9] Part 2, Theo-
rem 9.51).

Lemma 8 Let G be a metabelian BCC2-group of size (h, k) such that for
each element g of G the subgroup [g, G 0] is Černikov of rank at most s. Then
the subgroup �3(G) has finite rank bounded by a function of h,k and s.

Proof — Let E = hg1, . . . , gti be any finitely generated subgroup
of G. Then

�3(E) =
⇥
{g1, . . . , gt}, E 0⇤E = [g1, E 0]E· . . . · [gt, E 0]E

= [g1, E 0] · . . . · [gt, E 0]

is a Černikov group, and so it is even finite, because E is residu-
ally finite. Thus there exists a normal subgroup of finite index K
of E such that �3(E) \ K = {1}. The finite group E/K obviously sat-
isfies the assumptions of Lemma 6 with r = h+ k, and hence the
rank of �3(E) ' �3(E/K) is bounded by w =

�
2(h+ k)s+ 1

�
s. There-

fore �3(G) has rank at most w.

Lemma 9 Let G be a metabelian BCC2-group of size (h,k) such that �3(G)
has finite rank and for each element g of G the subgroup [g, G 0] is Černikov
with |⇡

�
[g, G 0]

�
| 6 t. Then �3(G) is a Černikov group and the order of the

set ⇡
�
�3(G)

�
is bounded by a function of h,k and t.

Proof — An application of Lemma 7 for N = G 0 yields that there
exists a subgroup E of G generated by m 6 t commutators u1, . . . , um

such that the set ⇡
�
[CG(EG),G 0]

�
has order at most t, and [CG(EG), G 0]

is a Černikov group since �3(G) has finite rank. Thus it is enough to
prove the statement for the factor group G/[CG(EG), G 0], and hence
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without loss of generality it can be assumed that G/CG(G 0) is a ho-
momorphic image of G/CG(EG). Since the factor group G/CG(EG)
can be embedded into the direct product

m

Dr
i=1

�
G/CG(huiiG)

�
,

we have by Lemma 1 that G/CG(G 0) is a Černikov group of rank at
most 2(h+ k)t and |⇡

�
G/CG(G 0)

�
| 6 2(h+ k)t.

Put C = CG(G 0), and let J/C be the finite residual of G/C. Consider
in J/C a subgroup P/C of type p1, and for each positive integer n
let xn be an element of P such that hxn, Ci/C is the unique subgroup
of order pn of P/C. Then

[x1, G 0] 6 [x2, G 0] 6 . . . 6 [xn, G 0] 6 . . .

and
[P, G 0] =

[

n2N
[xn, G 0].

As the orders of the sets ⇡
�
[xn, G 0]

�
are bounded by t, there ex-

ists a positive integer s such that ⇡
�
[P, G 0]

�
= ⇡

�
[xs, G 0]

�
and hence

|⇡
�
[P, G 0]

�
| 6 t; moreover, [P, G 0] is a Černikov group because �3(G)

has finite rank. Since J/C is the direct product of at most 2ht Prüfer
subgroups, it follows that also [J, G 0] is a Černikov group and
|⇡
�
[J, G 0]

�
| 6 2ht2. Again, the group G can be replaced by G/[J, G 0],

and so we may suppose that the abelian group G/C is finite. Then

G/C = hg1Ci ⇥ . . .⇥ hgjCi,

where j 6 2(h+ k)2t2, and hence

�3(G) = [g1, G 0] · . . . · [gj, G 0]

is a Černikov group and |⇡
�
�3(G)

�
| 6 2(h + k)2t3. Taking in mind

all the reductions that we have done, we obtain that in the origi-
nal group G the subgroup �3(G) is Černikov and the order of the
set ⇡

�
�3(G)

�
is bounded by t+ 2ht2 + 2(h+ k)2t3. The statement is

proved. ut

Proof of Theorem A — Let D be the subgroup generated by all its
periodic abelian divisible normal subgroups and put bG = G/D. Since
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for each element g of G the normal subgroup [g, G] is a Černikov
group, it follows that [bg, bG] is finite, and so bG is an FC-group. More-
over, the factor group bG/C bG(hbgi bG) is a finite homomorphic image
of G/CG(hgiG), and hence it has order at most k. Therefore bG is
a BFC-group, and so Neumann’s theorem yields that bG’ = G 0D/D is
finite and its order m is bounded in terms of k.

On the other hand, it is well-known that the subgroup D is abelian
(see for instance [9] Part 1, Lemma 4.46), so that the CC-group G 0D
contains an abelian subgroup of index m. It follows from Lemma 3
that G 0D/Z(G 0D) is a Černikov group of minimax rank bounded
by mh, and so in terms of h and k. Moreover, DZ(G 0D)/Z(G 0D) is
contained in the finite residual of G 0D/Z(G 0D), and hence the size
of G 0D/Z(G 0D) is bounded by (mh, m). An application of Lemma 4
yields now that (G 0D) 0 is a Černikov group whose size is bounded by
a function of mh and m, and so in terms of h and k. Thus it is enough
to prove the statement for the factor group G/(G 0D) 0, and hence it
can be assumed without loss of generality that G is metabelian.

It follows now from Lemma 5 that for each element g of G the
subgroup [g, G 0] is isomorphic to G 0/CG 0(g), and so it is a Černikov
group of rank at most h + k. It follows from Lemma 8 that �3(G)
has finite rank bounded by a function of h and k. Clearly, ⇡

�
[g, G 0]

�

has order at most h + k for each element g of G, and so it follows
from Lemma 9 that �3(G) is a Černikov group and |⇡

�
�3(G)

�
| is

bounded by a function of h and k. Thus also the minimax rank
of �3(G) is bounded in terms of h and k and hence, in order to prove
that G 0 is a Černikov group whose minimax rank is bounded by a
function of h and k, we may replace G by G/�3(G) and suppose
that G is nilpotent of class 2.

For each element g of G the groups G/CG(g) and [g, G] are iso-
morphic, so that hgiG = hgi[g, G] has rank at most h + k + 1, and
it follows from a result of H. Smith [10] that G 0 has finite rank v,
bounded in terms of h and k. Of course, |⇡([g, G])| 6 h+ k for each g,
and hence an application of Lemma 7 for N = G yields that G con-
tains a subgroup E, generated by at most h + k elements, such that
the set ⇡([CG(EG), G]) is finite and has order at most h+ k. Since G 0

is periodic, we have that [CG(EG), G] is a Černikov group of mini-
max rank at most (h+ k)v. Moreover, G/CG(EG) is a Černikov group
and ⇡ = ⇡

�
G/CG(EG)

�
has order at most h(h + k). Put C = CG(EG)

and G⇤ = G/[C, G]. Then C⇤ is contained in Z(G⇤), so that G⇤/Z(G⇤)
is a Černikov ⇡-group. Then also the commutator subgroup (G⇤) 0
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of G⇤ is a Černikov ⇡-group and its minimax rank is at most h(h+ k)v.
It follows that also in the original group G the commutator sub-
group G 0 is a Černikov group whose minimax rank is bounded in
terms of h and k.

Finally, let J be the finite residual of G 0, and put eG = G/J. Then eG 0

is finite, so that eG is a BFC-group. As G is a BCC-group of size (h, k),
it follows that each element of eG has at most k conjugates, and hence
the order of eG 0 = G 0/J is bounded by a function of k. Therefore the
size of the Černikov group G 0 is bounded by a function of h and k,
and the proof is complete.

Proof of Theorem B — Let g 2 G. Since G is a BCC2-group
of size (h, k), the factor group G/CG(hgiG) has the BCC-property
with size (h, k) and so it follows from Theorem A that G 0/CG 0(hgiG)
is a Černikov group whose size is bounded by f(h, k), for a suitable
function f : N2

0
! N2

0
. Thus G 0 is a BCC-group of size (h 0, k 0)=f(h, k).

A second application of Theorem A yields that G 00 is a Černikov of
size bounded in terms of h 0 and k 0, and so also of h and k, whence
we may replace G by the factor group G/G 00 and assume that G is
metabelian. Then [g, G 0] ' G 0/CG 0(g) is a Černikov group of rank at
most h 0+k 0 for each element g of G, and so it follows from Lemma 8
that the subgroup �3(G) has finite rank, again bounded by a func-
tion u = u(h 0, k 0). Moreover |⇡([g, G 0])| 6 h 0 + k 0 for all g, and hence
it follows from Lemma 9 that �3(G) is a Černikov group and the
order of the set ⇡

�
�3(G)

�
is bounded by a function v = v(h 0, k 0).

In particular, the largest divisible subgroup J of �3(G) is the direct
product of at most u · v Prüfer subgroups.

Put G = G/J. Then �3(G) is finite, and so for each element g of G
the subgroup [g, G’] is isomorphic to a finite homomorphic image
of G 0/CG 0(g), and hence its order is at most k 0. It follows that each
element of G has at most k 0 conjugates under the action of G’, and
so the order of �3(G)/J = �3(G) is bounded by a function of k 0

(see [1], Theorem 1.2). Therefore the size of �3(G) can be bounded in
terms of h and k, and the proof is complete.
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