On a Maximal Subgroup of the Affine General Linear Group of GL(6,2)

Ayoub B.M. Basheer - Jamshid Moori

(Received Apr. 30, 2020; Accepted Nov. 2, 2020 - Communicated by F. de Giovanni)

Abstract

The affine general linear group $2^{5}: \mathrm{GL}(5,2)$ of $\mathrm{GL}(6,2)$ has 6 conjugacy classes of maximal subgroups. The largest maximal subgroup is a group of the form $$
2_{+}^{1+8}: \mathrm{GL}(4,2):=\overline{\mathrm{G}} .
$$

In this paper we firstly determine the conjugacy classes of $\overline{\mathrm{G}}$ using the coset analysis technique. The structures of inertia factor groups were determined. These are the groups $\mathrm{H}_{1}=\mathrm{H}_{6}=\mathrm{GL}(4,2) \simeq \mathrm{A}_{8}, \mathrm{H}_{2}=\mathrm{H}_{3}=2^{3}: \mathrm{GL}(3,2), \mathrm{H}_{4}=2_{+}^{1+4}: \mathrm{GL}(2,2)$ and $\mathrm{H}_{5}=\mathrm{GL}(3,2)$. We then determine the Fischer matrices and apply the CliffordFischer theory to compute the ordinary character table of $\overline{\mathrm{G}}$. The Fischer matrices of $\overline{\mathrm{G}}$ are all listed in this paper. These matrices satisfy some additional interesting properties (Lemmas 3 and 4) comparing to the Fischer matrices of other group extensions. Using information on conjugacy classes, Fischer matrices and ordinary and projective tables of $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{6}$, we concluded that we need to use the ordinary character tables of all the inertia factor groups to construct the character table of $\overline{\mathrm{G}}$. The character table of $\overline{\mathrm{G}}$ is a 69×69 complex matrix and is given here (in the format of Clifford-Fischer theory) as Table 7 .

Mathematics Subject Classification (2020): 20C15, 20C40 Keywords: group extension; extra-special p-group; inertia group; Fischer matrix; character table

1 Introduction

Let $G L(n, q)$ be the finite general linear group consisting of $n \times n$ invertible matrices over the Galois field \mathbb{F}_{q}. It is well-known that the affine general linear subgroup of $\mathrm{GL}(\mathrm{n}, \mathrm{q})$, is a group of the form $q^{n-1}: G L(n-1, q)$. Starting with the extra-special 2-group $P_{n}:=2_{+}^{1+2 n}$, the authors were able to write a GAP [14] subroutine to generate a group of the form $2_{+}^{1+2 \times 2 n}: G L(2 n, 2):=\bar{G}_{2 n}$, for many values of n. We are interested in studying the group $\overline{\mathrm{G}}_{2 n}$ in general and investigating its properties and internal structure, and find a solid theoretical proof for the existence of such group in general for any $n \in \mathbb{N}$. However this could be far away and hence for better understanding of the situation one needs to consider various special cases first and see if one could generalize some of the results obtained from the special cases to the generic case. In the special case, for small values of n, we used GAP to construct the group $\overline{\mathrm{G}}_{2 n}$ and we tested the existence of these groups inside some other bigger groups. In fact we found that for such special cases the group $\bar{G}_{2 n}$ to be sitting inside the affine general linear group $2^{2 n+1}: G L(2 n+1,2)$ of $G L(2 n+2,2)$. This gives indication that this result may be true in general for any $n \in \mathbb{N}$. Also another interesting result that we found for the special cases of n, is that the action of $\bar{G}_{2 n}$ on the conjugacy classes of its kernel $N=2_{+}^{1+2 \times 2 n}$ gives six orbits of lengths

$$
1,2^{2 n+1}-2 \text { (twice), } 2\left(2^{2 n}-1\right)\left(2^{2 n-1}-1\right), 2^{4 n}-2^{2 n} \text { and } 1 \text {, }
$$

while the action of $\overline{\mathrm{G}}_{2 n}$ on the irreducible characters of $\mathrm{N}=2_{+}^{1+2 \times 2 n}$ gives six orbits of lengths

$$
\text { 1, } 2^{2 n}-1 \text { (twice), }\left(2^{2 n}-1\right)\left(2^{2 n-1}-1\right), 2^{4 n-1}-2^{2 n-1} \text { and } 1 .
$$

The corresponding inertia factor groups are

$$
\begin{gathered}
\mathrm{GL}(2 \mathrm{n}, 2), 2^{2 \mathrm{n}-1}: \mathrm{GL}(2 \mathrm{n}-1,2) \text { (twice), } \\
\overline{\mathrm{G}}_{2 n-2}=2_{+}^{1+2(2 n-2)}: \mathrm{GL}(2 n-2,2), \mathrm{GL}(2 n-1,2) \text { and } \mathrm{GL}(2 n, 2) .
\end{gathered}
$$

We conjecture here that the above results are also true in general.
In this paper we pay our attention to the special case

$$
\overline{\mathrm{G}}_{4}=2_{+}^{1+8}: \mathrm{GL}(4,2):=\overline{\mathrm{G}},
$$

which is a maximal subgroup, of index 31 , of the affine general linear group $2^{5}: G L(5,2)$ of $G L(6,2)$. In fact with the help of GAP [14], we were able to determine the structures of all the maximal subgroups of the affine general linear group $M=2^{5}: \mathrm{GL}(5,2)$ of $\mathrm{GL}(6,2)$. Representatives M_{i} of these maximal subgroups can be taken as in Table 1 .

Table 1: Maximal subgroups $M=2^{5}: G L(5,2)$

M_{i}	$\left\|M_{\mathfrak{i}}\right\|$	$\left[M: M_{i}\right]$
$2_{+}^{1+8}: G L(4,2)$	10321920	31
$2^{4+5}: G L(4,2)$	10321920	31
$G L(5,2)$	9999360	32
$2^{2+9}:\left(\mathrm{GL}(3,2) \times \mathrm{S}_{3}\right)$	2064384	155
$2^{9}:\left(\mathrm{GL}(3,2) \times \mathrm{S}_{4}\right)$	2064384	155
$\left(2^{5}: 31\right): 5$	4960	64512

Remark 1 We would like to mention here that the work on the maximal subgroup $M_{2}=2^{4+5}: G L(4,2)$ of M, which has the same size as of our group $\overline{\mathrm{G}}=2_{+}^{1+8}: \mathrm{GL}(4,2)$, has been completed and submitted (see [11]).

In this paper we are interested in determining the conjugacy classes, inertia factor groups and calculating the Fischer matrices and hence the ordinary character table of $\overline{\mathrm{G}}=2_{+}^{1+8}: \mathrm{GL}(4,2)$ using the coset analysis technique together with the theory of Clifford-Fischer Matrices. This is a very good example for the applications of Clif-ford-Fischer theory since the kernel of the extension is non-abelian group. Not many examples of these type have been studied via Clif-ford-Fischer theory. The Fischer matrices of \bar{G} have all been determined in this paper and their sizes range between 2 and 11. In addition to the common properties that the Fischer matrices of any extension satisfy, the Fischer matrices of our group \bar{G} satisfy further interesting properties (Lemmas 3 and 4). The character table of $\overline{\mathrm{G}}$ is a 69×69 complex valued matrix and it is partitioned into six blocks corresponding to the six inertia factor groups $\mathrm{H}_{1}=\mathrm{H}_{6}=\mathrm{GL}(4,2)$, $\mathrm{H}_{2}=\mathrm{H}_{3}=2^{3}: \mathrm{GL}(3,2), \mathrm{H}_{4}=\overline{\mathrm{G}}_{2}=2_{+}^{1+4}: \mathrm{GL}(2,2)$ and $\mathrm{H}_{5}=\mathrm{GL}(3,2)$ (see Section 3). If one only interested in the calculation of the character table, then it could be computed by using GAP or Magma [12] and
the generators $\overline{\mathrm{g}}_{1}$ and $\overline{\mathrm{g}}_{2}$ of $\overline{\mathrm{G}}$, given below. But Clifford-Fischer Theory provides many other interesting information on the group and on the character table, in particular the character table produced by Clifford-Fischer theory is in a special format that could not be achieved by direct computations using GAP or Magma. Also providing various examples for the applications of Clifford-Fischer theory to both split and non-split extensions is making sense, since each group requires individual approach. The readers (particularly young researchers) will highly benefit from the theoretical background required for these computations. GAP and Magma are computational tools and would not replace good powerful and theoretical arguments.
Now with the help of GAP we were able to construct the group \bar{G} as a permutation group on 32 points. In fact $\bar{G} \leqslant A_{32}$ with large index. The following two elements $\overline{\mathrm{g}}_{1}$ and $\overline{\mathrm{g}}_{2}$ generate $\overline{\mathrm{G}}$

$$
\begin{gathered}
\bar{g}_{1}=(1,14,24,12,29,27,8)(2,18,28,10,31,23,6) \\
(3,32,19,21,7,26,20,4,30,15,25,5,22,16)(9,11) \\
\overline{\mathrm{g}}_{2}=(1,27,25,10,13,30,6,24,26,18,29,19) \\
(2,23,21,12,17,32,8,28,22,14,31,15)(3,9,5,20)(4,11,7,16)
\end{gathered}
$$

with $o\left(\bar{g}_{1}\right)=14$, $o\left(\bar{g}_{2}\right)=12$ and $o\left(\bar{g}_{1} \bar{g}_{2}\right)=14$, where we write $\left(a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right)$ for the permutation ($a_{1} \quad a_{2} \quad a_{3} \quad \cdots \quad a_{k}$).

Let $N:=2_{+}^{1+8}$ and $G:=G L(4,2) \simeq \overline{\mathrm{G}} / 2_{+}^{1+8}$. Then $\overline{\mathrm{G}}=\mathrm{N}: \mathrm{G}$. Since \bar{G} can be constructed in GAP [14], it is easy to obtain all its normal subgroups. In fact \bar{G} contains 6 normal subgroups of orders $1,2,32,32,512$ and 10321920. The normal subgroup of order 512 is an extra-special 2-group isomorphic to N . The following elements $n_{1}, n_{2}, \ldots, n_{8}$ are permutations acting on 32 points that generate N .

$$
\begin{aligned}
\mathrm{n}_{1}= & (1,5)(2,7)(3,6)(4,8)(9,10)(11,12)(13,22)(14,16)(15,24) \\
& (17,26)(18,20)(19,28)(21,29)(23,30)(25,31)(27,32), \\
n_{2}= & (1,13)(2,17)(3,21)(4,25)(5,22)(6,29)(7,26)(8,31)(9,15) \\
& (10,24)(11,19)(12,28)(14,23)(16,30)(18,27)(20,32), \\
n_{3}= & (1,9)(2,11)(3,14)(4,18)(5,10)(6,16)(7,12)(8,20)(13,15) \\
& (17,19)(21,23)(22,24)(25,27)(26,28)(29,30)(31,32), \\
n_{4}= & (1,3)(2,4)(5,6)(7,8)(9,14)(10,16)(11,18)(12,20)(13,21) \\
& (15,23)(17,25)(19,27)(22,29)(24,30)(26,31)(28,32), \\
\mathrm{n}_{5}= & (13,17)(15,19)(21,25)(22,26)(23,27)(24,28)(29,31)(30,32), \\
\mathrm{n}_{6}= & (9,11)(10,12)(13,17)(14,18)(16,20)(21,25)(22,26)(29,31), \\
n_{7}= & (5,7)(6,8)(9,11)(13,17)(14,18)(21,25)(24,28)(30,32),
\end{aligned}
$$

$$
n_{8}=(1,2)(6,8)(10,12)(14,18)(15,19)(21,25)(22,26)(30,32) .
$$

Using GAP we have found that N has only one complement in \bar{G} and hence can be identified with G. The following two elements g_{1} and g_{2} are permutations acting on 32 points that generate the complement $\mathrm{G}=\mathrm{GL}(4,2)$.

$$
\begin{gathered}
\mathrm{g}_{1}=(3,6,9,10)(4,8,11,12)(5,16)(7,20) \\
(15,24,21,29)(19,28,25,31)(22,30)(26,32), \\
\mathrm{g}_{2}=(3,14)(4,18)(5,27)(6,17)(7,23)(8,13)(10,25)(12,21) \\
(15,20)(16,19)(22,24)(26,28) .
\end{gathered}
$$

with $\mathrm{o}\left(\mathrm{g}_{1}\right)=4, \mathrm{o}\left(\mathrm{g}_{2}\right)=2$ and $\mathrm{o}\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right)=15$.
For the notation used in this paper and the description of Clif-ford-Fischer theory technique, we follow [1],[2],[3],[4],[5],[6],[7],[8], [9],[10],[11].

2 Conjugacy classes of $\overline{\mathrm{G}}=2_{+}^{1+8}: \mathrm{GL}(4,2)$

In this section we determine the conjugacy classes of \bar{G} using the coset analysis technique (see [1], or [16] and [17] for more details) as we are interested to organize the classes of $\overline{\mathrm{G}}$ corresponding to the classes of G. Recall that N is a group of order $2^{1+8}=512$ and has $2^{8}+1=257$ conjugacy classes. The action of $N=\left\langle n_{1}, n_{2}, \ldots, n_{8}\right\rangle$ on the identity coset $\mathrm{N} 1_{\mathrm{G}}=\mathrm{N}$ produces the 257 conjugacy classes of N , where we know that N has

- singleton conjugacy class consisting of 1_{N},
- singleton conjugacy class consisting of the central involution σ of N ,
- 135 conjugacy classes, each class consists of two non-central involutions,
- 120 conjugacy classes, each class consists of two elements each is of order 4.
Using GAP, the action of $\overline{\mathrm{G}}=\left\langle\overline{\mathrm{g}}_{1}, \overline{\mathrm{~g}}_{2}\right\rangle$ on these 257 orbits
- leaves invariant $\left\{1_{\mathrm{N}}\right\}:=\Omega_{1}$ and $\{\sigma\}:=\Omega_{2}$,
- fuses 15 conjugacy classes (each class consists of two non-central involutions) together to form a new orbit Ω_{3} of length 30,
- fuses 15 conjugacy classes (each class consists of two non-central involutions) together to form a new orbit Ω_{4} of length 30,
- fuses 105 conjugacy classes (each class consists of two non-central involutions) together to form a new orbit Ω_{5} of length 210,
- fuses the 120 orbits of elements of order 4 altogether into a single orbit Ω_{6}.

Thus in $\overline{\mathrm{G}}$, we get six conjugacy classes of sizes $1,1,30,30,210$ and 240 . Similarly one can apply this to the other 13 cosets $N g_{i}$, where g_{i} is a representative of a conjugacy class of G (for the classes of G, we refer to page 22 of the Atlas). Corresponding to the 14 conjugacy classes of $\mathrm{G}=\mathrm{GL}(4,2)$, we obtain 69 conjugacy classes for $\overline{\mathrm{G}}$. We list these classes in Table 2, where the notations used in this table are as in [1],[2],[3],[4],[5],[6],[7].

Table 2: The conjugacy classes of $\overline{\mathrm{G}}=2_{+}^{1+8}: \mathrm{GL}(4,2)$

$\left[g_{i}\right]_{G}$	k_{i}	m_{ij}	$\left[\mathrm{g}_{\mathrm{ij}}\right]_{\overline{\mathrm{G}}}$	$o\left(g_{i j}\right)$	$\left\|\left[g_{i j}\right]_{\bar{G}}\right\|$	$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{\mathrm{ij}}\right)\right\|$
$\mathrm{g}_{1}=1 \mathrm{~A}$	$\mathrm{k}_{1}=257$	$\mathrm{m}_{11}=1$	g_{11}	1	1	10321920
		$\mathrm{m}_{12}=1$	g_{12}	2	1	10321920
		$\mathrm{m}_{13}=1$	g_{13}	2	30	344064
		$\mathrm{m}_{14}=54$	g_{14}	2	30	344064
		$\mathrm{m}_{15}=72$	g_{15}	2	210	49152
		$\mathrm{m}_{16}=72$	g_{16}	4	240	43008
$\mathrm{g}_{2}=2 \mathrm{~A}$	$\mathrm{k}_{2}=65$	$\mathrm{m}_{21}=4$	g_{21}	2	420	24576
		$\mathrm{m}_{22}=4$	g_{22}	2	420	24576
		$\mathrm{m}_{23}=24$	g_{23}	2	2520	4096
		$\mathrm{m}_{24}=24$	g_{24}	2	2520	4096
		$\mathrm{m}_{25}=24$	g_{25}	2	2520	4096
		$\mathrm{m}_{26}=48$	g_{26}	4	5040	2048
		$\mathrm{m}_{27}=32$	g_{27}	4	3360	3072
		$\mathrm{m}_{28}=32$	g_{28}	4	3360	3072
		$\mathrm{m}_{29}=96$	g_{29}	4	10080	1024
		$\mathrm{m}_{2,10}=96$	92,10	4	10080	1024
		$\mathrm{m}_{2,11}=96$	$\mathrm{g}_{2,11}$	4	13440	768
Continued on next page						

$\left[g_{i}\right]_{G}$	k_{i}	m_{ij}	$\left[\mathrm{g}_{\mathrm{ij}}\right]_{\overline{\mathrm{G}}}$	$o\left(g_{i j}\right)$	$\left\|\left[g_{i j}\right]_{\bar{G}}\right\|$	$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{\mathrm{ij}}\right)\right\|$
$\mathrm{g}_{3}=2 \mathrm{~B}$	$\mathrm{k}_{3}=17$	$\mathrm{m}_{31}=16$	g_{31}	2	3360	3072
		$m_{32}=16$	g_{32}	2	3360	3072
		$\mathrm{m}_{33}=96$	933	4	20160	512
		$\mathrm{m}_{34}=96$	g_{34}	4	20160	512
		$\mathrm{m}_{35}=96$	g_{35}	4	20160	512
		$\mathrm{m}_{36}=192$	g_{36}	4	40320	256
$\mathrm{g}_{4}=3 \mathrm{~A}$	$\mathrm{k}_{4}=2$	$\mathrm{m}_{41}=256$	g_{41}	3	28672	360
		$\mathrm{m}_{42}=256$	942	6	28672	360
$\mathrm{g}_{5}=3 \mathrm{~B}$	$k_{5}=17$	$\mathrm{m}_{51}=16$	951	3	17920	576
		$\mathrm{m}_{52}=16$	g_{52}	6	17920	576
		$\mathrm{m}_{53}=96$	g_{53}	6	107520	96
		$\mathrm{m}_{54}=96$	g_{54}	6	107520	96
		$\mathrm{m}_{55}=96$	g_{55}	6	107520	96
		$\mathrm{m}_{56}=192$	g_{56}	12	215040	48
$\mathrm{g}_{6}=4 \mathrm{~A}$	$k_{6}=5$	$\mathrm{m}_{61}=16$	g_{61}	4	20160	512
		$m_{62}=16$	g_{62}	4	20160	512
		$\mathrm{m}_{63}=32$	g_{63}	4	40320	256
		$\mathrm{m}_{64}=32$	g_{64}	4	40320	256
		$\mathrm{m}_{65}=32$	g_{65}	4	40320	256
		$\mathrm{m}_{66}=64$	g_{66}	4	80640	128
		$\mathrm{m}_{67}=64$	g_{67}	4	80640	128
		$\mathrm{m}_{68}=64$	g_{68}	4	80640	128
		$\mathrm{m}_{69}=64$	g_{69}	4	80640	128
		$\mathrm{m}_{6,10}=128$	96,10	8	161280	64
$g_{7}=4 B$	$\mathrm{k}_{7}=2$	$\mathrm{m}_{71}=64$	971	4	161280	64
		$\mathrm{m}_{72}=64$	972	4	161280	64
		$\mathrm{m}_{73}=128$	g_{73}	8	322560	32
		$\mathrm{m}_{74}=128$	g_{74}	8	322560	32
		$\mathrm{m}_{75}=128$	g_{75}	8	322560	32
$\mathrm{g}_{8}=5 \mathrm{~A}$	$\mathrm{k}_{8}=2$	$\mathrm{m}_{81}=256$	g_{81}	5	344064	30
		$\mathrm{m}_{82}=256$	g_{82}	10	344064	30
$\mathrm{g}_{9}=6 \mathrm{~A}$	$\mathrm{k}_{9}=2$	$\mathrm{m}_{91}=256$	g_{91}	6	430080	24
		$\mathrm{m}_{92}=256$	g_{92}	6	430080	24
$g_{10}=6 B$	$k_{10}=5$	$\mathrm{m}_{10,1}=64$	$\mathrm{g}_{10,1}$	6	215040	48
		$\mathrm{m}_{10,2}=64$	$\mathrm{g}_{10,2}$	6	215040	48
		$\mathrm{m}_{10,3}=128$	$\mathrm{g}_{10,3}$	12	430080	24
		$\mathrm{m}_{10,4}=128$	$\mathrm{g}_{10,4}$	12	430080	24
		$\mathrm{m}_{10,5}=128$	$\mathrm{g}_{10,5}$	12	430080	24
$\mathrm{g}_{11}=7 A$	$\mathrm{k}_{11}=5$	$\mathrm{m}_{11,1}=64$	$\mathrm{g}_{11,1}$	7	184320	56
		$\mathrm{m}_{11,2}=64$	$\mathrm{g}_{11,2}$	14	184320	56
		$\mathrm{m}_{11,3}=128$	$\mathrm{g}_{11,3}$	14	368640	28
		$\mathrm{m}_{11,4}=128$	$\mathrm{g}_{11,4}$	14	368640	28
		$\mathrm{m}_{11,5}=128$	$\mathrm{g}_{11,5}$	28	368640	28
Continued on next page						

${ }_{\left[g_{i}\right]_{G}}$	k_{i}	m_{ij}	$\left[g_{i j}\right]_{\bar{G}}$	o (g_{ij})	$\left\|\left[g_{i j}\right]_{\overline{6}}\right\|$	$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{i j}\right)\right\|$
$\mathrm{g}_{12}=7 \mathrm{~B}$	$\mathrm{k}_{12}=5$	$\mathrm{m}_{12,1}=64$	$\mathrm{g}_{12,1}$	7	184320	56
		$\mathrm{m}_{12,2}=64$	$\mathrm{g}_{12,2}$	14	184320	56
		$\mathrm{m}_{12,3}=128$	$\mathrm{g}_{12,3}$	14	368640	28
		$\mathrm{m}_{12,4}=128$	$\mathrm{g}_{12,4}$	14	368640	28
		$\mathrm{m}_{12,5}=128$	$\mathrm{g}_{12,5}$	28	368640	28
$\mathrm{g}_{13}=15 \mathrm{~A}$	$\mathrm{k}_{13}=2$	$\mathrm{m}_{13,1}=256$	913,1	15	344064	30
		$\mathrm{m}_{13,2}=256$	913,2	30	344064	30
$\mathrm{g}_{14}=15 \mathrm{~B}$	$\mathrm{k}_{14}=2$	$\mathrm{m}_{14,1}=256$	$\mathrm{g}_{14,1}$	15	344064	30
		$\mathrm{m}_{14,2}=256$	$\mathrm{g}_{14,2}$	30	344064	30

3 Inertia factor groups of $\bar{G}=2_{+}^{1+8}: G L(4,2)$

We have seen in Section 2 that the action of \bar{G} on N produced six orbits of lengths $1,30,30,210,240$, and 1 . By a theorem of Brauer (for example see Theorem 5.1.1 of [1]), it follows that the action of \bar{G} on $\operatorname{Irr}(\mathrm{N})$ will also produce six orbits. It is well known that any extraspecial p-group of order $p^{1+2 m}$ has $p^{2 m}+1$ irreducible characters ($p^{2 m}$ linear characters of the vector space $p^{2 m}$ are inflated to the full extension $p^{1+2 m}$ and $p-1$ faithful irreducible characters each of degree p^{m}). Thus the group $N=2_{+}^{1+8}$ has 257 irreducible characters in which 256 characters are linear and one unique faithful character θ of degree 16 (the values of θ are as follows: $\theta\left(1_{N}\right)=16$, $\theta(\sigma)=-16$ and $\theta(t)=0$ for any $t \in N \backslash\left\{1_{N}, \sigma\right\}$, where σ is the central involution of N). Using Program C of Seretlo [19] we have found that the orbit lengths of the action of \bar{G} on $\operatorname{Irr}(N)$ are 1, 15, 15, 105, 120 and 1 with corresponding inertia factor groups $H_{1}=G L(4,2)$, $H_{2}=H_{3}=2^{3}: G L(3,2), H_{4}=\bar{G}_{2}=2_{+}^{1+4}: G L(2,2), H_{5}=G L(3,2)$ and $\mathrm{H}_{6}=\mathrm{GL}(4,2)$. As permutation groups acting on 32 points, the inertia factors $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}$ and H_{5} are generated as follows: $\mathrm{H}_{2}=\mathrm{H}_{3}$ $=\left\langle\alpha_{1}, \alpha_{2}\right\rangle, H_{4}=\left\langle\beta_{1}, \beta_{2}\right\rangle$, and $H_{5}=\left\langle\gamma_{1}, \gamma_{2}\right\rangle$, where

$$
\begin{gathered}
\alpha_{1}=(9,32)(10,27)(11,30)(12,23)(14,28)(15,20)(16,19)(18,24), \\
\alpha_{2}=(3,28,27,9,5,16,31)(4,24,23,11,7,20,29) \\
(6,25,10,14,19,26,32)(8,21,12,18,15,22,30), \\
\beta_{1}=(3,5,6)(4,7,8)(10,16,14)(12,20,18)(21,22,29) \\
(23,24,30)(25,26,31)(27,28,32), \\
\beta_{2}= \\
(3,31,25,6)(4,29,21,8)(5,26)(7,22)(9,32,10,14) \\
\\
(11,30,12,18)(15,20,24,23)(16,28,27,19),
\end{gathered}
$$

$$
\begin{gathered}
\gamma_{1}=(9,16)(10,14)(11,20)(12,18)(15,30)(19,32)(23,24)(27,28), \\
\gamma_{2}=(3,6,16)(4,8,20)(5,9,10)(7,11,12)(15,24,22)
\end{gathered}
$$

$$
(19,28,26)(21,29,30)(25,31,32)
$$

We assume that the first orbit on the action of \bar{G} on $\operatorname{Irr}(N)$ consists of the identity character while the sixth orbit consists of θ. Note that all characters of the other orbits are linear. The identity character $\mathbf{1}_{\mathrm{N}}$ is extendable to a character of $\overline{\mathrm{G}}$ (since $\mathbf{1}_{\bar{G}} \downarrow{ }_{\mathrm{N}}^{\bar{G}}=\mathbf{1}_{\mathrm{N}}$). Also since $\overline{\mathrm{G}}$ splits over N and the characters of the second, third, fourth and fifth orbits are linear, it follows by application of Theorem 5.1.8 of [1] that these characters are extendable to ordinary characters of their respective inertia groups. Thus for the construction of the character table of $\overline{\mathrm{G}}$, all the character tables of the inertia factors $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}$ and H_{5} that we will use are the ordinary ones. In Section 4 we have supplied the character tables of $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}$ and H_{5}. At this stage we are not yet sure whether the unique faithful character θ of degree 16 of N is extendable to ordinary character of $\overline{\mathrm{H}}_{6}=\overline{\mathrm{G}}$ or not. However by the Atlas [13] we know that the Schur multiplier of $\mathrm{H}_{6}=\mathrm{GL}(4,2) \simeq A_{8}$ is 2 with $\left|\operatorname{Irr}\left(A_{8}\right)\right|=14$ and $\left|\operatorname{IrrProj}\left(A_{8}, 2\right)\right|=9$. By Section 2 we know that the number of conjugacy classes of $\overline{\mathrm{G}}=69$ and hence it follows that $|\operatorname{Irr}(\overline{\mathrm{G}})|=69$. By Atlas and Section 4 we have

$$
\begin{aligned}
& \left|\operatorname{Irr}\left(\mathrm{H}_{1}\right)\right|=14, \quad\left|\operatorname{Irr}\left(\mathrm{H}_{2}\right)\right|=\left|\operatorname{Irr}\left(\mathrm{H}_{3}\right)\right|=11, \quad\left|\operatorname{Irr}\left(\mathrm{H}_{4}\right)\right|=13 \\
& \left|\operatorname{Irr}\left(\mathrm{H}_{5}\right)\right|=6, \quad\left|\operatorname{Irr}\left(\mathrm{H}_{6}\right)\right|=14 \quad \text { and } \quad\left|\operatorname{IrrProj}\left(\mathrm{H}_{6}, 2\right)\right|=9 .
\end{aligned}
$$

Thus if we will use the projective character table of H_{6} with factor set $\alpha \sim$ [2], we will get

$$
\begin{array}{r}
\left|\operatorname{Irr}\left(\mathrm{H}_{1}\right)\right|+\left|\operatorname{Irr}\left(\mathrm{H}_{2}\right)\right|+\left|\operatorname{Irr}\left(\mathrm{H}_{3}\right)\right|+\left|\operatorname{Irr}\left(\mathrm{H}_{4}\right)\right|+\left|\operatorname{Irr}\left(\mathrm{H}_{4}\right)\right|+\left|\operatorname{Irr}\left(\mathrm{H}_{6}\right)\right| \\
\quad=14+11+11+13+6+9=64 \neq 69=|\operatorname{Irr}(\overline{\mathrm{G}})| .
\end{array}
$$

This simple argument shows that we have to use the ordinary character table of H_{6} to construct the character table of $\overline{\mathrm{G}}$. Note that

$$
\sum_{i=1}^{6}\left|\operatorname{Irr}\left(\mathrm{H}_{\mathrm{i}}\right)\right|=69=|\operatorname{Irr}(\overline{\mathrm{G}})| .
$$

Also we deduce that there exists a character $\Theta \in \operatorname{Irr}(\overline{\mathrm{G}})$ with $\operatorname{deg}(\Theta)=16$ such that $\Theta \downarrow \stackrel{\overline{\mathrm{G}}}{\mathrm{N}}=\theta$.

4 Character tables of the inertia factor groups

The character table of $\mathrm{H}_{1}=\mathrm{H}_{6}=\mathrm{G}$ is available in the Atlas. We have used GAP to construct the character tables of $\mathrm{H}_{2}=\mathrm{H}_{3}=2^{3}: \mathrm{GL}(3,2)$ and $H_{4}=\bar{G}_{2}=2_{+}^{1+4}: G L(2,2)$ since we know from Section 3 that $H_{2}=\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ and $H_{4}=\left\langle\beta_{1}, \beta_{2}\right\rangle$. The character table of H_{5} is available in the Atlas. For the sake of convenience we have listed the character tables of $\mathrm{H}_{2}=\mathrm{H}_{3}$ and H_{4} in Tables 3 and 4 respectively. Also to be consistent with the notations of [1] we rename the classes of H_{2} and H_{4} in Tables 3 and 4 according to the fusions (determined in Section 5) of these groups into GL(4,2).

Table 3: The character table of $\mathrm{H}_{2}=\mathrm{H}_{3}=2^{3}: \mathrm{GL}(3,2)$

	1 a	2a	2b	2c	3 a	4 a	4b	4c	6 a	7a	7 b
	g_{121}	g_{221}	g_{222}	9321	9521	g_{621}	g_{622}	g_{721}	$\mathrm{g}_{10,21}$	$\mathrm{g}_{11,21}$	$\mathrm{g}_{12,21}$
$\left\|\mathrm{C}_{\mathrm{H}_{2}}(\mathrm{~g})\right\|$	1344	192	32	32	6	16	8	8	6	7	7
ϕ_{1}	1	1	1	1	1	1	1	1	1	1	1
ϕ_{2}	3	3	-1	-1	O	-1	1	1	O	A	\bar{A}
ϕ_{3}	3	3	-1	-1	O	-1	1	1	0	\bar{A}	A
ϕ_{4}	6	6	2	2	0	2	0	o	-	-1	-1
ϕ_{5}	7	-1	3	-1	1	-1	1	-1	-1	O	-
ϕ_{6}	7	7	-1	-1	1	-1	-1	-1	1	0	0
ϕ_{7}	7	-1	-1	3	1	-1	-1	1	-1	-	-
ϕ_{8}	8	8	0	0	-1	O	-	-	-1	1	1
ф9	14	-2	2	2	-1	-2	O	0	1	O	0
\$ 10	21	-3	1	-3	-	1	-1	1	O	O	-
¢ 11	21	-3	-3	1	O	1	1	-1	o	0	0

Here, $A=-1-b 7=-\frac{1}{2}-i \frac{\sqrt{7}}{2}$.

Table 4: The character table of $\mathrm{H}_{4}=\overline{\mathrm{G}}_{2}=2_{+}^{1+4}: \mathrm{GL}(2,2)$

	1a	2 a	2 b	2c	2d	$2 e$	2 f	3 a	4a	4b	4c	4d	6 a
	g_{141}	g_{241}	g_{242}	g_{243}	g341	g244	g342	g 5441	9641	9642	g643	9741	$\mathrm{g}_{10,41}$
$\left\|\mathrm{C}_{\mathrm{H}_{4}}(\mathrm{~g})\right\|$	192	192	32	32	32	16	16	6	16	8	8	8	6
ξ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1
ξ_{2}	1	1	1	1	1	-1	-1	1	1	-1	-1	-1	1
ξ_{3}	2	2	2	2	2	0	0	-1	2	0	O	O	-1
ξ_{4}	3	3	-1	3	-1	1	1	O	-1	-1	1	-1	0
ξ_{5}	3	3	3	-1	-1	1	1	-	-1	1	-1	-1	-
ξ_{6}	3	3	-1	-1	3	-1	-1	-	-1	1	1	-1	0
ξ_{7}	3	3	-1	3	-1	-1	-1	0	-1	1	-1	1	0
ξ_{8}	3	3	3	-1	-1	-1	-1	O	-1	-1	1	1	0
ξ_{9}	3	3	-1	-1	3	1	1	-	-1	-1	-1	1	-
ξ_{10}	4	-4	o	o	-	2	-2	1	o	o	o	o	-1
ξ_{11}	4	-4	0	0	o	-2	2	1	0	0	0	0	-1
ξ_{12}	6	6	-2	-2	-2	0	0	0	2	0	0	0	0
ξ_{13}	8	-8	0	0	0	0	0	-1	0	O	0	O	1

5 Fusions of the inertia factor groups into G

In this section we determine the fusions of the conjugacy classes of the inertia factor groups $\mathrm{H}_{2}=\mathrm{H}_{3}=2^{3}: \mathrm{GL}(3,2), \mathrm{H}_{4}=\overline{\mathrm{G}}_{2}=$ $2_{+}^{1+4}: G L(2,2)$ and $H_{5}=\operatorname{GL}(3,2)$ into $G L(4,2) \simeq A_{8}$ using the permutation characters of A_{8} on these groups together with the size of centralizers. From the Atlas, the permutation character of A_{8} on H_{2} is of the form $\chi\left(A_{8} \mid H_{2}\right)=\chi_{1}+\chi_{3}$. The group H_{4} is a maximal subgroup of H_{2} since $\left[\mathrm{H}_{2}: \mathrm{H}_{4}\right]=7$. From Table 3 it is clear that $\chi\left(\mathrm{H}_{2} \mid \mathrm{H}_{4}\right)=\phi_{1}+\phi_{4}$. Also the group H_{5} has index 8 in $2^{3}: \mathrm{GL}(3,2)$, which in turns has index 15 in G. We have found the following Proposition is very useful to calculate the permutation characters $\chi\left(\mathrm{G} \mid \mathrm{H}_{4}\right)$ and $\chi\left(\mathrm{G} \mid \mathrm{H}_{5}\right)$.

Proposition 2 Let $\mathrm{K}_{1} \leqslant \mathrm{~K}_{2} \leqslant \mathrm{~K}_{3}$ and let ψ be a class function on K_{1}. Then

$$
\left(\psi \uparrow_{K_{1}}^{K_{2}}\right) \uparrow_{K_{2}}^{K_{3}}=\psi \uparrow_{K_{1}}^{K_{3}} .
$$

More generally if $\mathrm{K}_{1} \leqslant \mathrm{~K}_{2} \leqslant \ldots \leqslant \mathrm{~K}_{\mathrm{n}}$ is a nested sequence of subgroups of K_{n} and ψ is a class function on K_{1}, then

$$
\left(\psi \uparrow_{K_{1}}^{K_{2}}\right) \uparrow_{K_{2}}^{K_{3}} \cdots \uparrow_{K_{n-1}}^{K_{n}}=\psi \uparrow_{K_{1}}^{K_{n}} .
$$

Proof - See Proposition 3.5.6 of [1].
From the above we have

$$
\chi\left(A_{8} \mid \mathrm{H}_{2}\right)=\chi_{1}+\chi_{3} \quad \text { and } \quad \chi\left(\mathrm{H}_{2} \mid \mathrm{H}_{4}\right)=\phi_{1}+\phi_{4} .
$$

Now by Proposition 2 the permutation character $\chi\left(A_{8} \mid \mathrm{H}_{4}\right)$ can be calculated as follows

$$
\begin{gather*}
\chi\left(A_{8} \mid H_{4}\right)=\mathbf{1}_{H_{4}}^{A_{8}}=\left(\mathbf{1}_{H_{4}}^{\mathrm{H}_{2}}\right) \uparrow_{\mathrm{H}_{2}}^{A_{8}} \\
=\left(\phi_{1}+\phi_{4}\right) \uparrow_{H_{2}}^{A_{8}}=\phi_{1} \uparrow_{H_{2}}^{A_{8}}+\phi_{4} \uparrow_{H_{2}}^{A_{8}} \tag{5.1}\\
=\chi_{1}+\chi_{3}+\phi_{4} \uparrow_{H_{2}}^{A_{8}}=\chi_{1}+\chi_{3}+\left(\chi_{3}+\chi_{4}+\psi_{12}\right) \\
=\chi_{1}+2 \chi_{3}+\chi_{4}+\chi_{12}
\end{gather*}
$$

Note that in (5.1) it is easy to evaluate the values of $\phi_{4} \uparrow_{H_{2}}^{A_{8}}$ using the induction formula for characters, where we have found that $\phi_{4} \uparrow_{H_{2}}^{A_{8}}=\chi_{3}+\chi_{4}+\chi_{12}$.

Similarly the permutation character $\chi\left(A_{8} \mid \mathrm{H}_{5}\right)$ has the form

$$
\begin{gather*}
\chi\left(A_{8} \mid H_{5}\right)=\mathbf{1} \uparrow_{H_{5}}^{A_{8}}=\left(\mathbf{1} \uparrow_{H_{5}}^{\mathrm{H}_{2}}\right) \uparrow_{\mathrm{H}_{2}}^{A_{8}} \\
=\left(\phi_{1}+\phi_{5}\right) \uparrow_{H_{2}}^{A_{8}}=\phi_{1} \uparrow_{H_{2}}^{A_{8}}+\phi_{5} \uparrow_{H_{2}}^{A_{8}} \tag{5.2}\\
=\chi_{1}+\chi_{3}+\chi_{5} \uparrow_{H_{2}}^{A_{8}}=\chi_{1}+\chi_{3}+\left(\chi_{3}+\chi_{9}+\chi_{12}\right) \\
=\chi_{1}+2 \chi_{3}+\chi_{9}+\chi_{12}
\end{gather*}
$$

Using the Atlas, (5.1) and (5.2), we list in Table 5 the values of $\chi\left(A_{8} \mid \mathrm{H}_{2}\right), \chi\left(A_{8} \mid \mathrm{H}_{4}\right)$ and $\chi\left(A_{8} \mid \mathrm{H}_{5}\right)$ on those classes of A_{8}, where there is possible fusions from classes of $\mathrm{H}_{2}, \mathrm{H}_{4}$ or H_{5}.

Table 5: The values of the permutation characters of A_{8} on H_{2}, H_{4}, H_{5}

$[g]_{A_{8}}$	$1 A$	$2 A$	$2 B$	$3 A$	$3 B$	$4 A$	$4 B$	$5 A$	$6 A$	$6 B$	$7 A$	$7 B$	$15 A$	$15 B$
$\chi\left(A_{8} \mid H_{2}\right)$	15	7	3	0	3	3	1	0	0	1	1	1	0	0
$\chi\left(A_{8} \mid H_{4}\right)$	105	25	9	0	3	5	1	0	0	1	0	0	0	0
$\chi\left(A_{8} \mid H_{5}\right)$	120	24	0	0	6	4	0	0	0	0	1	1	0	0

Using the permutation characters of A_{8} on H_{2}, H_{4} and H_{5} together with the size of centralizers, the fusions of $\mathrm{H}_{2}, \mathrm{H}_{4}$ and H_{5} into A_{8} are completely determined. We list these fusions in Table 6.

Table 6: The fusions of $\mathrm{H}_{2}, \mathrm{H}_{4}$ and H_{5} into G

Class of H_{2}	\hookrightarrow	Class of G	Class of H_{2}	\hookrightarrow	Class of G
$\mathrm{g}_{121}=1 \mathrm{a}$		1 A	$\mathrm{g}_{622}=4 \mathrm{~b}$		4A
$\mathrm{g}_{221}=2 \mathrm{a}$		2A	$\mathrm{g}_{721}=4 \mathrm{c}$		4B
$\mathrm{g}_{222}=2 \mathrm{~b}$		2A	$\mathrm{g}_{10,21}=6 \mathrm{a}$		6B
$\mathrm{g}_{321}=2 \mathrm{c}$		2B	$\mathrm{g}_{11,21}=7 \mathrm{a}$		7A
$\mathrm{g}_{521}=3 \mathrm{a}$		3B	$\mathrm{g}_{12,21}=7 \mathrm{~b}$		7B
$\mathrm{g}_{621}=4 \mathrm{a}$		4A			
Class of		Class of	Class of		Class of
H_{4}		G	H_{4}		G
$\mathrm{g}_{141}=1 \mathrm{a}$		1A	$\mathrm{g}_{541}=3 \mathrm{a}$		3B
$\mathrm{g}_{241}=2 \mathrm{a}$		2A	$\mathrm{g}_{641}=4 \mathrm{a}$		4A
$\mathrm{g}_{242}=2 \mathrm{~b}$		2A	$\mathrm{g}_{642}=4 \mathrm{~b}$		4A
$\mathrm{g}_{243}=2 \mathrm{c}$		2A	$\mathrm{g}_{643}=4 \mathrm{c}$		4A
$\mathrm{g}_{341}=2 \mathrm{~d}$		2B	$\mathrm{g}_{741}=4 \mathrm{~d}$		4B
$\mathrm{g}_{244}=2 \mathrm{e}$		2A	$\mathrm{g}_{10,41}=6 \mathrm{a}$		6B
$\mathrm{g}_{342}=2 \mathrm{f}$		2B			
Class of		Class of	Class of		Class of
H_{5}		G	H_{5}		G
$\mathrm{g}_{151}=1 \mathrm{a}$		1 A	$\mathrm{g}_{651}=4 \mathrm{a}$		4A
$\mathrm{g}_{251}=2 \mathrm{a}$		2A	$\mathrm{g}_{11,51}=7 \mathrm{a}$		7A
$\mathrm{g}_{551}=3 \mathrm{a}$		3B	$\mathrm{g}_{12,51}=7 \mathrm{~b}$		7B

6 Fischer matrices of $\overline{\mathrm{G}}=2_{+}^{1+8}: \mathrm{GL}(4,2)$

In this section we calculate the Fischer matrices of $\overline{\mathrm{G}}=2_{+}^{1+8}: \mathrm{GL}(4,2)$. From Section 3 of [2] we recall that we label the top and bottom of the columns of the Fischer matrix \mathcal{F}_{i}, corresponding to g_{i}, by the sizes of the centralizers of $g_{i j}, 1 \leqslant j \leqslant c\left(g_{i}\right)$, in \bar{G} and $m_{i j}$ respectively. Also the rows of \mathcal{F}_{i} are partitioned into parts $\mathcal{F}_{i k}, 1 \leqslant k \leqslant t$, corresponding to the inertia factors $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{t}}$, where each $\mathcal{F}_{i k}$ consists of $\mathrm{c}\left(\mathrm{g}_{\mathrm{ik}}\right)$ rows correspond to the α_{k}^{-1}-regular classes (those are the H_{k}-classes that fuse to class $\left[g_{i}\right]_{G}$). Thus every row of \mathcal{F}_{i} is labeled by the pair (k, m), where $1 \leqslant k \leqslant t$ and $1 \leqslant m \leqslant c\left(g_{i k}\right)$. In Table 2 we supplied $\left|C_{\bar{G}}\left(g_{i j}\right)\right|$ and $m_{\mathfrak{i j}}, 1 \leqslant i \leqslant 14,1 \leqslant \mathfrak{j} \leqslant c\left(g_{\mathfrak{i}}\right)$. Also the fusions of classes of $\mathrm{H}_{2}=\mathrm{H}_{3}, \mathrm{H}_{4}$ and H_{5} into classes of G are given in Table 6. Since the size of the Fischer matrix \mathcal{F}_{i} is $c\left(g_{i}\right)$, it follows from Table 2 that the sizes of the Fischer matrices of $\overline{\mathrm{G}}=2_{+}^{1+8}: \mathrm{GL}(4,2)$ range between 2 and 11 for each $i \in\{1,2, \ldots, 14\}$.

We have used the arithmetical properties of the Fischer matrices, given in Proposition 3.6 of [2], to calculate some of the entries of these matrices and to build a system of algebraic equations. In addition to these properties, we have the following important lemmas, which help us more in determining some entries of the Fischer matrices of $\overline{\mathrm{G}}$.

Lemma 3 For every Fischer matrix $\mathcal{F}_{\mathfrak{i}}$, of size $\mathrm{c}\left(\mathrm{g}_{\mathfrak{i}}\right)$, the sum of the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, \ldots,\left(\mathrm{c}\left(\mathrm{g}_{\mathrm{i}}\right)-1\right)^{\text {th }}$ rows equal (componentwise) the square of the modulus of the last row.

Proof - The proof is similar to the proof of Lemma 6 of [18].
Lemma 4 For any Fischer matrix $\mathcal{F}_{\mathfrak{i}}$, we can order the $\mathrm{g}_{\mathfrak{i}}, 1 \leqslant \mathfrak{j} \leqslant \boldsymbol{c}\left(\mathrm{~g}_{\mathrm{i}}\right)$, so that the last row of $\mathcal{F}_{\mathfrak{i}}$ is of the form $\left[\begin{array}{lllll}z_{i} & -z_{i} & 0 & \cdots & 0\end{array}\right]$ and we may choose the $\mathrm{g}_{\mathrm{i} 2}=\sigma \mathrm{g}_{\mathrm{i} 1}$, where σ is the central involution in $\overline{\mathrm{G}}$. Furthermore

$$
\begin{equation*}
a_{i 1}^{(k, m)}=a_{i 2}^{(k, m)}=\frac{\left|C_{H_{k}}\left(g_{i 11}\right)\right|}{\left|C_{H_{k}}\left(g_{i k m}\right)\right|^{\prime}}, \tag{6.1}
\end{equation*}
$$

where $k \in\{1,2,3,4,5\}$ and $1 \leqslant m \leqslant c\left(g_{i k}\right)$.
Proof - The proof is similar to the proof of Lemma 7 of [18].
Note 5 The proof of Lemma 7 of [18] contains a very important piece of information, that is, the last row of every Fischer matrix
of $2_{+}^{1+22} \cdot \mathrm{Co}_{2}$ is

$$
\left[\begin{array}{llll}
\eta\left(g_{i 1}\right) & \eta\left(g_{i 2}\right) & \cdots & \eta\left(g_{i s_{i}}\right)
\end{array}\right]
$$

where s_{i} in his notation has the same meaning of $c\left(g_{i}\right)$ in our notation. In our group \bar{G}, the last row of every Fischer matrix $\mathcal{F}_{\mathfrak{i}}$ is given by $\left[\begin{array}{lllll}\theta_{2}\left(g_{i 1}\right) & \theta_{2}\left(g_{i 2}\right) & 0 & \cdots & 0\end{array}\right]$.

Note 6 Observe that with Lemma 3, (6.1) and Note 5 we know the first two columns and the last row of every Fischer matrix \mathcal{F}_{i}. Also from Proposition 3.6 (iii) of [2], we know the first row of every Fischer matrix \mathcal{F}_{i}. This reduces the number of unknowns in every Fischer matrix of size $c\left(g_{i}\right)$ to $c\left(g_{i}\right)^{2}-4 c\left(g_{i}\right)+4$.

With the help of the symbolic mathematical package Maxima [15], we were able to solve the systems of equations and hence we have computed all the Fischer matrices of \bar{G}, which we list below.

g_{1}	g 11	g_{12}	g_{13}	g_{14}	g_{15}	g_{16}
o($\mathrm{g}_{1 j}$)	1	2	2	2	2	4
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{1 \mathrm{j}}\right)\right\|$	10321920	10321920	344064	344064	49152	43008
$(\mathrm{k}, \mathrm{m}) \quad\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}\left(\mathrm{g}_{1 \mathrm{~km}}\right)\right\|$						
$(1,1) 20160$	1	1	1	1	1	1
$(2,1) 1344$	15	15	-1	15	-1	-1
$(3,1) 1344$	15	15	15	-1	-1	-1
$(4,1) 192$	105	105	-7	-7	9	-7
$(5,1)$	120	120	-8	-8	-8	8
$(6,1) 20160$	16	-16	O	-	0	0
$\mathrm{m}_{1 j}$	1	1	30	30	210	240

\mathcal{F}_{2}											
g_{2}	$\mathrm{g}_{21} 1$	g_{22}	g_{23}	g_{24}	g_{25}	g_{26}	g_{27}	g_{28}	g_{29}	$\mathrm{g}_{2,10}$	$\mathrm{g}_{2,11}$
o($\mathrm{g}_{2 \mathrm{j}}$)	2	2	2	2	2	4	4	4	4	4	4
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{2 j}\right)\right\|$	24576	24576	4096	4096	4096	2048	3072	3072	1024	1024	768
$(\mathrm{k}, \mathrm{m}) \quad\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}\left(\mathrm{g}_{2 \mathrm{~km}}\right)\right\|$											
$(1,1) 192$	1	1	1	1	1	1	1	1	1	1	1
(2,1) 192	1	1	1	1	1	1	-1	1	1	-1	-1
$(2,2) 32$	6	6	-2	-2	6	-2	0	6	-2	0	0
$(3,1) 192$	1	1	1	1	1	1	1	-1	-1	1	-1
$(3,2) \quad 32$	6	6	6	-2	-2	-2	6	o	o	-2	0
$(4,1) 192$	1	1	1	1	1	1	-1	-1	-1	-1	1
$(4,2) \quad 32$	6	6	-	0	0	2	3	-3	-1	1	0
$(4,3) \quad 32$	6	6	4	-4	4	2	-3	3	1	-1	0
$(4,4) \quad 16$	12	12	-4	12	-4	4	-6	-6	2	2	0
$(5,1) 8$	24	24	-8	-8	-8	8	O	0	0	0	O
$(6,1) 192$	8	-8	0	0	0	O	0	0	O	O	0
$\mathrm{m}_{2} \mathrm{j}$	4	4	24	24	24	48	32	32	96	96	128

\mathcal{F}_{3}							
g_{3}		g_{31}	g_{32}	g_{33}	g34	g_{35}	936
$o\left(g_{3 j}\right)$		2	2	4	4	4	4
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{3 j}\right)\right\|$		3072	3072	512	512	512	256
(k, m)	$\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}\left(\mathrm{g}_{3 \mathrm{~km}}\right)\right\|$						
$(1,1)$	96	1	1	1	1	1	1
$(2,1)$	32	3	3	-1	-1	3	-1
$(3,1)$	32	3	3	3	-1	-1	-1
$(4,1)$	32	3	3	-1	3	-1	-1
$(4,2)$	16	6	6	-2	-2	-2	2
$(6,1)$	96	4	-4	o	o	o	o
$\mathrm{m}_{3} \mathrm{j}$		16	16	96	96	96	192

\mathcal{F}_{4}		
$\mathrm{~g}_{4}$	$\mathrm{~g}_{41}$	$\mathrm{~g}_{42}$
$\mathrm{o}\left(\mathrm{g}_{4 \mathrm{j}}\right)$	3	6
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{4 \mathrm{j}}\right)\right\|$		360
(k, m)	$\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}(\mathrm{g} 4 \mathrm{~km})\right\|$	
$(1,1)$	180	1
$(6,1)$	180	1
$\mathrm{~m}_{4 \mathrm{j}}$		256

\mathcal{F}_{5}						
g_{5}	g_{51}	g_{52}	g_{53}	g 54	g55	956
o($\mathrm{g}_{5} \mathrm{j}$)	3	66	6	6	12	
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{5 j}\right)\right\|$	576	576	96	96	96	48
$(\mathrm{k}, \mathrm{m}) \quad\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}\left(\mathrm{g}_{5 \mathrm{~km}}\right)\right\|$						
$(1,1)$	1	1	1	1	1	1
$(2,1) \quad 6$	3	3	-1	3	-1	-1
$(3,1) \quad 6$	3	3	3	-1	-1	-1
$(4,1) 6$	3	3	-1	-1	3	-1
$(5,1)$	6	6	-2	-2	-2	2
$(6,1) \quad 18$	4	-4	\bigcirc	0	0	\bigcirc
$\mathrm{m}_{5 j}$	16	16	96	96	96	192

\mathcal{F}_{6}										
g_{6}	961	962	963	964	g_{65}	966	967	968	969	96,10
$o\left(g_{6 j}\right)$	4	4	4	4	4	4	4	4	4	8
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{6 j}\right)\right\|$	512	512	256	256	256	128	128	128	128	64
$(\mathrm{k}, \mathrm{m}) \quad\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}(\mathrm{g} 6 \mathrm{~km})\right\|$										
$(1,1)$	1	1	1	1	1	1	1	1	1	1
$(2,1)$	1	1	1	1	1	-1	1	1	-1	-1
$(2,2) \quad 8$	2	2	-2	-2	2	o	-2	2	o	o
$(3,1)$	1	1	1	1	1	1	-1	-1	1	-1
$(3,2) \quad 8$	2	2	2	-2	-2	2	o	o	-	o
$(4,1) \quad 16$	1	1	1	1	1	-1	-1	-1	-1	1
$(4,2)$	2	2	-2	-2	2	o	2	-2	-2	o
$(4,3) \quad 8$	2	2	2	-2	-2	-2	-2	-2	2	o
$(5,1)$	4	4	-4	4	-4	o	o	o	o	o
$(6,1) \quad 16$	4	-4	o	o	o	o	o	o	o	o
$\mathrm{m}_{6 j}$	16	16	32	32	32	64	64	64	64	64

\mathcal{F}_{7}						
97		971	972	973	974	975
$o\left(g_{7 j}\right)$		4	4	8	8	8
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{7 j}\right)\right\|$		64	64	32	32	32
(k, m)	$\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}\left(\mathrm{g}_{7 \mathrm{~km}}\right)\right\|$					
$(1,1)$	8	1	1	1	1	1
$(2,1)$	8	1	1	-1	-1	1
$(3,1)$	8	1	1	1	-1	-1
$(4,1)$	8	1	1	-1	1	-1
$(6,1)$	8	2	-2	o	o	o
$\mathrm{m}_{7 \mathrm{j}}$		64	64	128	128	128

\mathcal{F}_{8}			
g_{8}		g 81	982
o(g g_{4})		5	10
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{8 j}\right)\right\|$		30	30
(k, m)	$\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}\left(\mathrm{g}_{8 \mathrm{~km}}\right)\right\|$		
$(1,1)$	15	1	1
$(6,1)$	15	1	-1
$\mathrm{m}_{8 j}$		256	256

\mathcal{F}_{9}		
$\mathrm{~g}_{9}$	$\mathrm{~g}_{91}$	$\mathrm{~g}_{92}$
$\mathrm{o}\left(\mathrm{g}_{4 j}\right)$	6	6
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{9 j}\right)\right\|$		24
(k, m)	$\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}(\mathrm{g} 9 \mathrm{~km})\right\|$	
$(1,1)$	12	1
$(6,1)$	12	1
$\mathrm{~m}_{9 \mathrm{j}}$		256

\mathcal{F}_{10}					
910	$\mathrm{g}_{10,1}$	910,2	910,3	910,4	$\mathrm{g}_{10,5}$
o ($\mathrm{g}_{10 \mathrm{j}}$)	6	6	12	12	12
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{10} \mathrm{j}\right)\right\|$	48	48	24	24	24
$(\mathrm{k}, \mathrm{m}) \quad\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}\left(\mathrm{g}_{10 \mathrm{~km}}\right)\right\|$					
$(1,1) \quad 6$	1	1	1	1	1
$(2,1) \quad 6$	1	1	-1	-1	1
$(3,1) \quad 6$	1	1	1	-1	-1
$(4,1) \quad 6$	1	1	-1	1	-1
$(6,1) \quad 6$	2	-2	o	o	O
$\mathrm{m}_{10}{ }^{\text {j }}$	64	64	128	128	128

\mathcal{F}_{11}					
g_{11}	$\mathrm{g}_{11,1}$	911,2	$\mathrm{g}_{11,3}$	$\mathrm{g}_{11,4}$	$\mathrm{g}_{11,5}$
$\mathrm{o}\left(\mathrm{g}_{11} \mathrm{j}\right)$	7	14	14	14	28
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{11 \mathrm{j}}\right)\right\|$	56	56	28	28	28
$(\mathrm{k}, \mathrm{m}) \quad\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}\left(\mathrm{g}_{11 \mathrm{~km}}\right)\right\|$					
$(1,1) \quad 7$	1	1	1	1	1
$(2,1) \quad 7$	1	1	-1	1	-1
$(3,1) \quad 7$	1	1	1	-1	-1
$(5,1) \quad 7$	1	1	-1	-1	1
$(6,1) \quad 7$	2	-2	o	o	o
$\mathrm{m}_{11}{ }^{\text {j }}$	64	64	128	128	128

\mathcal{F}_{12}						
$\mathrm{~g}_{12}$	$\mathrm{~g}_{12,1}$	$\mathrm{~g}_{12,2}$	$\mathrm{~g}_{12,3}$	$\mathrm{~g}_{12,4}$	$\mathrm{~g}_{12,5}$	
$\mathrm{o}\left(\mathrm{g}_{12 \mathrm{j}}\right)$	7	14	14	14	28	
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{12 \mathrm{j}}\right)\right\|$		56	56	28	28	
(k, m)	$\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}\left(\mathrm{g}_{12 \mathrm{~km}}\right)\right\|$				28	
$(1,1)$	7	1	1	1	1	
$(2,1)$	7	1	1	-1	1	
$(3,1)$	7	1	1	1	-1	
$(5,1)$	7	1	1	-1	-1	
$(6,1)$	7	2	-2	0	1	
$\mathrm{~m}_{12 \mathrm{j}}$	7	64	64	128	128	

\mathcal{F}_{13}			
$\mathrm{~g}_{13}$		$\mathrm{~g}_{13,1}$	
$\mathrm{o}\left(\mathrm{g}_{13 \mathrm{j}}\right)$	$\mathrm{g}_{13,2}$		
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{13 \mathrm{j}}\right)\right\|$		15	
(k, m)	$\mid \mathrm{C}_{\mathrm{H}_{\mathrm{k}}\left(\mathrm{g}_{13 \mathrm{~km}}\right) \mid}$	30	
$(1,1)$	15		
$(6,1)$	15	1	
$\mathrm{~m}_{13 \mathrm{j}}$		1	

\mathcal{F}_{14}			
$\mathrm{~g}_{14}$	$\mathrm{~g}_{14,1}$	$\mathrm{~g}_{14,2}$	
$\mathrm{o}\left(\mathrm{g}_{14 \mathrm{j}}\right)$	15	30	
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{14 \mathrm{j}}\right)\right\|$	$\left\|\mathrm{C}_{\mathrm{H}_{\mathrm{k}}}\left(\mathrm{g}_{14 \mathrm{~km}}\right)\right\|$		
(k, m)	15	30	
$(1,1)$	15	1	
$(6,1)$	15	1	
$\mathrm{~m}_{14 \mathrm{j}}$		256	

Remark 7 In the above matrices, if we omit the first column and the last row of every Fischer matrix $\mathcal{F}_{\mathfrak{i}}$, we obtain the corresponding Fischer matrix $\widetilde{\mathcal{F}}_{\mathrm{i}}$ of the split extension $\mathrm{H}=2^{8}: \mathrm{GL}(4,2)$. This shows that the group $\mathrm{H}=2^{8}: \mathrm{GL}(4,2)$ has

$$
\sum_{i=1}^{14} c\left(g_{i}\right)-14=69-14=55
$$

conjugacy classes, which is also equal to $14+11+11+13+6=$ $\left|\operatorname{Irr}\left(\mathrm{H}_{1}\right)\right|+\left|\operatorname{Irr}\left(\mathrm{H}_{2}\right)\right|+\left|\operatorname{Irr}\left(\mathrm{H}_{3}\right)\right|+\left|\operatorname{Irr}\left(\mathrm{H}_{4}\right)\right|+\left|\operatorname{Irr}\left(\mathrm{H}_{5}\right)\right|=55$ the number of irreducible characters of H .

7 Character table of $\overline{\mathrm{G}}=2_{+}^{1+8}: \mathrm{GL}(4,2)$

Through Sections 2, 3, 4, 5 and 6 we have determined

- the conjugacy classes of $\overline{\mathrm{G}}=2_{+}^{1+8}: \mathrm{GL}(4,2)$ (Table 2),
- the inertia factors $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{6}$,
- the character tables of all the inertia factor groups of G (Tables 3 and 4),
- the fusions of classes of the inertia factors $\mathrm{H}_{2}=\mathrm{H}_{3}, \mathrm{H}_{4}$ and H_{5} into classes of G (Table 6)
- the Fischer matrices of $\overline{\mathrm{G}}$ (see Section 6).

By Subsection 3.1 of [2], it follows that the full character table of \bar{G} can be constructed easily. Let

- $g_{1}, g_{2}, \ldots, g_{r}$ be representatives for the conjugacy classes of $G \simeq \bar{G} / N$. For each $i \in\{1,2, \ldots, r\}$, let $g_{i 1}, g_{i 2}, \ldots, g_{i c}\left(g_{i}\right)$ be representatives for the conjugacy classes of $\overline{\mathrm{G}}$, correspond to the class $\left[g_{i}\right]_{\mathrm{G}}$, obtained using the coset analysis technique (see [1] for more details),
- $\mathcal{K}_{i k}$ be the fragment of the projective character table of H_{k}, with factor set α_{k}^{-1}, consisting of columns correspond to the α_{k}^{-1}-regular classes of H_{k} that fuse to $\left[\mathrm{g}_{\mathrm{i}}\right]_{\mathrm{G}}$ (let such classes be represented by $\left.g_{i k 1}, g_{i k 2}, \ldots, g_{i k c\left(g_{i k}\right)}\right)$ and
- $\mathcal{F}_{i k}$ be the sub-matrix of the Fischer matrix \mathcal{F}_{i} with rows correspond to the pairs $\left(k, g_{i k 1}\right),\left(k, g_{i k 2}\right), \ldots,\left(k, g_{i k c}\left(g_{i k}\right)\right)$ or for brevity $(k, 1),(k, 2), \ldots,\left(k, c\left(g_{i k}\right)\right)$ as described by Equation (3) of [6].

For each $i \in\{1,2, \ldots, r\}$ and $k \in\{1,2, \ldots, t\}$, where t is the number of the inertia factor groups (that is the number of orbits on the action of G on $\operatorname{Irr}(N)$), the part of the character table of \bar{G} on the classes $\left[g_{i j}\right]_{\bar{G}}, 1 \leqslant j \leqslant c\left(g_{i}\right)$, is given by $\mathcal{K}_{i k} \mathcal{F}_{i k}$. Note that the size of $\mathcal{K}_{i k}$ is $\left|\operatorname{Irr} \operatorname{Proj}\left(H_{k}, \alpha_{k}^{-1}\right)\right| \times c\left(g_{i k}\right)$, while the size of $\mathcal{F}_{i k}$ is $c\left(g_{i k}\right) \times c\left(g_{i}\right)$ and thus $\mathcal{K}_{i k} \mathcal{F}_{i k}$ is of size $\left|\operatorname{IrrProj}\left(\mathrm{H}_{\mathrm{k}}, \alpha_{k}^{-1}\right)\right| \times c\left(g_{i}\right)$. If we let \mathcal{K}_{s}, $s \in\{1,2, \ldots, t\}$, be the irreducible characters of \bar{G} correspond to the inertia factor group H_{k}, then the character table of \bar{G} in the format of Clifford-Fischer theory will be composed of the $r \times t$ parts $\mathcal{K}_{i k} \mathcal{F}_{i k}$ and will have the form:

$\left[\mathrm{g}_{\mathrm{i}}\right]_{\mathrm{G}}$	g_{1}			g_{2}			\cdots	gr_{r}		
$\left[g_{i j}\right]_{\bar{G}}$	g_{11}	g_{12}	$\mathrm{g}_{1 \mathrm{c}\left(\mathrm{g}_{1}\right)}$	g_{21}	g_{22}	$\cdots \mathrm{g}_{2 \mathrm{c}\left(\mathrm{g}_{2}\right)}$	\cdots	$g_{\mathrm{r} 1}$	gr_{r}	$\cdots g_{\text {rc }\left(g_{r}\right)}$
\mathcal{K}_{1}		$\mathcal{K}_{11} \mathcal{F}_{11}$			$\mathcal{K}_{12} \mathcal{F}_{12}$		\cdots		$\mathcal{K}_{1 r} \mathcal{F}_{1 r}$	
\mathcal{K}_{2}		$\mathcal{K}_{21} \mathcal{F}_{21}$			$\mathcal{K}_{22} \mathcal{F}_{22}$		\cdots		$\mathcal{K}_{2 r} \mathcal{F}_{2 r}$	
:		:			\vdots		\ddots		\vdots	
\mathcal{K}_{t}		$\mathcal{K}_{\mathrm{t} 1} \mathcal{F}_{\mathrm{t} 1}$			$\mathcal{K}_{\mathrm{t} 2} \mathcal{F}_{\mathrm{t} 2}$		\cdots		$\mathcal{K}_{\text {tr }} \mathcal{F}_{\text {tr }}$	

Note 8 From Note 3.4 of [6] we know that characters of \bar{G} consisted in \mathcal{K}_{1} are just $\operatorname{Irr}(\mathrm{G})$ and therefore the size of $\mathcal{K}_{1 i} \mathcal{F}_{1 i}$, for each $1 \leqslant \mathfrak{i} \leqslant \mathrm{r}$, is $|\operatorname{Irr}(\mathrm{G})| \times \mathfrak{c}\left(\mathrm{g}_{\mathfrak{i}}\right)$. In particular, columns of $\mathcal{K}_{11} \mathcal{F}_{11}$ are the degrees of irreducible characters of G repeated themselves $c\left(g_{1}\right)$ times, where we know that $\mathrm{c}\left(\mathrm{g}_{1}\right)$ is number of $\overline{\mathrm{G}}$-conjugacy classes obtained from the normal subgroup N .

We illustrate the above by giving an example on how to construct the character table of \bar{G}, which is partitioned into 84 parts corresponding to the 14 cosets and the six inertia factor groups. As an example we construct the parts $\mathcal{K}_{31} \mathcal{F}_{31}, \mathcal{K}_{32} \mathcal{F}_{32}, \mathcal{K}_{33} \mathcal{F}_{33}, \mathcal{K}_{34} \mathcal{F}_{34}$, $\mathcal{K}_{35} \mathcal{F}_{35}$ and $\mathcal{K}_{36} \mathcal{F}_{36}$ of the character table of $\overline{\mathrm{G}}$. This means that we are listing the values of all the irreducible characters of $\overline{\mathrm{G}}$ on the classes $g_{31}, g_{32}, g_{33}, g_{34}, g_{35}$ and g_{36} of \bar{G}, which correspond to the conjugacy class of G represented by $g_{3}=2 B$. The six parts $\mathcal{K}_{31} \mathcal{F}_{31}, \mathcal{K}_{32} \mathcal{F}_{32}, \mathcal{K}_{33} \mathcal{F}_{33}, \mathcal{K}_{34} \mathcal{F}_{34}, \mathcal{K}_{35} \mathcal{F}_{35}$ and $\mathcal{K}_{36} \mathcal{F}_{36}$ can be derived as follows: From Table 6 we can see that there is a class of H_{2}, namely g_{321}, a class of H_{3}, namely g_{331}, and two classes of H_{4}, namely g_{341} and g_{342} that fuse into the class $\left[\mathrm{g}_{3}\right]_{\mathrm{G}}=[2 \mathrm{~B}]_{\mathrm{GL}(4,2)}$. To construct the part $\mathcal{K}_{31} \mathcal{F}_{31}$, we multiply the column of the character table of $H_{1}=G=G L(4,2)$ corresponds to the class $2 B$ of G (see Atlas), by the first row of \mathcal{F}_{1}, namely

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

and thus the part $\mathcal{K}_{31} \mathcal{F}_{31}$ of size 14×6, consists of the column of the character table of G corresponds to the class 2 B repeated 6 times. To construct the part $\mathcal{K}_{34} \mathcal{F}_{34}$, we multiply again the fragment of the character table of H_{4}, corresponds to the class g_{341} and g_{342}, by the two rows of \mathcal{F}_{3} labeled by the pairs $(4,1)$ and $(4,2)$. Thus we get a part in the character table of $\overline{\mathrm{G}}$ of size 13×6. Similar arguments can be used to construct the other remaining parts. The above six parts will have the following forms:

$$
\begin{aligned}
& \mathcal{K}_{32} \mathcal{F}_{32}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
2 \\
-1 \\
-1 \\
3 \\
0 \\
2 \\
-3 \\
1
\end{array}\right)\left(\begin{array}{llllllllll}
g_{31} & g_{32} & g_{33} & g_{34} & g_{35} & g_{36} \\
3 & 3 & -1 & -1 & 3 & -1
\end{array}\right)=\left(\begin{array}{cccccc}
3 & 3 & -1 & -1 & 3 & -1 \\
-3 & -3 & 1 & 1 & -3 & 1 \\
-3 & -3 & 1 & 1 & -3 & 1 \\
6 & 6 & -2 & -2 & 6 & -2 \\
-3 & -3 & 1 & 1 & -3 & 1 \\
-3 & -3 & 1 & 1 & -3 & 1 \\
9 & 9 & -3 & -3 & 9 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
6 & 6 & -2 & -2 & 6 & -2 \\
-9 & -9 & 3 & 3 & -9 & 3 \\
3 & 3 & -1 & -1 & 3 & -1
\end{array}\right) \\
& \mathcal{K}_{33} \mathcal{F}_{33}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
2 \\
-1 \\
-1 \\
3 \\
0 \\
2 \\
-3 \\
1
\end{array}\right)\left(\begin{array}{llllllllll}
g_{31} & g_{32} & g_{33} & g_{34} & g_{35} & g_{36} \\
3 & 3 & 3 & -1 & -1 & -1
\end{array}\right)=\left(\begin{array}{cccccc}
3 & 3 & 3 & -1 & -1 & -1 \\
-3 & -3 & -3 & -1 & -1 & -1 \\
-3 & -3 & -3 & -1 & -1 & -1 \\
6 & 6 & 6 & -2 & -2 & -2 \\
-3 & -3 & -3 & -1 & -1 & -1 \\
-3 & -3 & -3 & -1 & -1 & -1 \\
9 & 9 & 9 & -3 & -39 & -3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
6 & 6 & 6 & -2 & -2 & -2 \\
-9 & -9 & -9 & 3 & 3 & 3 \\
3 & 3 & 3 & -1 & -1 & -1
\end{array}\right) \\
& \mathcal{K}_{34} \mathcal{F}_{34}=\left(\begin{array}{rr}
1 & 1 \\
1 & -1 \\
2 & 0 \\
-1 & -1 \\
-1 & 1 \\
-1 & -1 \\
-1 & 1 \\
3 & -1 \\
3 & 1 \\
0 & -2 \\
0 & 2 \\
-2 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{rlllllllll}
g_{31} & g_{32} & g_{33} & g_{34} & g_{35} & g_{36} \\
3 & 3 & -1 & 3 & -1 & -1 \\
6 & 6 & -2 & -2 & -2 & 2
\end{array}\right)=\left(\begin{array}{cccccc}
9 & 9 & -3 & 1 & -3 & 1 \\
-3 & -3 & 1 & 5 & 1 & -3 \\
6 & 6 & -2 & 6 & -2 & -2 \\
3 & 3 & -1 & -5 & -1 & 3 \\
3 & 3 & -1 & -5 & -1 & 3 \\
3 & 3 & -1 & 11 & -1 & -5 \\
15 & 15 & -5 & 7 & -5 & -1 \\
-9 & -9 & 3 & -1 & 3 & -1 \\
-9 & -9 & 3 & -1 & 3 & -1 \\
-12 & -12 & 4 & 4 & 4 & -4 \\
12 & 12 & -4 & -4 & -4 & 4 \\
-6 & -6 & 2 & -6 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\mathcal{K}_{35} \mathcal{F}_{35}=\left(\begin{array}{cccccc}
\mathrm{g}_{31} & \mathrm{~g}_{32} & \mathrm{~g}_{33} & \mathrm{~g}_{34} & \mathrm{~g}_{35} & \mathrm{~g}_{36} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(since there is no fusion from classes of H_{5} into classes of G),

$$
\mathcal{K}_{36} \mathcal{F}_{36}=\left(\begin{array}{c}
g_{31} \\
1 \\
2 \\
4 \\
1 \\
1 \\
1 \\
4 \\
-5 \\
-3 \\
-3 \\
0 \\
0 \\
2
\end{array}\right)\left(\begin{array}{lllllllll}
42 & g_{33} & g_{34} & g_{35} & g_{36} \\
4 & -4 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccccc}
4 & -4 & 0 & 0 & 0 & 0 \\
12 & -12 & 0 & 0 & 0 & 0 \\
8 & -8 & 0 & 0 & 0 & 0 \\
16 & -16 & 0 & 0 & 0 & 0 \\
4 & -4 & 0 & 0 & 0 & 0 \\
4 & -4 & 0 & 0 & 0 & 0 \\
4 & -4 & 0 & 0 & 0 & 0 \\
16 & -16 & 0 & 0 & 0 & 0 \\
-20 & 20 & 0 & 0 & 0 & 0 \\
-12 & 12 & 0 & 0 & 0 & 0 \\
-12 & 12 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
8 & -8 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Similarly one can obtain all the other 78 parts $\mathcal{K}_{\mathfrak{i k}} \mathcal{F}_{\mathfrak{i k}}, 1 \leqslant \mathfrak{i} \leqslant 14$, $i \neq 3,1 \leqslant k \leqslant 6$ and hence the full character table of \bar{G}, which is $69 \times 69 \mathrm{C}$-valued matrix. The full character table of $\overline{\mathrm{G}}$ in the format of Clifford-Fischer theory is given as Table 7 .
Table 7: The character table of $\overline{\mathrm{G}}=2_{+}^{1+8}: \mathrm{GL}(4,2)$

	1A						2A										
	1a	2a	2b	2c	2d	4a	$2 e$	2 f	2 g	2 h	2 i	4b	4c	4d	4 e	4f	4 g
$\left\|\mathrm{C}_{\overline{\mathrm{G}}}\left(\mathrm{g}_{\mathrm{ij}}\right)\right\|$	10321920	10321920	344064	344064	49152	43008	24576	24576	4096	4096	4096	2048	3072	3072	1024	1024	768
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	7	7	7	7	7	7	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_{3}	14	14	14	14	14	14	6	6	6	6	6	6	6	6	6	6	6
X_{4}	20	20	20	20	20	20	4	4	4	4	4	4	4	4	4	4	4
χ_{5}	21	21	21	21	21	21	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
χ_{6}	21	21	21	21	21	21	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
χ_{7}	21	21	21	21	21	21	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
χ_{8}	28	28	28	28	28	28	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
<9	35	35	35	35	35	35	3	3	3	3	3	3	3	3	3	3	3
$\times 10$	45	45	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
χ_{11}	45	45	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
χ_{12}	56	56	56	56	56	56	8	8	8	8	8	8	8	8	8	8	8
χ_{13}	64	64	64	64	64	64	\bigcirc	\bigcirc	\bigcirc	${ }^{\circ}$	\bigcirc	${ }^{\circ}$	\bigcirc	o	\bigcirc	${ }^{\circ}$	-
χ_{14}	70	70	70	70	70	70	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
χ_{15}	15	15	-1	15	-1	-1	7	7	-1	-1	7	-1	-1	7	-1	-1	-1
χ_{16}	45	45	-3	45	-3	-3	-3	-3	5	5	-3	5	-3	-3	5	-3	-3
χ_{17}	45	45	-3	45	-3	-3	-3	-3	5	5	-3	5	-3	-3	5	-3	-3
χ_{18}	90	90	-6	90	-6	-6	18	18	2	2	18	2	-6	18	2	-6	-6
$\chi 19$	105	105	-7	105	-7	-7	17	17	-7	-7	17	-7	1	17	-7	1	1
<20	105	105	-7	105	-7	-7	1	1	9	9	1	9	-7	1	9	-7	-7
<21	105	105	-7	105	-7	-7	-7	-7	1	1	-7	1	${ }^{1}$	-7	1	1	1
<22	120	120	-8	120	-8	-8	8	8	8	8	8	8	-8	8	8	-8	-8
χ_{23}	210	210	-14	210	-14	-14	10	10	-6	-6	10	-6	${ }^{2}$	10	-6	${ }^{2}$	2
χ_{24}	315	315	-21 -21	315	-21	-21	-3	-3	-5	-5	-3	-5	3	-3	-5	3	3
$\times 25$	315	315	-21	315	-21	-21	-21	-21	3	3	-21	3	3	-21	3	3	3
-26	15	15	15	-1	-1	-1	7	7	7	-1	-1	-1	7	-1	-1	-1	-1
<27	45	45	45	-3	-3	-3	-3	-3	-3	5	5	5	-3	-3	-3	5	-3
<28	45	45	45	-3	-3	-3	-3	-3	-3	5	5	5	-3	-3	-3	5	-3
X29	90	90	90	-6	-6	-6	18	18	18	${ }^{2}$	2	${ }_{2}$	18	-6	-6	2	-6
χ_{30}	105	105	105	-7	-7	-7	17	17	17	-7	-7	-7	17	1	1	-7	1
<31	105	105	105	-7	-7	-7	1	1	1	9	9	9	1	-7	-7	9	-7
X32	105	105	105	-7	-7	-7	-7	-7	-7	1	1	1	-7	1	1	1	1
χ_{33}	120	120	120	-8	-8	-8	8	8	8	8	8	8	8	-8	-8	8	-8
$\chi^{3} 3$	210	210	210	-14	-14	-14	10	10	10	-6	${ }^{-6}$	-6	10	2	${ }^{2}$	-6	2
${ }^{3} 35$	315	315	315	-21	-21	-21	3	3	3	-5	-5	-5	3	3	3	-5	3
χ^{36}	315	315	315	-21	-21	-21	-21	-21	-21	3	3		-21	3	3	3	3
Continued on next page																	

Table 7 (continued)

Table 7 (continued)

Table 7 (continued)

Table 7 (continued)

	4B					5A		6A		6B				
	$4 u$	$4 v$	8b	8c	8d	5a	10a	6 f	6 g	6h	6 i	12b	12c	12d
	64	64	32	32	32	30	30	24	24	48	48	24	24	24
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	2	2	O	-	-1	-1	-1	-1	-1
χ^{2}	0	0	O	o	o	-1	-1	-1	-1	o	o	o	o	o
χ_{4}	-	o	o	-	-	o	o	1	1	1	1	1	1	1
X 5	-1	-1	-1	-1	-1	1	1	-2	-2	o	O	O	O	O
X6	-1	-1	-1	-1	-1	1	1	1	1	O	o	o	o	-
X7	-1	-1	-1	-1	-1	1	1	1	1	-	-	O	o	0
X8	O	o	o	o	-	-2	-2	1	1	-1	-1	-1	-1	-1
$\chi 9$	-1	-1	-1	-1	-1	o	o	1	1	o	o	O	o	o
$\chi 10$	1	1	1	1	1	o	-	O	o	O	O	O	0	0
X11	1	1	1	1	1	o	-	o	-	-	-	-	o	-
X12	o	o	O	o	O	1	1	O	O	-1	-1	-1	-1	-1
X13	0	O	O	0	0	-1	-1	0	-	o	-	-	o	o
Х14	-	o	-	o	-	o	o	-1	-1	1	1	1	1	1
Х15	1	1	-1	-1	1	o	-	o	o	1	1	-1	-1	1
X16	1	1	-1	-1	1	-	O	o	-	O	O	O	o	O
Х17	1	1	-1	-1	1	-	-	-	-	o	-	o	o	-
X18	o	-	o	o	-	-	-	-	-	-	-	-	o	-
X19	-1	-1	1	1	-1	0	0	O	o	-1	-1	1	1	-1
X20	-1	-1	1	1	-1	o	0	o	o	1	1	-1	-1	1
X21	1	1	-1	-1	1	-	o	o	-	-1	-1	1	1	-1
<22	-	o	o	o	o	-	o	O	o	-1	-1	1	1	-1
X23	o	o	-	-	o	-	-	O	-	1	1	-1	-1	1
X24	1	1	-1	-1	1	-	0	O	o	0	o	o	o	O
Х25	-1	-1	1	1	-1	O	O	O	-	O	O	O	o	-
X26	1	1	1	-1	-1	0	0	o	0	1	1	1	-1	-1
Х27	1	1	1	-1	-1	o	-	o	o	o	o	o	o	o
Х28	1	1	1	-1	-1	-	O	O	O	O	o	O	O	o
X29	o	-	o	o	o	-	-	o	-	-	-	-	o	o
X30	-1	-1	-1	1	1	o	o	O	-	-1	-1	-1	1	1
X31	-1	-1	-1	1	1	O	o	o	-	1	1	1	-1	-1
X32	1	1	1	-1	-1	O	0	O	0	-1	-1	-1	1	1
X33	-	0	O	O	0	O	O	O	O	-1	-1	-1	1	1
X34	o	o	0	-	-	O	o	O	-	1	1	1	-1	-1
X35	1	,	1	-1	-1	-	0	O	o	0	o	O	o	o
Х36	-1	-1	-1	1	1	-	-	-	o	o	o	-	o	-
X37	1	1	-1	1	-1	o	o	o	o	1	1	-1	1	-1
X38	-1	-1	1	-1	1	-	o	o	-	1	1	-1	1	-1
Х39	o	-	o	-	o	o	0	o	O	-1	-1	1	-1	1
Х40	-1	-1	1	-1	1	O	0	O	0	O	O	O	0	o
X41	-1	-1	1	-1	1	0	0	o	o	O	o	O	O	\bigcirc
X42	-1	-1	1	-1	1	o	-	-	-	-	-	o	o	o
X43	1	1	-1	1	-1	o	0	O	o	O	o	O	o	\bigcirc
X44	1	1	-1	1	-1	o	0	0	o	0	0	0	o	\bigcirc
X45	1	1	-1	1	-1	O	0	O	O	-	o	O	o	o
X46	o	o	o	o	o	o	o	-	-	-1	-1	1	-1	1
X47	o	o	o	o	o	O	-	0	-	-1	-1	1	-1	1
X48	o	o	o	o	o	o	o	o	o	o	-	-	o	-
Х49	-	o	-	-	-	o	-	o	-	1	1	-1	1	-1
Х 50	o	o	o	o	o	o	o	o	-	o	o	o	o	o
X 51	o	o	o	o	o	o	-	-	-	o	o	-	o	-
X 52	-	o	-	o	-	-	-	o	-	o	o	-	o	-
Х 53	o	o	o	o	o	o	o	o	o	o	o	o	o	o
Х 54	-	o	-	-	-	-	-	-	-	-	-	-	o	-
Х 55	o	o	o	o	o	o	o	o	o	o	o	o	o	o
Х56	2	-2	o	o	O	1	-1	1	-1	2	-2	O	0	O
Х 57	2	-2	o	-	-	2	-2	o	-	-2	2	O	o	o
Х 58	o	o	o	-	-	-1	1	-1	1	o	0	o	o	o
X 59	o	o	o	-	o	o	-	1	-1	2	-2	-	o	o
$\chi 60$	-2	2	-	-	o	1	-1	-2	2	-	-	o	o	\bigcirc
X61	-2	2	o	o	-	1	-1	1	-1	0	-	O	0	\bigcirc
$\chi 62$	-2	2	o	-	-	1	-1	1	-1	o	0	O	o	0
X63	-	o	O	-	O	-2	2	1	-1	-2	2	O	O	O
$\chi 64$	-2		o	-	o	o	-	1	-1	-	O	O	o	\bigcirc
$\chi 65$	2	-2	o	o	o	o	o	o	o	o	o	o	o	o
X66	2	-2	-	-	-	o	-	-	-	o	o	-	o	o
X67	0	0	o	O	0	1	-1	0	0	-2	2	O	0	\bigcirc
$\chi 68$	-	o	O	o	-	-1	1	-	-	-	0	O	o	0
X69	o	o	o	o	o	o	o	-1	1	2	-2	o	o	o
												ontinu	on n	page

Table 7 (continued)

	7A					7B					15A		15B	
	7a	14a	14b	14c	28a	7 b	14d	$14 e$	14f	28 b	15a	30a	15b	30 b
	56	56	28	28	28	56	56	28	28	28	30	30	30	30
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	0	0	0	0	0	o	O	0	O	0	-1	-1	-1	-1
χ^{2}	-	0	o	0	-	0	-	-	-	-	-1	-1	-1	-1
χ^{χ}	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	o	o	o	o
X5	o	o	o	o	o	o	o	o	o	o	1	1	1	1
X6	o	o	o	o	o	o	0	0	O	0	C	C	\bar{C}	$\overline{\mathrm{C}}$
X7	0	o	o	o	o	o	O	o	o	o	$\overline{\mathrm{C}}$	$\overline{\mathrm{C}}$	C	C
χ_{8}	o	o	o	o	o	o	-	-	-	o	1	1	1	1
X9	0	${ }^{\circ}$	o	-	o	o	o	-	-	o	0	o	0	o
Х10	A	A	A	A	A	$\overline{\text { A }}$	\bar{A}	\bar{A}	\bar{A}	$\overline{\text { A }}$	0	o	O	o
X11	\bar{A}	\bar{A}	$\overline{\text { A }}$	\bar{A}	$\overline{\text { A }}$	A	A	A	A	A	O	O	o	o
χ_{12}	o	o	o	-	o	o	-	-	o	o	1	1	1	1
X13	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1
χ_{14}	o	o	o	o	o	o	o	o	o	o	o	o	o	o
X15	1	1	-1	1	-1	1			1	$\underline{-1}$	o	O	o	O
X16	A	A	- \boldsymbol{A}	A	- \bar{A}	$\overline{\text { A }}$	$\overline{\text { A }}$	$-\bar{A}$	$\overline{\text { A }}$	$-\overline{\mathrm{A}}$	0	0	o	о
X17	$\overline{\text { A }}$	$\overline{\text { A }}$	$-\bar{A}$	$\overline{\text { A }}$	$-\overline{\mathrm{A}}$	A	A	-A	A	-A	0	O	o	o
X18	-1	-1	1	-1	1	-1	-1	1	-1	1	o	o	o	o
Х19	o	o	o	o	o	o	o	-	o	o	0	o	o	-
Х20	o	o	o	o	o	o	o	o	o	o	o	o	o	o
Х21	o	o	-	o	-	o	-	-	o	-	0	O	o	o
Х22	1	1	-1	1	-1	1	1	-1	1	-1	o	o	o	o
Х23	o	o	o	o	o	o	o	o	o	o	0	o	o	-
Х24	o	-	-	o	-	o	-	-	-	-	-	-	o	-
Х25	o	o	o	-	-	-	-	-	o	-	o	-	-	-
X26	1	1	1	-1	-1	1	1	1	-1	-1	o	o	o	o
-27	A	A	A	- \underline{A}	- $-\bar{A}$	\bar{A}	\bar{A}	$\overline{\text { A }}$	$-\bar{A}$	$-\bar{A}$	0	0	O	o
-28	\bar{A}	$\overline{\text { A }}$	$\overline{\text { A }}$	- $\overline{\mathrm{A}}$	$-\bar{A}$	A	A	A	- A	-A	O	O	O	о
-29	-1	-1	-1	1	1	-1	-1	-1	1	1	0	O	O	o
X30	o	o	o	o	o	o	o	o	o	-	0	0	o	-
X31	o	o	o	o	-	o	o	-	o	-	o	o	o	o
$\chi^{1} 2$	o	o	o	-	-	o	o	-	o	-	0	o	o	o
Х33	1	1	1	-1	-1	1	1	1	-1	-1	0	O	O	o
Х34	o	o	o	o	-	o	o	o	o	-	0	O	O	-
X35	-	o	o	o	-	o	-	-	-	-	o	o	-	-
Х36	o	o	o	o	o	o	o	o	o	-	o	o	-	-
X37	o	o	o	o	o	o	o	o	o	o	o	o	o	o
Х38	o	o	o	o	o	o	o	o	o	o	o	o	o	o
X39	o	o	0	o	o	o	o	o	o	-	o	o	O	o
Х40	o	o	o	o	o	o	o	O	o	-	0	O	O	O
X41	-	o	o	o	o	o	-	-	o	-	0	o	O	-
χ_{42}	o	o	o	o	o	o	o	o	o	o	o	o	o	o
Х43	o	o	o	o	o	o	o	-	o	-	o	o	o	o
Х44	o	-	o	0	o	o	o	-	o	-	0	0	O	o
$\chi^{\chi} 45$	o	o	o	o	o	o	o	-	o	-	0	o	O	o
$\chi^{\chi} 46$	0	-	o	o	0	o	o	-	0	-	0	0	O	o
χ^{47}	o	o	o	o	o	o	o	o	o	o	o	o	o	o
Х48	-	-	o	o	-	o	-	-	o	-	o	o	-	o
$\chi{ }_{49}$	o	-	o	o	o	o	o	-	o	-	o	o	o	-
Х50	1	1	-1	-1	1	1	1	-1	-1	1	o	o	o	o
Х51	A	A	- \boldsymbol{A}	- \boldsymbol{A}	A	\bar{A}	$\overline{\text { A }}$	$-\bar{A}$	$-\bar{A}$	$\overline{\text { A }}$	0	o	o	o
$\chi^{1} 2$	$\overline{\mathrm{A}}$	$\overline{\text { A }}$	$-\overline{\mathrm{A}}$	$-\bar{A}$	$\overline{\text { A }}$	A	A	-A	-A	A	0	o	o	o
- ${ }^{1} 3$	-1	-1	1	1	-1	-1	-1	1	1	-1	0	o	o	o
Х54	o	o	-	-	-	o	o	-	-	o	-	-	o	o
Х $\mathbf{5}$	1	1	-1	-1	1	1	1	-1	-1	1	O	o	o	o
Х56	2	-2	o	o	0	2	-2	O	o	\bigcirc	1	-1	1	-1
X 57	o	-	o	o	o	O	-	-	0	-	-1	1	-1	1
Х58	-	o	o	o	o	o	o	o	o	-	-1	1	-1	1
X 59	-2	2	o	o	o	-2	2	-	o	-	-	o	o	-
$\chi 60$	o	o	o	o	o	o	o	o	o	-	1	-1	1	-1
X61	o	o	o	o	0	o	o	o	o	0	C	- C	$\overline{\mathrm{C}}$	$-\overline{\mathrm{C}}$
$\chi 62$	o	o	o	o	o	o	o	o	o	o	$\overline{\mathrm{C}}$	$-\overline{\mathrm{C}}$	C	-C
X63	-	-	o	-	o	o	-	-	o	-	1	-1	1	-1
X64	o	o	o	-	o	\bigcirc	\bigcirc	o	o	o	o	o	o	-
X65	B	$-\frac{B}{B}$	o	o	o	\bar{B}	$-\bar{B}$	o	o	o	o	o	o	o
$\chi 66$	\bar{B}	$-\bar{B}$	o	o	o	B	-B	o	o	o	0	0	o	0
$\chi 67$	o		o	-	-	o	-	-	o	-	1	-1	1	-1
$\chi 68$	2	-2	-	-	-	2	-2	o	0	0	-1	1	-1	1
X69	o	o	o	o	o	o	o	o	o	o	o	o	O	o

where in Table $7, A=-\frac{1}{2}-\frac{\sqrt{7}}{2} \mathfrak{i}=-1-b 7, \quad B=-1-\sqrt{7} i \quad$ and $C=-\frac{1}{2}-\frac{\sqrt{15}}{2} \mathfrak{i}=-1-\mathrm{b} 15$.

Acknowledgments

The authors are very grateful to the referee for his/her corrections, suggestions and advice, which improved the manuscript. The first author would like to thank the National Research Foundation (NRF) of South Africa and the University of Limpopo for the financial support received.

REFERENCES

[1] A.B.M. Basheer: "Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and Thompson Groups", PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg (2012).
[2] A.B.M. Basheer - J. Moori: "Fischer matrices of Dempwolff group $2^{5 \cdot} \mathrm{GL}(5,2)^{\prime \prime}$, Int. J. Group Theory 1, No. 4 (2012), 43-63.
[3] A.B.M. Basheer - J. Moori: "On the non-split extension group $2^{6 \cdot} \operatorname{Sp}(6,2)^{\prime \prime}$, Bull. Iranian Math. Soc. 39 (2013), 1189-1212.
[4] A.B.M. Basheer - J. Moori: "On the non-split extension $2^{2 n \cdot} \operatorname{Sp}(2 n, 2)$ ", Bull. Iranian Math. Soc. 41 (2015), 499-518.
[5] A.B.M. Basheer - J. Moori: "On a maximal subgroup of the Thompson simple group", Math. Comm. 20, No. 2 (2015), 201-218.
[6] A.B.M. Basheer - J. Moori: "A survey on Clifford-Fischer theory", in London Math. Soc. Lecture Notes 422, Cambridge University Press, Cambridge (2015), 160-172.
[7] A.B.M. Basheer - J. Moori: "On a group of the form $3^{7}: \operatorname{Sp}(6,2)$ ", Int. J. Group Theory 5, No. 2 (2016), 41-59.
[8] A.B.M. Basheer - J. Moori: "On two groups of the form $2^{8}: A_{9}$ ", Afrika Mat. 28 (2017), 1011-1032.
[9] A.B.M. Basheer - J. Moori: "On a group of the form $2^{10}:\left(\mathrm{U}_{5}(2): 2\right)^{\prime \prime}$, Italian J. Pure Appl. Math. 37 (2017), 645-658.
[10] A.B.M. Basheer - J. Moori: "Clifford-Fischer theory applied to a group of the form $2_{-}^{1+6}:\left(\left(3^{1+2}: 8\right): 2\right)^{\prime \prime}$, Bull. Iranian Math. Soc. 43 (2017), 41-52.
[11] A.B.M. Basheer, J. Moori, A.L. Prins - T. Seretlo: "On a group of the form $2^{4+5}: G L(4,2)$ ", Iranian J. Math. Sci. Inf., to appear.
[12] W. Bosma - J.J. Cannon: "Handbook of Magma Functions", Department of Mathematics, University of Sydney, Sydney (1994).
[13] J.H. Conway - R.T. Curtis - S.P. Norton - R.A. Parker R.A. Wilson: "Atlas of Finite Groups", Clarendon Press, Oxford (1985).
[14] The GAP Group: "GAP - Groups, Algorithms, and Programming", Version 4.4.10 (2007).
[15] Maxima: "A Computer Algebra System", Version 5.18.1 (2009).
[16] J. Moori: "On the Groups G^{+}and $\overline{\mathrm{G}}$ of the form $2^{10}: \mathrm{M}_{22}$ and $2^{10}: \overline{\mathrm{M}}_{22}{ }^{\prime \prime}$, PhD Thesis, University of Birmingham, Birmingham (1975).
[17] J. Moori: "On certain groups associated with the smallest Fischer group", J. London Math. Soc. 2 (1981), 61-67.
[18] H. Pahlings: "The character table of $2+{ }^{1+22 .} \mathrm{Co}_{2}$ ", J. Algebra 315 (2007), 301-325.
[19] T.T. Seretlo: "Fischer-Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups O_{8}^{+}(2), HS and Ly", PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg (2012).

Ayoub B.M. Basheer
School of Mathematical and Computer Sciences
University of Limpopo (Turfloop)
P Bag X1106, Sovenga 0727 (South Africa)
e-mail: ayoubbasheer@gmail.com

Jamshid Moori
School of Mathematical Sciences
North-West University (Mafikeng)
P Bag X2046, Mmabatho 2735 (South Africa)
e-mail: jamshid.moori@nwu.ac.za

