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Abstract
In this paper we define a way to get a bounded invertible automaton starting from a
finite graph. It turns out that the corresponding automaton group is regular weakly
branch over its commutator subgroup, contains a free semigroup on two elements
and is amenable of exponential growth. We also highlight a connection between our
construction and the right-angled Artin groups. We then study the Schreier graphs
associated with the self-similar action of these automaton groups on the regular
rooted tree. We explicitly determine their diameter and their automorphism group
in the case where the initial graph is a path. Moreover, we show that the case of
cycles gives rise to Schreier graphs whose automorphism group is isomorphic to
the dihedral group. It is remarkable that our construction recovers some classical
examples of automaton groups like the Adding machine and the Tangled odometer.

Mathematics Subject Classification (2020): 20F65, 20F05, 20E08, 05C10, 05C25
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1 Introduction

Algebraic structures can be usually described by means of their com-
binatorial nature. A typical example is the relation between groups
and graphs. In Geometric Group Theory, for instance, many algebraic

* The second author thanks the FWF Project P29355-N35



76 M. Cavaleri – D. D’Angeli – A. Donno – E. Rodaro

properties of a group can be detected by investigating the combina-
torial properties of the corresponding Cayley graphs. Another typi-
cal example of this interaction is achieved by the automaton group
theory. Automata (or Mealy machines or transducers) are directed
graphs whose transitions describe the action of the states on a finite
alphabet. If, for instance, the automaton is complete and invertible,
then its states generate a group that has, in many cases, very inter-
esting properties.

As an example, in 1980 R.I. Grigorchuk described in [20] the first
group of intermediate (i.e., faster than polynomial and slower than
exponential) growth, that later appeared to be generated by a finite
automaton. This group has a number of other interesting properties:
for example, it is infinite and finitely generated, but each of its ele-
ments has finite order (Burnside group). It was also the first example
of an amenable but not elementary amenable group. Over the last
decades, a new exciting direction of research focusing on finitely gen-
erated automaton groups acting by automorphisms on rooted trees
has been developed. It turned out that it has deep connections with
the theory of profinite groups and with complex dynamics. The inter-
ested reader can refer for more details to the following list of works
(and bibliography therein) [1, 2, 21, 27]. Recently a special interest
has been pointed out for decision problems for automaton groups
and semigroups (see [16, 18, 19, 29] and references therein).

Beside Cayley graphs the best way to encode the action of automa-
ton groups is given by the structure of the corresponding Schreier
graphs. These graphs better represent the length-preserving action
of an infinite automaton group on a finite alphabet and constitute
an infinite sequence of finite graphs converging to infinite graphs
in the Gromov-Hausdorff topology. Finite Schreier graphs can be re-
garded as orbital graphs with respect to the action of the automaton
group on each level of a regular rooted tree, whereas their limits are
orbital graphs of the action of the group on the boundary of the tree.
Finite Schreier graphs have been studied from a combinatorial point
of view in several contexts (e.g., the investigation of models coming
from Statistical Mechanics [13, 14]). Classification of infinite Schreier
graphs have been studied in several papers (see [6, 7, 11, 12, 15, 23]
for further discussions about this topic).

In this paper, we introduce a family of automaton groups aris-
ing from finite graphs, that we call graph automaton groups (Defini-
tion 3.1). More precisely, with any finite graph G = (V , E), we asso-
ciate an invertible automaton AG whose state set is identified with
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the edge set E and that acts on words over an alphabet identified
with the vertex set V . Basically, any edge has a nontrivial action only
on words starting with a letter identified with one of its endpoints. In
this way, we can define an automaton that has the remarkable prop-
erty of being bounded. The class of bounded automaton groups is
very popular and it contains the most famous examples of automaton
groups (e.g., the Grigorchuk group and the Basilica group [25]). It is
a remarkable fact that all groups generated by bounded automata are
amenable, and so all our graph automaton groups have this proper-
ty (Theorem 3.7). It is interesting that, with our construction, we re-
cover some classical examples of automaton groups (e.g., the Adding
machine and the Tangled odometer group, see Example 3.6). Among
other properties, we prove that our groups are fractal and weakly reg-
ular branch over their commutator subgroup (Theorem 3.7), that they
all contain (except some trivial cases) a free semigroup (Theorem 3.9)
and so they have exponential growth (Corollary 3.10). We also high-
light a connection between our groups and the right-angled Artin
groups (Proposition 3.12).

The second part of the paper is devoted to the investigation of
the Schreier graphs associated with the action of graph automaton
groups. In Theorem 4.10, we give a rigidity result for the automor-
phism group of Schreier graphs when the initial graph is cyclic. Then
we present an explicit recursive description of the Schreier graphs of
graph automaton groups generated by path graphs, and we are able
to determine their diameter (Theorem 4.15) and their automorphism
group (Theorem 4.16).

2 Preliminaries

We recall in this preliminary section some basic definitions and prop-
erties about automaton groups and growth.

Definition 2.1 An automaton is a quadruple A = (S, X, �, µ), where:

1. S is the set of states;

2. X = {1, 2, . . . , k} is an alphabet;

3. � : S⇥X ! S is the restriction map;

4. µ : S⇥X ! X is the output map.
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The automaton A is finite if S is finite and it is invertible if, for
all s 2 S, the transformation µ(s, ·) : X ! X is a permutation of X. An
automaton A can be visually represented by its Moore diagram: this is
a directed labeled graph whose vertices are identified with the states
of A. For every state s 2 S and every letter x 2 X, the diagram has an
arrow from s to �(s, x) labeled by x|µ(s, x). A sink id in A is a state
with the property that �(id, x) = id and µ(id, x) = x for any x 2 X.

An important class of automata is given by the so-called bounded
automata [28]. An automaton is said to be bounded if the sequence
of numbers of paths of length n avoiding the sink state (along the
directed edges of the Moore diagram) is bounded.

For each n > 1, let Xn denote the set of words of length n over
the alphabet X and put X0 = {;}, where ; is the empty word. The
action of A can be easily extended to the infinite set X⇤ =

S1
n=0

Xn

as follows:

�(s, xw) = �(�(s, x), w) and µ(s, xw) = µ(s, x)µ(�(s, x), w), (2.1)

for every w 2 X⇤. For a state s 2 S, we denote by As the transfor-
mation µ(s, ·) on X⇤ defined by Eqs. (2.1), which is a bijection if A

is invertible. Given the invertible automaton A, the automaton group
generated by A is by definition the group generated by the transfor-
mations As, for s 2 S, and it is denoted G(A). In the rest of the paper,
we will often use the notation s instead of As. Moreover, the maps �
and µ can be naturally extended to each element of G(A). Notice that
the action of G(A) on X⇤ preserves the sets Xn, for each n.

It is a remarkable fact that an automaton group can be regarded
in a very natural way as a group of automorphisms of the regular
rooted tree of degree |X| = k, i.e., the rooted tree Tk in which each ver-
tex has k children, via the identification of the kn vertices of the n-th
level of Tk with the set Xn.

The group G(A) is said to be spherically transitive if its action is
transitive on Xn, for any n. Let g 2 G(A). The action of g on X⇤ can
be factorized by considering the action on X and |X| restrictions as
follows. Let Sym(k) be the symmetric group on k elements. Then an
element g 2 G(A) can be represented as

(g1, . . . , gk)�, (2.2)

where gi := �(g, i) 2 G(A) and � 2 Sym(k) describes the action of g
on X. We say that Eq. (2.2) is the self-similar representation of g. Notice
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that, given g = (g1, . . . , gk)� and h = (h1, . . . , hk)⌧, the self-similar
representation of gh is

gh = (g1h�(1), . . . , gkh�(k))�⌧.

In the tree interpretation of Eq. (2.2), the permutation � corresponds
to the action of g on the first level of Tk, and the automorphism gi

is the restriction of the action of g to the subtree (isomorphic to Tk)
rooted at the i-th vertex of the first level.

Let us denote by StabG(A)(X) = {g 2 G(A) : g(x) = x, 8 x 2 X}

the stabilizer of X, that is, the subgroup of G(A) consisting of all
elements acting trivially on X. In particular, if g 2 StabG(A)(X), then
one can identify g with the k-tuple (g1, . . . , gk), where gi = �(g, i).

Lemma 2.2 Let g = (g1, . . . , gk) 2 StabG(A)(X). If gi 2 {g, id} for
each i = 1, . . . , k, then g is the trivial element of G(A).

Proof — Let w 2 Xn. We will prove by induction on n that g(w)=w.
The case n = 1 is obvious since g 2 StabG(A)(X). Now let w = xw 0,s
with x 2 X and w 0 2 Xn-1. Then one has g(xw 0) = xgx(w 0). If gx = id,
the claim easily follows. If gx = g, the inductive hypothesis gives
gx(w 0) = w 0 and so one gets g(w) = w. ut

Given two groups G1 and G2, the direct product of G1 and G2

will be denoted by G1 ⇥ G2. In particular, we denote by Gk the k-
times iterated direct product of a group G with itself. The following
definitions are given in the literature for the broader class of self-
similar groups (see [27]). Here we restrict our interest to automaton
groups.

Definition 2.3 Let G(A) be an automaton group. Then G(A) is said
to be

1. fractal, if the map

 : StabG(A)(X) ! G(A)k

given by g 7! (g1, . . . , gk) is surjective on each factor.

2. weakly regular branch over its subgroup N, if

Nk ⇢  (N\ StabG(A)(X)),

where N is supposed to be nontrivial.
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Let G be a finitely generated group, with symmetric generating set
S = S-1. The length of g with respect to S is denoted by |g|S (we
will omit the subscript S when the generating set is fixed) and it
is defined as the minimal length of a word in S⇤ representing the
element g. Then one puts �S(n) = #{g 2 G : |g|S 6 n}. This defines
the growth function

�S : N ! N.

This map clearly depends on the generating set S. However, one can
prove that changing the generating set does not affect the asymptotic
properties of �S. In particular, the growth rate

�G = lim
n!1

n
p
�S(n)

is greater than or equal to 1 independently on the particular generat-
ing set (see, for instance, [17]).

Definition 2.4 A finitely generated group G has exponential growth
(resp. sub-exponential growth) if �G > 1 (resp. �G = 1).

3 Automata groups from graphs

We present in this section the main construction of the paper, that is,
we are going to associate an invertible automaton with a given finite
graph.

Let G = (V , E) be a finite graph. Let V = {x1, . . . , xk} (we will often
use also the notation {1, 2, . . . , k}) be its vertex set and let E be its edge
set.

First of all, we choose an orientation for the edges of G. Let E 0 be
the set of edges, where an orientation of each edge has been chosen.
Notice that elements in E are unordered pairs of type {xi, xj}, whereas
elements in E 0 are ordered pairs of type (xi, xj), meaning that the
edge has been oriented from the vertex xi to the vertex xj.

We then define an automaton AG = (E 0 [ {id}, V , �, µ) such that:

• E 0 [ {id} is the set of states;

• V is the alphabet;
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• � : E 0 ⇥ V ! E 0 is such that, for each e = (x, y) 2 E 0, one has

�(e, z) =
�

e if z = x
id if z 6= x

• µ : E 0 ⇥ V ! V is such that, for each e = (x, y) 2 E 0, one has

µ(e, z) =

8
<

:

y if z = x
x if z = y
z if z 6= x, y

In other words, any directed edge e = (x, y) represents a state of
the automaton AG and it has just one restriction to itself (given
by �(e, x)) and all other restrictions to the sink id. Its action is nontriv-
ial only on the letters x and y, which are switched since µ(e, x) = y
and µ(e, y) = x. It is easy to check that AG is invertible for any G
and any choice of the orientation of the edges. This makes us able to
define an associated automaton group.

Definition 3.1 The graph automaton group GG is the automaton group
generated by AG.

Remark 3.2 Notice that any loop in G gives rise to the trivial ele-
ment of GG. Moreover, any multiedge produces a set of equal gener-
ators (up to consider the inverse).

The previous remark basically says that we can just consider sim-
ple graphs. We make from now on this assumption. The following
proposition shows that the graph automaton group GG does not de-
pend on the particular orientation of the edges in G nor on the order
of the vertices in V .

Proposition 3.3 The group GG does not depend on the choice of the edge
orientation. Moreover, a rearrangement of the vertices in V produces groups
that are isomorphic.

Proof — Without loss of generality, we can suppose that there ex-
ists an edge connecting the vertices x1 and x2. If we choose the ori-
entation from x1 to x2, then the self-similar representation of the
corresponding edge e as a generator of GG is

e = (e, id, . . . , id)(1, 2).
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On the other hand, if the opposite orientation is chosen, the self-
similar representation of the corresponding edge f becomes

f = (id, f, . . . , id)(1, 2).

A direct computation gives ef = (ef, id, . . . , id), so that ef = id
by Lemma 2.2, and so f = e-1. Therefore, the choice of the orien-
tation does not affect the structure of the group GG.

In order to prove the second claim, it is enough to observe that
changing the name of the vertices is equivalent to act by a permu-
tation � on the alphabet V . In this case, we just get the group G

�

G
,

which is obtained from GG via conjugation by �. ut

In the light of Proposition 3.3, given an oriented edge e=(xi,xj)2E 0,
we can denote by e-1 = (xj, xi) the edge with the opposite orien-
tation, keeping in mind that the choice of the opposite orientation
corresponds to take the inverse in GG.

The following result shows that taking subgraphs in G corresponds
to obtain subgroups in GG. By a subgraph of G, here we mean a
subset of its edges, together with the subset of vertices of V consisting
of their endpoints.

Proposition 3.4 Let H = (VH, EH) be a graph isomorphic to a subgraph
of G. Then GH 6 GG.

Proof — Let e1, . . . , e` be the edges of G = (V , E) belonging to the
subgraph eG isomorphic to H. Consider the subgroup eG 6 GG gener-
ated by e1, . . . , e`. We claim that the groups eG and GH are isomorphic.
Let  be the isomorphism between eG and H. By Proposition 3.3 we
can suppose, without loss of generality, that e1, . . . , e` are edges of G,
whose endpoints are the first t vertices of V , and we can consider
in VH the order induced by  . If we focus on the self-similar rep-
resentation of the automorphisms generating GH, this is exactly the
self-similar representation of the ei’s, regarded as generators of GG,
where the last |V |- t restrictions are erased. Therefore, it is clear that
a relation in eG holds if and only if the same relation in GH holds. ut

Proposition 3.5 Let G = (V , E) be the disjoint union of the graphs
G1 = (V1, E1), . . ., Gt = (Vt, Et). Then GG = GG1

⇥ . . .⇥ GGt
.

Proof — The claim easily follows by observing that the generators
in Ei act trivially on the set of vertices V \ Vi. ut
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By virtue of Proposition 3.5, we can suppose G to be connected.
Therefore, from now on, we assume G = (V , E) to be simple and
connected.

Example 3.6 1. If G is the path graph P2 on 2 vertices, the asso-
ciated automaton AP2

is represented in Fig. 1.

a a
1 2

id

1|1, 2|21|2

2|1

Figure 1: The path P2 and the associated automaton AP2
.

The automaton AP2
is the so-called Adding machine (see, e.g., [1])

and it generates the group Z. The self-similar representation of
its generator is

a = (a, id)(1, 2).

2. If G is the path graph P3 on 3 vertices, the associated automa-
ton AP3

is represented in Fig. 2.

aa bb
1 2 3

id

1|2 2|3

2|1, 3|3 1|1, 3|2

1|1, 2|2, 3|3

Figure 2: The path P3 and the associated automaton AP3
.

It corresponds to the so-called Tangled odometer (see, e.g., [22]).
The two generators of the group GP3

have the self-similar rep-
resentation:

a = (a, id, id)(1, 2) b = (id, b, id)(2, 3).

3. If G is the cyclic graph C3 on 3 vertices, the associated automa-
ton AC3

is represented in Fig. 3.
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a
a

b

b

c
c

1

2 3

id

1|2

2|3

2|1, 3|3

1|1, 3|2

1|1, 2|2, 3|3

1|3, 2|2

3|1

Figure 3: The cycle C3 and the associated automaton AC3
.

The automaton AC3
generates a group that we call the uncle of

the Hanoi Towers group on three pegs (see, e.g., [24]), and the
three generators of the group GC3

have the self-similar repre-
sentation:

a = (a, id, id)(1, 2), b = (id, b, id)(2, 3), c = (id, id, c)(3, 1).

Observe that the automorphisms A := abc, B := bca, and
C := cab generate the classical Hanoi Towers group on three
pegs, that is therefore a subgroup of its uncle.

Notice that if e, f 2 E 0 do not share any vertex, then

[e, f] = e-1f-1ef = id

in GG, since their actions are nontrivial on disjoint subsets of V . The
next theorem collects some more algebraic properties shared by (al-
most) all graph automaton groups.

A directed path of length t from the vertex v to the vertex w in a
graph G = (V , E) is a sequence of vertices vi0

= v, vi1
, vi2

, . . . , vit
= w

in which all edges e1, e2, . . . , et are oriented in the direction from v
to w, that is, one has e1 = (v, vi1

), e2 = (vi1
, vi2

), . . . , et = (vit-1
, w).

A directed cycle of length t is a directed path such that vi0
= vit

.

Theorem 3.7 Let G = (V , E) be a graph such that |E| > 2. Then the
following properties hold.

1. AG is bounded. In particular, GG is amenable.

2. GG is fractal.
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3. GG contains an element of finite order and is non-abelian.

4. If G contains a cycle e1, . . . , et, then (e"1

1
. . . e"t

t
)t-1, with "i 2 {±1},

is a relation in GG whenever e"1

1
, . . . , e"t

t
is a directed cycle in G.

5. GG is weakly regular branch over its commutator subgroup G
0
G

.

Proof — 1. By definition, the Moore diagram of AG, regarded as a
simple graph, is a star graph with one internal vertex corresponding
to the sink id and |E| leaves corresponding to the directed edges of G.
Each leaf has exactly one directed loop and all other transitions go
to the sink. Therefore, a path of length n avoiding the sink is nothing
but the repetition of the same loop at a nontrivial state n times, and
so the automaton is bounded. Moreover, since all groups generated
by bounded automata are amenable [3], then the graph automaton
group GG is amenable.

2. We have to show that the map  : StabGG
(V) ! G

k

G
given

by g 7! (g1, . . . , gk), with gi = �(g, xi), is surjective on each factor.
Let e be an edge oriented from the vertex xi to the vertex xj (sup-
pose i < j). In order to prove fractalness, it is enough to produce an el-
ement of StabGG

(V) whose h-th restriction is e, for each h = 1, . . . , k.
An explicit computation gives:

e2 = (id, . . . , id, e|{z}
i-th place

, id, . . . , id, e|{z}
j-th place

, id, . . . , id) 2 StabGG
(V).

Therefore, we can focus on the case where h 6= i, j. Consider a path of
length t in G from the vertex xi to the vertex xh through the vertices

xi = xi0
, xi1

, . . . , xit-1
, xit

= xh.

Suppose that the path passes along the edges ei1
, . . . , eit

, where the
endpoints of eil

are xil-1
, xil

, for each l = 1, . . . , t. Take the group
element g := e"1

i1
. . . e"t

it
, where "s = 1 if in the path from xi to xh

the edge eis
is oriented in the direction of the path, and "s = -1

otherwise. One can check that

g = (id, . . . , id, g|{z}
i-th place

, id, . . . , id)�

where � is a cyclic permutation of length t+ 1 such that �(il) = il-1
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for any l = 1, . . . , t and �(i) = h. A direct computation gives

gt+1 = (id, . . . , id, g|{z}
i-th place

, . . . , g|{z}
i1-th place

, . . . , g|{z}
h-th place

, id, . . . , id),

i.e., the nontrivial restrictions in the self-similar representation of gt+1

coincide with g and correspond to the positions i = i0, i1, . . . , it = h.
Moreover, notice that gt+1 2 StabGG

(V). Being StabGG
(V) a normal

subgroup of GG, one has that g-1e2g 2 StabGG
(V) and it is easy to

check that
�(g-1e2g, xit

) = g-1eg.

Then we obtain

�(gt+1g-1e2gg-(t+1), xit
) = e,

i.e., we have moved the generator e to the h-th restriction in the self-
similar representation of gt+1g-1e2gg-(t+1). The same method can
be applied to any generator and to any h, and this concludes the
proof.

3. Let e = (xi, xj) and f = (xj, xh), so that e and f share the vertex xj,
and their self-similar representations as generators of GG are

e = (id, . . . , id, e|{z}
i-th place

, id, . . . , id)(i, j)

f = (id, . . . , id, f|{z}
j-th place

, id, . . . , id)(j, h).

A direct computation gives

[e, f] = (id, . . . , id, f|{z}
j-th place

, id, . . . , id, f-1

|{z}
h-th place

, id, . . . , id)(i, j, h).

Therefore [e, f] 6= id but [e, f]3 = id.

4. Up to change the orientation of some edges (see Proposition 3.3),
we can assume that e1, . . . , et is a directed cycle centered at xi, i.e.,
a directed closed path with all edges oriented in the same direction.
Suppose that the cycle contains the vertices xi = xj0

, . . . , xjt
= xi. In

particular, ei corresponds to the directed edge (xji-1
, xji

). A direct
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computation gives

e1 . . . et = (id, . . . , id, e1 . . . et| {z }
i-th place

, id, . . . , id)�

where � is a cyclic permutation of length t- 1 such that �(i) = i. In
particular, �t-1 = id and so

(e1 . . . et)
t-1 = (id, . . . , id, (e1 . . . et)

t-1

| {z }
i-th place

, id, . . . , id)

and so (e1 . . . et)t-1 = id by Lemma 2.2.

5. We have to prove that, given any k-tuple (g1, . . . , gk), with gi2G
0
G

for each i, there exists an element g 2 G
0
G
\ StabGG

(V) such that

 (g) = (g1, . . . , gk).

We write
G
0
G

> G
0
G
⇥ . . .⇥ G

0
G

to denote this condition. First, recall that if e and f do not share any
vertex, then they commute in GG, since they act nontrivially on sets
of letters which are disjoint.

It follows that G
0
G

is normally generated by the commutators [e, f]
such that e and f share a vertex. So let e, f be generators of GG such
that e = (xi, xj) and f = (xj, xk). We can suppose, without loss of
generality, that i = 1, j = 2 and k = 3. In particular:

e2 = (e, e, id, . . . , id) f2 = (id, f, f, id, . . . , id).

A direct computation gives

[e2, f2] = (id, [e, f], id, . . . , id).

By proceeding as in the proof of Claim (2), we get that, given an
index h 6= 2, it is possible to construct an element g such that

g-1[e2, f2]g = (id, . . . , id, [e, f]|{z}
h-th place

, id, . . . , id) 2 G
0
G

.
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Then, by using that G
0
G

is normal and that GG is fractal, we get

(id, . . . , id, [e, f]GG

| {z }
h-th place

, id, . . . , id) ✓ G
0
G

.

Being h arbitrary and by applying the same argument to any pair of
generators, we get

G
0
G

> G
0
G
⇥ . . .⇥ G

0
G

,

which is our claim. ut

If we consider the Case (1) in Example 3.6, where the initial graph
contains only one edge, it gives rise to the Adding machine. This
group is fractal but it is abelian, free and not weakly regular branch.
Basically, this is the only nontrivial case for which the proper-
ties (3)–(5) of Theorem 3.7 do not hold.

Remark 3.8 We have shown that the group GG is amenable. How-
ever, we do not provide a special description of Følner sets of GG. The
matter certainly deserves further investigation in the future. Notice
that, having GG solvable world problem, a sequence of Følner sets must
be computable (in the sense of [8, 9]).

Let us focus now on the semigroup structure of graph automa-
ton groups. This will allow to know the growth of graph automaton
groups (see Corollary 3.10).

Theorem 3.9 Let G = (V , E) be a graph such that |E| > 2. Let e, f be
edges that share a vertex in G. Then the semigroup generated by e and f is
free.

Proof — By virtue of Proposition 3.4, it is enough to consider the
group H generated by the elements

e = (e, id, id)(1, 2) f = (id, id, f)(2, 3),

since it will be a subgroup of any group GG associated with a con-
nected graph G with more than one edge. If the semigroup Se,f is
free, then we are done. In particular, we have to prove that if u 6= v
in {e, f}⇤, then it must be u 6= v in Se,f (notice that, in the notation
of Case (2) of Example 3.6, we are going to show that S

a,b-1 is free).
Observe that, by using the self-similar representations of e and f,
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we get:
e2 = (e, e, id), ef = (e, id, f)(1, 3, 2),

fe = (e, id, f)(1, 2, 3), f2 = (id, f, f).

This implies that any word in {e, f}⇤ of length greater than 1 has
restrictions of shorter length. Moreover, if

u = (u1, u2, u3)� and v = (v1, v2, v3)⌧,

then a relation u = v corresponds to the permutation equality � = ⌧
and to the restriction equality ui = vi in Se,f, for each i = 1, 2, 3. In
particular, if at least one between u, v has length greater than 1, this
would give rise to relations ui = vi such that |ui| + |vi| < |u| + |v|,
for i = 1, 2, 3.

Now let u = v be a relation in the semigroup with smallest
length |u|+ |v| in {e, f}⇤. By the cancellativity of the semigroup, we
may assume that the words u and v do not start and end with the
same letter; in particular, we can suppose u = eu 0 and v = fv 0.

Since we have supposed that u = v is a relation in the semigroup
with smallest length |u| + |v|, then u and v must have the same re-
strictions (as words in {e, f}⇤, and not only in Se,f) at each position,
otherwise, by considering restrictions, we would get relations of a
shorter length. In what follows, we show that in all cases in which u
and v do not coincide, there exists some restriction in which they dif-
fer, and this contradicts minimality.

If u = e`, and v = fnv 0 (with `, n > 1), then by considering the
restriction to the position 3 we get the equation id = fv 00, which is
a contradiction by the minimality of the relation u = v. By using a
symmetric argument, we may assume

u = emfkz, v = fnety

for some m, k, n, t > 1.
Let m, n > 2. By considering the restriction to the position 2 we

get ew = fw 0, which is a contradiction again.
Therefore, without loss of generality, we may assume m = 1. Sup-

pose now that n > 2. We consider two cases: either z is the empty
word or not. In the first case, the restriction to the position 2
gives id = fw, and this is a contradiction for the same reason as
above. If z is not the empty word, we necessarily have z = ez 0 and in
this case, looking at the restriction to the position 2, we get ez 00 = fw,
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a contradiction again.
Thus, we deduce that it must be m = n = 1, i.e., u = efkz, v = fety.

If z, y are nonempty, then necessarily we have u = efkez 0, v = fetfy 0.
Now, by restricting to the position 2, we get ez 00 = fy 00, a contradic-
tion. Thus, without loss of generality, we may assume z = ; so that
u = efk.

Now if y is nonempty and v = fetfy 0, by considering the restric-
tion to the position 2, we get id = fy 00, a contradiction. Therefore, we
reduce to the case z = y = ;, that is, we can assume u = efk, v = fet.
Since we have µ(efk, 2) = 1 6= 3 = µ(fet, 2), we have a contradiction
and the proof is completed. ut

Corollary 3.10 Let G = (V , E) be a graph such that |E| > 2. Then GG

has exponential growth.

Proof — It follows from the fact that GG contains a free semigroup
of two generators a, b. In fact, in this case, with any generating set
containing a and b we can construct at least 2n distinct group ele-
ments of length n. ut

Remark 3.11 Notice that, for the notion of semigroup, the chosen
orientation of the edges is important. Observe that the Adding ma-
chine, which is isomorphic to the infinite cyclic group Z, has polyno-
mial growth; on the other hand, the associated graph G is the path P2

on two vertices (see Case (1) in Example 3.6), which does not satisfy
the hypothesis of Theorem 3.9 and Corollary 3.10.

3.1 A connection to right-angled Artin groups

Let G = (V , E) be a simple graph. One can construct a group associ-
ated with such a graph in the following way: the vertex set V is the
generating set and the only relations are given by the commutators
of adjacent vertices. More precisely, given G = (V , E), the group with
presentation

W(G) = hv 2 V |vu = uv if {u, v} 2 Ei

is the associated right-angled Artin group. For more details about the
theory, the reader is referred to [10].

Given a graph G = (V , E), one can define its dual graph G 0 to be
the graph with vertex set E, where e and f are adjacent in G 0 if they
share a common vertex v in G.
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Moreover, one can construct the complement G of G having the
same vertex set V , and where two vertices are adjacent if and only if
they are not adjacent in G.

Let G = (V , E) be a graph. The following proposition shows that
there exists a relation between the groups GG and W(G 0).

Proposition 3.12 Let G = (V , E) be a simple graph. Then there exists an
epimorphism � : W(G 0) ! GG.

Proof — First of all notice that the generating set of W(G 0) is pre-
cisely E (up to consider inverses). Let e 2 E, we define �(e) = e,
where e is supposed to be oriented in G. The map � is a well defined
homomorphism. Moreover, the set of adjacent vertices in G 0 corre-
sponds exactly to those edges in G that do not share any common
vertex. These edges commute by definition, when regarded as ele-
ments of GG. In this way, we have that the set of relations in W(G 0)
is contained in the set of relations of GG. This concludes the proof. ut

4 Schreier graphs

In this section we recall the notion of Schreier graphs and we study
some properties of them in the context of graph automaton groups.

Let G be a finitely generated group with a set S of generators
such that id 62 S and S = S-1, and suppose that G acts on a set M.
Then one can consider a graph �(G, S, M) with vertex set M, where
two vertices m, m 0 are joined by an edge if there exists s 2 S such
that s(m) = m 0. If this is the case, we label the edge from m to m 0

by s, and the edge from m 0 to m by s-1. Equivalently, we can think
that the same (undirected) edge is labeled by s near m and by s-1

near m 0.
If the action of G on M is transitive, then the graph �(G, S, M) is con-

nected and corresponds to the classical notion of Schreier
graph �(G, S, StabG(m)) of the group G with respect to the stabilizer
subgroup StabG(m) for some (any) m 2 M (see [27]).

Definition 4.1 Let A = (S, X, �, µ) be an invertible automaton and
let G(A) be the associated automaton group. The n-th Schreier graph

�n = �n(G(A), S, Xn)
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is the Schreier graph given by the action of G(A) over Xn, with re-
spect to the generators given by S and their inverses.

Notice that, although Schreier graphs are defined as directed and
labeled graphs, for our purposes we will often consider them as undi-
rected and unlabeled graphs.

In what follows, we denote by �G
n the n-th Schreier graph of the

graph automaton group GG. The vertex set of �G
n is identified with Vn,

where G = (V , E). Observe that �G

1
coincides with G up to remove

loops and multi-edges from �G

1
. Therefore, we can say that �G

1
and G

coincide as simple graphs. Moreover, the Schreier graph �G
n is a reg-

ular graph of degree 2|E| by definition.

Example 4.2 The Schreier graphs �G
n , for n = 1, 2, 3, 4, of the Tangled

odometer group introduced in Example 3.6, obtained when G is the
path P3 on 3 vertices, are shown in Fig. 4 and Fig. 5. Notice that
infinite Schreier graphs of the same group, with a different system
of generators, have been classified in [11].

1 2 3 22

11 33

1331

222

111

333

313131

Figure 4: The Schreier graphs �P3

1
, �P3

2
, �P3

3
of the Tangled odometer

group.
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3131 1313

2222

1111

3333

2223

2113

2123

2213

2313

3113

3123

Figure 5: The Schreier graph �P3

4
of the Tangled odometer group.

The Schreier graph �G
n only depends on the initial graph G = (V , E)

and not on the orientation of its edges, since the generating set that
we let act on Vn is supposed to be symmetric. The following lemma
is well known [1].

Lemma 4.3 �G

n+1
is a covering of �G

n of degree |V |.

Sketch of proof — The basic idea is that, if vx and wy are adjacent
vertices in �G

n+1
, with v, w 2 Vn and x, y 2 V , then v and w are

adjacent in �G
n . ut

Proposition 4.4 For every n > 1, the graph �G
n is connected if and only

if G is. In particular, the group GG is spherically transitive if and only if G
is connected.

Proof — Let us start by proving that, if G is connected, then �G
n

is connected for any n > 1. The connectedness of G implies that GG

acts transitively on V . By Theorem 3.7, the group GG is fractal and it
is a standard inductive argument to show that these properties imply
the transitivity of GG on Vn.

Conversely, if x, y 2 V are not in the same connected component
of G, then there is no way to connect the vertices xn and yn in �G

n . ut

We are going to show how cut-vertices in G propagate in the Schre-
ier graphs �G

n . Recall that a cut-vertex of a graph is a vertex whose
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deletion increases the number of connected components of the graph
(see, for instance, [4]). Observe that, for our purposes, when we
delete a cut-vertex from a graph we do not remove the edges which
are incident to that vertex. We need some technical preparation.

Let x be a cut-vertex of G, whose deletion disconnects G into c con-
nected components G1, . . . , Gc with Gi = (Vi, Ei) for each i = 1, . . . , c.
If a vertex v of Vn has the form v = xkyv 0, with k > 1, and y 2 Vi,
then a special subgraph of �G

n associated with the vertex v can be
constructed as follows.

• Let E \ Ei act on v. Since only edges not belonging to Ei are
acting, this action can only change the prefix xk of v, but the
suffix yv 0 remains unchanged. Moreover, each edge e 2 E \ Ei

generates an Adding machine, so that its action on v produces
an orbit which is a cyclic graph whose length is a power of 2,
and in particular it contains v again. Let us denote by Xv,0 the
orbit of v under E \ Ei. Then put Yv,0 = Xv,0 \ {v}.

• Let Ei act on Yv,0 and get the set Xv,1. Concretely, we are ap-
pending new cycles of length a power of 2 to the vertices con-
tained in the cycles constructed at the previous step. Then
put Yv,1 = Xv,1 \ {v}.

• Let E \ Ei act Yv,1 and get the set Xv,2. Then put Yv,2 = Xv,2 \ {v}.

Continue in this way by alternating the action of generators
in E \ Ei and Ei; in this way, we construct an increasing
sequence Yv,m ✓ Yv,m+1. Since our alphabet is finite, after a finite
number of steps, the sequence of sets Yv,m stabilizes to a set Yv.
Let Dv be the graph induced by Yv (in particular, Dv contains the
vertex v itself). We call the corresponding subgraph Dv of �G

n the
decoration of v in �G

n .

Remark 4.5 If v = xkyv 0 then the decoration Dv is isomorphic to the
subgraph of �G

k
obtained by considering the alternate action of E \ Ei

and Ei on xk as described above. In fact, in each vertex of Dv the
suffix yv 0 remains unchanged. In particular, the isomorphism is ob-
tained by deleting the last n- k letters of each vertex of Dv. More-
over if the vertex x is a leaf in G, that is, it has only one adjacent
vertex, then it gives rise in �G

n to special cut-vertices which separate
a component that is a loop.
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Example 4.6 Consider the Schreier graph �P3

4
of Fig. 5, where G=P3

is the path on 3 vertices (as represented in Fig. 2). Take the ver-
tex v = 2223, where x = 2 disconnects the path P3 into the two
components (V1, E1) = ({1}, {a}) and (V2, E2) = ({3}, {b}). In parti-
cular, y = 3 2 V2. Let us construct the decoration of v. We let the
generator a act on v obtaining the 8-cycle on the right of v. Now
we let b act on all vertices of this cycle different from v: we obtain
two 2-cycles attached to the vertices 2113 and 2123, a 4-cycle attached
to 2213, together with four loops attached to the remaining vertices of
the 8-cycle. Then we let a act again and we obtain: two loops attached
to the vertices 3113 and 3123, two loops attached to two vertices of
the 4-cycle, and the 2-cycle containing 2313 and 1313. We conclude
by letting b act, what produces the loop attached to the rightmost
vertex 1313.

Roughly speaking, the decoration of v is the subgraph of �P3

4
con-

taining v and all the vertices on the right of v. Notice that such a
subgraph is isomorphic to the subgraph of �P3

3
(Fig. 4) obtained by

taking the vertex 222 and all the vertices on its left.

Notice that by construction every decoration Dv corresponds to a
subgraph that can be disconnected from the Schreier graph just by
removing the vertex v. What said above can be summarized in the
following result.

Proposition 4.7 Let x be a cut-vertex for G. Then, for each n > 2, the
vertex v = xw 2 Vn is a cut-vertex in �G

n for every w 2 Vn-1, and it
separates the decoration Dv from the remaining part of the graph �G

n .

Remark 4.8 There exists a connection between our construction and
a special class of graph products, which allows to give a purely com-
binatorial construction of the Schreier graphs of graph automaton
groups. Actually, this description was our first attempt in defining
the graphs �G

n without observing that �G
n arises from the action of an

automaton group. The construction was inspired by the definition of
Sierpiński graphs (see, for instance, [26] and bibliography therein),
although in order to generate the latter by automata we should use
a partial automaton.

Let G = (V , E) be a finite graph. One can define the n-th automaton
power Gn

a of G as the graph with vertex set Vn and edge set consisting
of pairs of vertices of type

{xtyw, ytxw}, {xtzw, ytzw}, {xn, yn
} (4.1)
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where {x, y} 2 E and z 6= x, y, with t = 0, . . . , n- 1 and |w| = n- t- 1.
It is easy to check that the edges described above are exactly the

edges of �G
n . In fact the connections described by Eq. (4.1) precisely

correspond to the action of the states of the automaton AG on Vn.
Therefore, the graphs �G

n and Gn
a are isomorphic.

4.1 Automorphisms of Schreier graphs of a graph
automaton group

In this subsection we are going to investigate the relation between the
automorphisms of the Schreier graph �G

n and the automorphisms of
the initial graph G = (V , E). Observe that Proposition 4.7 implies that
any nontrivial automorphism of a decoration Dv in �G

n is a nontrivial
automorphism of �G

n fixing v. This observation will lead us to the
description of the full automorphism group of the Schreier graphs
associated with path graphs (Section 4.2). We start with an extension
result.

Proposition 4.9 Let � be an automorphism of G = (V , E), with vertex
set V = {x1, x2, . . . , xk}. Then �n : �G

n ! �G
n defined by

�n(xi1
. . . xin

) = �(xi1
) . . .�(xin

)

is an automorphism of �G
n .

Proof — First of all, notice that the map �n is a bijection by defini-
tion. We have to prove that, if v, v 0 2 Vn are adjacent vertices in �G

n ,
then �n(v) and �n(v 0) are adjacent too.

The adjacency in the graph �G
n are described by the rules from

Eq. (4.1). We have three possibilities: either v = xtyw and v 0 = ytxw,
or v = xtzw and v 0 = ytzw, or v = xn and v 0 = yn, where {x, y} 2 E
and z 6= x, y, with t = 0, 1, . . . , n - 1 and |w| = n - t - 1. Since the
vertices v and v 0 are supposed to be adjacent in �G

n then in all the
three cases described above the vertices x and y are adjacent in G.
This implies that �(x) and �(y) are adjacent in G, because � is an
automorphism of G = (V , E). If v = xtyw and v 0 = ytxw, then

�n(v) = �(x)
t�(y)�n-t-1(w), �n(v

0) = �(y)t�(x)�n-t-1(w);

it follows from Eq. (4.1) that �n(v) and �n(v 0) are adjacent. The other
two cases can be treated analogously. ut
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When the graph G is cyclic, we can prove that actually all auto-
morphisms of �G

n are of this type. Let us denote by D2k the dihedral
group of 2k elements.

Theorem 4.10 Let Ck be the cyclic graph on k vertices. Then

Aut(�Ck
n ) ' Aut(Ck) ' D2k, for each n > 1.

Proof — Observe that for n = 1 the statement is obvious by defi-
nition of �Ck

1
. Therefore, we assume n > 2. Let V = {1, . . . , k} be the

vertex set of Ck = (V , E). Observe that in �Ck
n one has kn-1 sets of

vertices of type Vk
w = {1w, . . . , kw}, with w 2 Vn-1, each yielding a

copy of Ck in �Ck
n . This property can be obtained by taking t = 0 in

the rule {xtyw, ytxw} described in Eq. (4.1). Moreover, one has a copy
of Ck consisting of the vertices labeled by {1n, 2n, . . . , kn

}, according
to the rule {xn, yn

} in Eq. (4.1).
Let ' be an automorphism of �Ck

n . First of all, we want to prove
that the set X = {1n, . . . , kn

} is invariant under the action of '. To
prove that, we show that a vertex of �Ck

n is the unique common ver-
tex of two copies of Ck if and only if it belongs to X.

In order to avoid heavy notation, we omit here and in the sequel to
specify every time that sums and differences must be taken modulo k.
We denote by ei the generator associated with the edge (i, i+1) of Ck.
It follows from Eq. (4.1) that the neighbours of in in �Ck

n are exactly
the vertices (i + 1)in-1, (i - 1)in-1 (together with in, they belong
to the copy of Ck associated with Vk

in-1
) and the vertices (i - 1)n,

(i+ 1)n (together with in, they belong to the copy of Ck given by X).
Therefore, for n > 2, the vertices of X have the required property. We
have to prove that no other vertex has this property.

Notice that a vertex of type xtyw or xtzw, with t = 1 and {x, y} 2 E,
{x, z} 62 E, has less than four distinct neighbours according to Eq. (4.1),
and so it cannot be the unique common vertex of two copies of Ck.
Hence, for n = 2, our characterization of X is proved. From now, we
assume n > 3 and we only consider vertices of type xtyw or xtzw
for 2 6 t 6 n- 1.

We want to prove that a vertex of this type cannot be the unique
common vertex of two copies of Ck, although it has four distinct
adjacent vertices in �Ck

n .
Let us start by considering words of type is(i ± 1)w, with s > 2

and w possibly empty (i.e., words starting with a block of i’s followed
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by a neighbour of i).
Let us focus our attention on the case is(i+ 1)w (the case is(i- 1)w

is analogous). Its distinct neighbours are:

• (i+ 1)is-1(i+ 1)w, via the action of e-1

i
, and (i- 1)is-1(i+ 1)w,

via the action of ei-1 (together with the vertex is(i+ 1)w, they
both belong to the copy of Ck associated with Vk

is-1(i+1)w
);

• (i + 1)siw, via the action of ei, and (i - 1)s(i + 1)w, via the ac-
tion of e-1

i-1
.

We claim that is(i + 1)w, (i + 1)siw and (i - 1)s(i + 1)w do not be-
long together to a copy of Ck. In particular we claim that we cannot
start from is(i + 1)w , pass to (i + 1)siw and go back in k - 1 steps
to is(i+ 1)w passing in the last step through (i- 1)s(i+ 1)w by avoid-
ing vertex repetitions.

Notice that by applying ei to is(i + 1)w we get (i + 1)siw. Such a
vertex belongs to the copy of Ck corresponding to Vk

(i+1)s-1iw
(its

neighbours in this copy of Ck are obtained by applying the gener-
ators e-1

i+1
and ei). The other cycle to which the vertex should be-

long must be obtained by applying the generator ei+1 and e-1

i
. By

using the latter we go back to is(i + 1)w, by using the former we
get (i + 2)siw. In the same way by applying k - 2 times the genera-
tors we get a sequence of vertices until we get (i - 1)siw. However,
this vertex is not equal to the vertex (i- 1)s(i+ 1)w, which was sup-
posed to be the last vertex in our copy of Ck. Hence we cannot go
back in k steps to is(i+ 1)w.

Consider now vertices of type iszw, with s > 2, z 6= (i± 1) and w
possibly empty (i.e., words starting with a block of i’s followed by a
letter non adjacent to i in Ck). It can be easily seen that such vertices
have four distinct neighbours: the vertices (i ± 1)is-1zw (together
with iszw, they belong to the copy of Ck associated with Vk

is-1zw
),

and the vertices (i± 1)szw. For the latter pair of vertices, one can use
the same argument as above to show that they cannot live, together
with iszw, in a copy of Ck.

We have thus proved our characterization of X for each n, which
implies that X is invariant under the action of '.

Now suppose that X is fixed (not only invariant) by '. It is pos-
sible to prove by induction on n that in this case ' is the trivial
automorphism. The key idea is that the graph �Ck

n is obtained by
gluing together, in a suitable way, k copies of the graph �Ck

n-1
, each
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consisting of the vertex set Gi = {wi : w 2 Vn-1
}, with i = 1, . . . , k.

We have to consider now the case where X is not fixed by '. Let us
denote by 'X the automorphism of Ck defined by putting 'X(i) = j

if '(in) = jn. Now, let  be the automorphism of �Ck
n induced by 'X

as in Proposition 4.9. By definition, the composition of ' and  -1

gives an automorphism of �Ck
n fixing X. By the previous discussion,

we get ' =  , and the thesis follows. ut

From a geometric point of view inherited from Ck via Proposi-
tion 4.9, a nontrivial automorphism of �Ck

n is a composition of re-
flections around the axis of the path connecting vertices of type in

and (i+ 1)n, with rotations by 2⇡/k.

Example 4.11 In Fig. 6 the graphs �C3

2
(on the left), �C3

3
(in the mid-

dle) and �C4

2
(on the right) are depicted (notice that the automaton as-

sociated with the graph C3 is represented in Case (3) of Example 3.6).
It can be easily seen that

Aut(�C3

2
) = Aut(�C3

2
) = D6 and Aut(�C4

2
) = D8.

Looking, for instance, at the copy G2 of �C3

2
contained in �C3

3
, we see

that when passing from the level 2 to the level 3 the edge {22, 11} (resp.
{22, 33}) produces the edges {221, 112} and {222, 111} (resp. {223, 332}

and {222, 333}) connecting the copy G2 with the copy G1 (resp. G3);
on the other hand, the edges {222, 112} and {222, 332} do not appear
in �C3

3
.

11

22 33

44

111 222

333

113

331

221 112

332

223

33

13

31

11

21 12

22

32

23

G
1 G

2

G
3

Figure 6: The graphs �C3

2
, �C3

3
and �C4

2
.
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Remark 4.12 The previous theorem can be used to show that each
isomorphism class of infinite Schreier graphs associated with the
action of the group GCk

contains finitely many graphs. In fact any
isomorphism of infinite graphs induces an automorphism of finite
graphs �Ck

n and, since the number of such automorphisms is bound-
ed, one gets the assert. The same phenomenon have been already
noticed in [7] for the Hanoi Towers group.

4.2 The case of a path graph Pk

In this subsection, we give a precise description of the diameter and
of the automorphism group of the Schreier graph �G

n in the case
where G is a path graph.

A path Pk on k vertices, that we denote by {1, . . . , k}, is a tree with
two leaves and k- 2 vertices of degree 2 (see Fig. 7). We will call ex-
tremal the edges containing the two leaves (denoted by e1 and ek-1)
and internal the other ones. We have already remarked in Exam-
ple 3.6 that the group GP2

is isomorphic to Z (whose n-th Schreier
graph is a cyclic graph of length 2n) and that the group GP3

is the
so-called Tangled odometer group (whose first four Schreier graphs
are drawn in Fig. 4 and Fig. 5).

Given a graph G = (V , E), we denote by d(u, v) the geodesic dis-
tance between u and v, that is, the length of a shortest path in G
connecting u and v. Then the diameter of G is defined as

diam(G) = max{d(u, v) : u, v 2 V}.

Pk

1 2 3 k - 1 k

e1 e2
ek-1

Figure 7: The path graph Pk.

First we want to understand the structure of the graphs �Pk
n .

Fix k > 3. Since Pk is a tree, all its k - 2 vertices of degree two are
cut-vertices, and so, according to Proposition 4.7 they give rise to cut-
vertices in �Pk

n . The two leaves correspond to loops (see Remark 4.5).

Example 4.13 The Schreier graphs �P4
n , for n = 1, 2, 3 are shown

in Fig. 8 and Fig. 9.
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1 2 3 4

22

11

33

44

41 14

Figure 8: The Schreier graphs �P4

1
and �P4

2
.

222

111

333
444

414141

221 334

Figure 9: The Schreier graph �P4

3
.

Notice that in this case we can observe a “wedge”shape of the Sch-
reier graphs, contrary to the straight shape of the graphs �P3

n shown
in Fig. 4 and Fig. 5. This property depends on the existence of an
internal edge in P4, which does not appear in P3.

Our aim is to describe how one can recursively construct the
graph �Pk

n starting from �Pk

n-1
. Following [5], we can proceed as fol-

lows.
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We take k copies of �Pk

n-1
and append to the end of the vertices of

the i-th copy the letter i, for i = 1, . . . , k. Then, for each i = 2, . . . , k-1,
we remove the edges

{in, (i- 1)n-1i} and {in, (i+ 1)n-1i}.

We also remove the edges

{1n, 2n-11} and {kn, (k- 1)n-1k}.

Finally, for i = 1, . . . , k - 1, we join the i-th and (i + 1)-th copies by
adding the edges

{in, (i+ 1)n} and {(i+ 1)n-1i, in-1(i+ 1)}.

The last operation gives rise to new cycles of doubled length with
respect to the level n- 1.

Example 4.14 In Fig. 10 the construction of �P4

3
starting from 4

copies of �P4

2
is shown. The copies are separated by dotted lines;

the deleted edges are represented by dashed lines; the new edges
producing cycles of length 8 are in bold lines.

222
111

333
444

332 223

221

112 443

334

141 414

copy 1

copy 2 copy 3

copy 4

Figure 10: The construction of �P4

3
from �P4

2
.
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Recall that each generator ei, i = 1, . . . , k - 1 corresponds to an
edge of Pk connecting two consecutive vertices i and i + 1 (Fig. 7).
More effectively, the action of ei on vertices of types wxv 2 Vn with

w 2 {i, i+ 1}
k, x 6= i, i+ 1

and v arbitrary (with x, v possibly empty) gives rise to a cycle of
length 2k, since ei acts on {i, i + 1}

k like an Adding machine.
For i = 1, . . . , k- 2, such cycles share vertices of type (i+ 1)kxv with
cycles corresponding to the action of the generator ei+1, which is
the only other generator that acts nontrivially on the letter i + 1. In
particular, maximal cycles in �Pk

n are those containing the vertices of
type in: for i = 2, . . . , k - 2, such vertices belong to the two cycles
of length 2n and labeled by ei and ei+1, whereas for i = 1 (resp.
i = k - 1) the vertex in belong to the unique maximal cycle labeled
by e1 (resp. ek-1). It follows that �Pk

n has a cactus structure, where
adjacent cycles can be labeled by generators which correspond to
incident edges in Pk.

Let us analyze the behaviour of maximal cycles when construct-
ing �Pk

n from �Pk

n-1
. Notice that cycles of �Pk

n-1
labeled by ei contain-

ing vertices of type wxv 2 Vn-1 with w 2 {i, i + 1}
k and x 6= i, i + 1

nonempty, also appear in �Pk
n : more precisely, they correspond to

cycles containing vertices of type wxvy 2 Vn with w 2 {i, i + 1}
k,

y = 1, . . . , k and x 6= i, i + 1 nonempty. Maximal cycles in �Pk

n-1
,

which are the cycles containing the vertices in-1, appear in �Pk
n . They

correspond to nonmaximal cycles containing vertices in-1x 2 Vn,
for x 6= i, i + 1 nonempty. For x = i, i + 1 the generator ei gives
rise to a new bigger (doubled length) unique cycle of length 2n

in �Pk
n . All these maximal cycles in �Pk

n are connected through the
path 1n, 2n, . . . , kn (see, for instance, the path 13, 23, 33, 43 in Fig. 10).

As explained in Fig. 11 and Fig. 12 each new maximal cycle gen-
erated by ei has attached decorations isomorphic to the decorations
appended to vertices belonging to the biggest cycle labeled by ei

in �Pk

n-1
. More precisely, the decorations Dv and Dw corresponding

to the vertices v = (i + 1)n-1i and w = in-1(i + 1) of the cycle of
length 2n generated by ei in �Pk

n are isomorphic to the decorations
attached to the vertices (i + 1)n-1 and in-1, respectively, both be-
longing to the cycle of length 2n-1 generated by ei in �Pk

n-1
.
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�
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n�1

�
P

k
n

e
1

e
1
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2
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n�2
1 2

n�1

� = 2
n�1 � = 2

n�1

2
n�1

1 2
n

2
n�2

12

2
n�2

11

� = 2
n

Figure 11: Change of cycles of extremal edges from level n - 1 to
level n.
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Figure 12: Change of cycles of internal edges from level n - 1 to
level n.
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It is possible to prove by induction that the diameter of �Pk
n is

realized by the distance of the two vertices ak,n and bk,n, where

ak,n =

�
(1k)(n-1)/21 for odd n

(1k)n/2 for even n

bk,n =

�
(k1)(n-1)/2k for odd n

(k1)n/2 for even n.

For instance, one has a4,3 = 141 and b4,3 = 414 in Fig. 9, with
d(a4,3, b4,3) = 19.

In fact, for n = 1 the statement clearly holds. Suppose now that n

is odd (the case n even is similar) and that ak,n-1 = (1k)(n-1)/2 and
bk,n-1 = (k1)(n-1)/2 realize the diameter in �Pk

n-1
. Notice that a path

from ak,n-1 to bk,n-1 must visit the vertices 2n-1 and (k - 1)n-1.
In particular ak,n-1 is the vertex in �Pk

n-1
whose distance from the

vertex 2n-1 is maximal. Analogously bk,n-1 is the vertex in �Pk

n-1

whose distance from the vertex (k- 1)n-1 is maximal.
Therefore, passing from �Pk

n-1
to �Pk

n we have that ak,n = ak,n-11

is the vertex with maximal distance from 2n-11 among the vertices
belonging to the copy 1 of �Pk

n-1
within �Pk

n ; similarly, bk,n = bk,n-1k

is the vertex with maximal distance from (k - 1)n-1k among the
vertices belonging to the copy k of �Pk

n-1
within �Pk

n .
It follows that the diameter of �Pk

n is realized by a path from ak,n
to bk,n given by the sequence of paths

ak,n !p1
2n-11 ! 2n !p⇤ (k- 1)n

! (k- 1)n-1k !p2
bk,n.

(4.2)

Observe that transition p⇤ is the path 2n, 3n, . . . , (k - 1)n whose
length is k - 3. Moreover, inside the transitions p1 and p2 there are
the transitions

(k- 1)n-11, (k- 2)n-11, . . . , 3n-11, 2n-11 (4.3)

and
(k- 1)n-1k, (k- 2)n-1k, . . . , 3n-1k, 2n-1k, (4.4)

respectively, which are the analogue at the level n - 1 of the transi-
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tion p⇤ described above, so that each of them has length k - 3: they
come from the previous level and are contained in the subgraphs
attached at 2n and (k - 1)n, respectively. More precisely, the projec-
tion of the path p1 on �Pk

n-1
consists of a path p 0

1
from (1k)(n-1)/2

to (k- 1)n-1 followed by the path p 00
1

given by the projection of (4.3).
Similarly, the projection of the path p2 on �Pk

n-1
consists of the path p 00

2

given by the projection of (4.4) followed by the path p 0
2

from 2n-1

to (k1)(n-1)/2.

Denote by `(p) the length of the path p and observe that

`(p 0
1
) + `(p⇤) + `(p

0
2
) = diam(�Pk

n-1
).

We are now ready to prove the following theorem.

Theorem 4.15 Let Pk be the path graph on k vertices, with k > 3. Then,
for every n > 1:

diam(�Pk
n ) = 2n+1 + (k- 1)(2n- 1)- 4n.

Proof — Put �k(n) := diam(�Pk
n ). As in the preliminary discus-

sion preceding this theorem, we assume that n is odd, the case of an
even n being similar. By looking at Eq. (4.2), we get �k(n) =

P
5

i=1
di,

where
d1 := d(ak,n, 2n-11) = `(p1),

d2 := d(2n-11, 2n),

d3 := d(2n, (k- 1)n) = `(p⇤),

d4 := d((k- 1)n, (k- 1)n-1k),

d5 := d((k- 1)n-1k, bk,n) = `(p2).

From what we said above, we have:

d1 + d3 + d5 = (`(p 0
1
) + `(p 00

1
)) + `(p⇤) + (`(p 00

2
) + `(p 0

2
))

= �k(n- 1) + 2(k- 3).

Since the vertices 2n-11 and 2n (resp. (k- 1)n and (k- 1)n-1k) be-
long to the maximal cycle generated by e1 (resp. ek-1) and they are
in opposite positions within this cycle, we have d2 = d4 = 2n-1.
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Therefore, we obtain the following recursive description of �k(n):
�
�k(n) = �k(n- 1) + 2(k- 3) + 2n

�k(1) = k- 1.

A direct computation gives:

�k(n) = �k(1) + 2(n- 1)(k- 3) +
nX

i=2

2i

= 2n+1 + (k- 1)(2n- 1)- 4n.

The statement is proved. ut

In the remaining part of the paper, we give a precise description of
the automorphism group of the Schreier graph �Pk

n .
First of all, notice that a cycle of a given size must be either in-

variant or moved to another cycle of the same size under the action
of an automorphism. Moreover, maximal cycles (of length 2n) gener-
ated by extremal edges are the only two maximal cycles which are
connected to only one cycle of the same size. This implies that they
are either invariant or swapped by an automorphism. Let us denote
by An the set of automorphisms of �Pk

n leaving invariant the two
maximal cycles labeled with extremal edges, and by Bn the set of
automorphisms of �Pk

n swapping them.
If � 2 An, it is possible to prove that actually � fixes the vertices

in every cycle labeled with internal edges. The claim easily holds
for maximal cycles labeled by internal edges (see for instance the cy-
cle of length 8 containing the vertices 23 and 33 in Fig. 9). In fact,
they contain a pair of adjacent vertices attached to cycles of the same
length and they cannot be swapped; therefore they must be fixed,
being invariant cycles with two fixed vertices. As a consequence, �
acts nontrivially only on the decorations attached to the maximal cy-
cles generated by the action of the internal generators. Then � can be
characterized by the automorphisms that it induces on such decora-
tions. Since such decorations already appear in �Pk

n-1
with the same

labels and their automorphisms extend to automorphism of �Pk

n-1

in An-1, we can conclude by using an inductive argument that all
cycles labeled by internal edges in �Pk

n must be fixed by any element
in An.
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On the other hand, cycles of length greater or equal to 4 generated
by the action of the extremal generators e1 and ek-1 (for instance,
the cycles of length 8 in Fig. 9 containing the vertices 13 and 43)
give rise to blocks that have nontrivial symmetries around the ver-
tices 2tw, 2t-11w and (k- 1)tw, (k- 1)t-1kw. Such symmetries are
generated by the reflection around the axis connecting such vertices
(i.e., that keep such vertices fixed). As an example, again in Fig. 9, one
can consider in the leftmost cycle of length 8 the symmetry around
the axis connecting the vertices 222 and 221. This implies that each
cycle of length greater or equal to 4 generated by the action of e1

and ek-1 gives rise to a nontrivial automorphism of order 2. Observe
that such automorphisms commute, since each one acts nontrivially
on a prescribed block and fixes the others. In particular, if � 2 An

then it is a composition of these reflections.
Now let us denote by  the automorphism of �Pk

n induced, in
the sense of Proposition 4.9, by the nontrivial automorphism of Pk

switching the vertex i with the vertex k - i + 1. Clearly  2 Bn

and  2 = id. Moreover, for any ' 2 Bn we have that the composi-
tion of  with ' is in An. In particular, every automorphism of �Pk

n

is a composition of the aforementioned reflections in An and pos-
sibly  . Moreover,  commutes with these reflections. We are now
ready to prove the following result.

Theorem 4.16 Let Pk be the path graph on k vertices, with k > 3. Then,
for every n > 2, the group of automorphisms of �Pk

n is Z
�k(n)+1

2
, where

�k(n) =
2(kn-1 - 2kn-2 + 1)

k- 1

is the number of cycles of length greater or equal to 4 in �Pk
n generated by

the action of the generators e1 and ek-1.

Proof — It follows from the above discussion that we have to count
the number of cycles of length greater or equal to 4 in �Pk

n generated
by the action of e1 and ek-1. We proceed by induction in order to
prove that such a number coincides with �k(n). For n = 2, we just
have the two cycles of length 4 with vertex sets

{11, 22, 12, 21} and {(k- 1)2, k2, (k- 1)k, k(k- 1)},

with the nontrivial automorphisms flipping 11, 12 and k2, k(k - 1).
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Now, passing from �Pk

n-1
to �Pk

n , all cycles generated by e1 and ek-1

are preserved just appending a final letter in {1, . . . , k} to the vertices,
except the maximal cycle in �Pk

n-1
containing 2n-1, and the maximal

cycle in �Pk

n-1
containing (k- 1)n-1, since each of them will produce

a bigger maximal cycle in �Pk
n (the one containing 2n-11 and 2n, and

the one containing (k - 1)n-1k and (k - 1)n), so that each of them
gives rise to k- 1 cycles to be taken into account at level n. Therefore,
we obtain the following recursive formula for �k(n):

�
�k(n) = k�k(n- 1)- 2
�k(2) = 2.

A direct computation gives:

�k(n) = kn-2�k(2)- 2
n-3X

i=0

ki =
2(kn-1 - 2kn-2 + 1)

k- 1
.

The claim follows by adding to the �k(n) automorphisms the one
induced, in the sense of Proposition 4.9, by the nontrivial automor-
phism of Pk switching the vertex i with the vertex k- i+ 1. ut

Remark 4.17 Theorem 4.15 and Theorem 4.16 do not work for k = 2.
In this case, we get the Adding machine (see Case (1) in Example 3.6)
whose Schreier graphs are cycles. More precisely, the n-th Schreier
graph �P2

n is the cyclic graph C2n , whose diameter is 2n-1 and whose
automorphism group is isomorphic to the dihedral group D

2n+1 .
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