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Abstract
The maximal subgroup 24+6:(A5 ⇥ 3) of the Chevalley group G2(4) is isomorphic
to a non-split extension group of the shape G = 26·(24:(A5 ⇥ 3)). In this paper, the
ordinary character table of 24+6:(A5 ⇥ 3) will be re-calculated using the technique
of Fischer-Clifford matrices and where 24+6:(A5 ⇥ 3) will be treated as the non-split
extension G = 26·(24:(A5 ⇥ 3)). The author uses some relevant techniques to identify
and compute the type of characters (ordinary or projective ) of the inertia factor
groups Hi of G on Irr(26), which are required in the construction of the character ta-
ble of G via Fischer-Clifford theory. Also, this is a very good example to demonstrate
how to apply Fischer-Clifford theory to a non-split extension group N·G, where not
every irreducible character of N can be extended to its inertia group Hi in N·G.
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1 Introduction

The Chevalley-Dickson simple group G2(4) of Lie type G2 over
the Galois field GF(4) and of order 251596800 = 212 · 33 · 52 · 7 · 13
has exactly eight conjugacy classes of maximal subgroups [4]. One



44 Abraham L. Prins

of these classes of maximal subgroups of G2(4) is represented by
a 2-local subgroup of the form 24+6:(A5 ⇥ 3), where 24+6 is a spe-
cial 2-group of order 1024 with center Z(24+6) = 24. We denote this
maximal subgroup by G which is also a parabolic subgroup of G2(4).
The group G has index 1365 in G2(4) (see [4]).

In the ATLAS [4] of finite groups we found that 24+6:(A5⇥3) is the
normalizer NG2(4)((2A)4)) of an elementary abelian 2-group (2A)4

of order 16 in G2(4), where the generators of (2A)4 are 4 commut-
ing involutions found in the class of involutions 2A of G2(4). The
group G2(4) has a permutation representation of degree 416 [24] and
we can readily construct 24+6:(A5 ⇥ 3) in G2(4) using the computer
algebra systems MAGMA [3] or GAP [6]. The special 2-group 24+6 is
isomorphic to 24.26, where both of 24 and 26 are normal subgroups
in G. Hence G can be constructed as a non-split extension group of
the form G = 26·(24:(A5 ⇥ 3)) or G1 = 24·(26:(A5 ⇥ 3)) (see [15]).

The method of coset-analysis (see [12] and [13]) is used to compute
the conjugacy classes of an extension group G = N.G, where N is
abelian and the conjugacy classes of G lie over the conjugacy classes
of G, i.e., the classes of G are lifted to the classes of G. For g 2 G, g
is a lifting of g in G under the natural homomorphism

G �! G.

A coset Ng is considered for each class representative g in G,
where Ng splits into k orbits under the action of N by conjuga-
tion. Then under the action of

�
h : h 2 CG(g)

 
, fj of the k orbits

fuse together. Hence the order of the centralizer C
G
(x) for each ele-

ment x 2 G in a conjugacy class [x]
G

is given by

|C
G
(x)| =

k|CG(g)|

fj
.

If G = N.G is a finite extension group and N is a normal p-sub-
group of G, then the method of Fischer-Clifford matrices [5] involves
the construction of a non-singular square matrix M(g), called a Fi-
scher-Clifford matrix, for each conjugacy class [g] of G/N ' G. The
top of a column of a Fischer-Clifford matrix M(g) is labeled by the
centralizer order |C

G
(xi)|, for each class representative xi obtained

from the coset Ng using the technique of coset analysis. The rows
of the matrix M(g) are labeled to the left by the centralizer or-
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ders |CHi
(h)| of the so-called inertia factors Hi of G, where h is con-

tained in the class [h] of Hi which fuse into the class [g] of G. The
inertia factor Hi is the quotient group

Hi '
Hi

N
,

where Hi is the inertia group of a orbit of G on Irr(N), the set of ordi-
nary (complex) irreducible characters of N. In practice, the arithmeti-
cal properties of the Fischer-Clifford matrices (see, for example, [1]
and [13]) are used to compute the entries of M(g). The irreducible
complex characters of G can be constructed from these Fischer-Clif-
ford matrices M(g) and the irreducible (ordinary or projective) char-
acters of the subgroups Hi of G. A brief description of the technique
of Fischer-Clifford matrices is given in Section 3. Readers are referred
to [2] on a survey of Fischer-Clifford theory.

In this paper, some useful techniques are developed to identify
and compute the type of characters of the inertia factor groups Hi

which are required in the construction of the ordinary character ta-
ble of the non-split extension group G = 26·(24:(A5 ⇥ 3)). In this
regard, readers are referred to the paper [1] and [15]. If one is only
interested in the character table of 24+6:(A5⇥ 3), then it can be easily
obtained from the GAP library or computed within GAP. But to com-
pute the ordinary character table of G by means of Fischer-Clifford
theory, brings out some interesting aspects of the group structure
which are unique to G, as it will be seen in the sections that will
follows. Computations are carried out with the aid of the computer
algebra systems MAGMA and GAP and the notation of ATLAS is
mostly followed.

2 Preliminary results on projective characters

Since we are dealing with a non-split extension G, the theory of pro-
jective characters will play an important role in the construction of
the character table of G via Fischer-Clifford theory. In this section, we
give some definitions and make some remarks on projective represen-
tations. A proof of a proposition (due to G. Robinson in [20]), which
states that the number |IrrProj(G,↵)| of irreducible projective charac-
ters of a finite group G associated with some factor set ↵ is always
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less or equal to the number |Irr(G)| of the ordinary irreducible char-
acters of G, is also given. Furthermore, J. Schmidt developed GAP
codes (see [22]), which are based on this proposition, to compute
the number of irreducible projective characters of a finite solvable
group G associated with a certain factor set ↵. Interested readers are
referred to [1],[9],[10],[11] and [19] for definitions on concepts and
proofs of theorems concerning ordinary and projective character the-
ory. In the following G will be understood to be a finite group.

Definition 2.1 A function ↵ : G⇥G ! C⇤ is called a factor set of G
if ↵(xy, z)↵(x,y) = ↵(x,yz)↵(y, z) for all x,y, z 2 G.

The set of all equivalence classes of factor sets of G forms a finite
abelian group M(G), called the Schur Multiplier, where M(G) is iso-
morphic to the second cohomology group H2(G, C⇤) of G.

Definition 2.2 A mapping P : G ! GL(n, C) is called a projective repre-
sentation of G of degree n with associated factor set ↵ if

(i) P(1G) = In, and

(ii) P(x)P(y) = ↵(x,y)P(xy) 8x,y 2 G.

A projective character  of G is defined as (g) = trace(P(g)) for
all g 2 G. We say that  is irreducible if P is, and  has a factor set ↵,
where ↵ is the factor set of P.

Let IrrProj(G,↵) denote the set of irreducible projective characters
of G associated with the factor set ↵. An element x 2 G is said to
be ↵-regular if

↵(x, g) = ↵(g, x)

for all g 2 CG(x). It is well known that g 2 G is ↵-regular if and
only if (g) 6= 0 for some  2 IrrProj(G,↵) or equivalently that g
is ↵-irregular if and only if (g) = 0 for all  2 IrrProj(G,↵). The
number of irreducible projective characters with factor set ↵ equals
the number of ↵-regular classes of a group G. Projective characters
also satisfy the usual orthogonality relations and have analogues to
ordinary characters.

Definition 2.3 A group R is a representation group for G if there exists
a homomorphism ⇡ from R onto G such that (i) A = ker(⇡) ' M(G), and
(ii) A 6 Z(R)\ R

0 .
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A covering group C for G will normally be a quotient of R by a
subgroup B of A. If A/B has order n we sometimes refer to the cover-
ing group as a n-fold cover of G. Projective representations of G are
found in the representation group R for all the equivalence classes of
factors sets in M(G). However, in a n-fold cover C of G only the n
equivalence classes which C covers will be represented.

The following definition is taken from [21] and will be used in Pro-
position 2.5.

Definition 2.4 Let S 6 G, � 2 Irr(G) and � 2 Irr(S). The character � is
said to lie over �, if � is an irreducible constituent of �G, i.e. h�,�Gi 6= 0.
By the Frobenius reciprocity this is equivalent to say that � is a constituent
of �S, i.e. h�S,�i 6= 0. In this case, we also say that � lies under �.

The following proposition (see [16] and [20]) is useful to deter-
mine the number of irreducible projective characters of a group G
associated with a certain factor set ↵. It tells us also under which
condition |IrrProj(G,↵)| is strictly less then |Irr(G)|.

Proposition 2.5 (see [20]) Let R = M(G).G be a representation group
of a finite group G, where M(G) denotes the Schur multiplier of G. Then
the number of irreducible characters Irr(R) of R which lies over a linear
character ✓ of M(G) is less or equal to |Irr(G)|.

Proof — The number of irreducible characters Irr(R) of R which
lies over a linear character ✓ 2 IrrM(G) is given by

X

�2Irr(R)

h� #M(G), ✓i
�(1)

.

It is known that the quantity

X

�2Irr(R)

�(x)

�(1)
> 0

for each x 2 M(G), and it is non-zero if x is a commutator in R. For
any ✓ 2 Irr(M(G)), we have

P

x2M(G)

P

�2Irr(R)

�(x)✓(x-1)
�(1) 6 P

x2M(G)

P

�2Irr(R)

�(x)
�(1) = |M(G)||[g]R/M(G)|,
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where |[g]R/M(G)| is the number of conjugacy classes of R/M(G) ' G.
The last equality follows because the irreducible characters of R
with M(G) in their kernels are precisely those which contain the triv-
ial character on the restriction to M(G). Hence

1

|M(G)|

X

x2M(G)

X

�2Irr(R)

�(x)✓(x-1)

�(1)

=
X

�2Irr(R)

1

|M(G)|

X

x2M(G)

�(x)✓(x-1)

�(1)

=
X

�2Irr(R)

h� #M(G), ✓i
�(1)

6 |[g]R/M(G)| = |Irr(G)|.

Furthermore, if there is a non-identity element x 2 M(G) \ ker(✓)
which is a commutator in R, then the inequality becomes strict. ut

3 Theory of Fischer-Clifford matrices

Since the character table of G = 26·(24:(A5 ⇥ 3)) will be constructed
by the technique of Fischer-Clifford matrices, we will give a summary
of this technique as found in [1].

Let G = N·G be an extension of N by G, where N is normal in G
and G/N ' G. Denote the set of all irreducible characters of a finite
group G1 by Irr(G1). Also, define

H =
�
x 2 G | ✓x = ✓

 
= I

G
(✓)

as the inertia group of ✓ 2 Irr(N) in G then N is normal in H.
Let g 2 G be a lifting of g 2 G under the natural homomor-
phism G �! G and [g] be a conjugacy class of elements with rep-
resentative g. Let

X(g) = {x1, x2, . . . , xc(g)}

be a set of representatives of the conjugacy classes of G from the
coset Ng whose images under the natural homomorphism G �! G
are in [g] and we take x1 = g. Now let ✓1 = 1N, ✓2, . . . , ✓t be repre-
sentatives of the orbits of G on Irr(N) such that for 1 6 i 6 t, we
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have Hi with corresponding inertia factors Hi. By Gallagher [10] we
obtain

Irr(G) =
t[

i=1

{( i�)
G | � 2 IrrProj(Hi), with factor set ↵-1

i
},

where  i is a projective character of Hi with factor set ↵i such that

 i #N= ✓i.

Observe that ↵i and � are obtained from ↵i and �, respectively. We
have that H1= G and H1 = G. Choose y1,y2, . . . ,yr to be representa-
tives of the ↵-1

i
-conjugacy classes of elements of Hi that fuse to [g]

in G. We define

R(g) = {(i,yk) | 1 6 i 6 t,Hi \ [g] 6= ;, 1 6 k 6 r}

and we note that yk runs over representatives of the ↵-1

i
-conjugacy

classes of elements of Hi which fuse into [g] in G. We define ylk 2 Hi

such that ylk ranges over all representatives of the conjugacy classes
of elements of Hi which map to yk under the homomorphism

Hi �! Hi

whose kernel is N. Then we define the Fischer-Clifford matrix
by

M(g) =
⇣
aj

(i,yk)

⌘
,

where

aj

(i,yk)
=

0X

l

|C
G
(xj)|

|C
Hi

(ylk)|
 i(ylk) ,

with columns indexed by X(g) and rows indexed by R(g) and
where

P0
l

is the summation over all l for which ylk ⇠ xj in G. We
also write the Fischer-Clifford matrix for the class [g] as

M(g) =

2

6664

M1(g)
M2(g)

...
Mt(g)

3

7775
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where, if Hi \ [g] = ;, then the submatrix Mi(g) (corresponding to
the inertia group Hi and its inertia factor Hi) is not defined and is
omitted from M(g). M(g) is a l⇥ c(g) matrix, where l is the number
of ↵-1

i
- regular conjugacy classes of the inertia factors Hi’s, 1 6 i 6 t,

which fuse into [g] in G and c(g) is the number of conjugacy classes
of G which correspond to the coset Ng. Then the partial character
table of G on the classes {x1, x2, . . . , xc(g)} is given by

2

664

C1(g)M1(g)
C2(g)M2(g)...
Ct(g)Mt(g)

3

775

where the Fischer-Clifford matrix M(g) is divided into blocks Mi(g)
with each block corresponding to an inertia group Hi and Ci(g)
is the partial character table of Hi with factor set ↵-1

i
consisting

of the columns corresponding to the ↵-1

i
-regular classes that fuse

into [g] in G. We obtain the characters of G by multiplying the rele-
vant columns of the projective characters of Hi with factor set ↵-1

i

by the rows of M(g). We can also observe that

|Irr(G)| =
tX

i=1

|IrrProj(Hi,↵-1

i
)|.

4 The group 24+6:(A5 ⇥ 3)

The group
G = NG2(4)((2A)4) = 24+6:(A5 ⇥ 3)

is a split extension of the special 2-group 24+6 by A5 ⇥ 3 and is con-
structed within MAGMA using a permutation representation of de-
gree 416 obtained from Wilson’s online ATLAS of Group Representa-
tions [24]. The center Z(24+6) = 24 and the quotient

24+6/24 ' 26
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are elementary abelian 2-groups and it is also confirmed with the aid
of MAGMA that 26 is a normal subgroup of G and hence

24+6:(A5 ⇥ 3)

can be considered as an extension group of 26 by 24:(A5 ⇥ 3). More-
over, with the use of appropriate MAGMA commands it is found
that

24+6:(A5 ⇥ 3)

is isomorphic to a non-split extension 26·(24:(A5 ⇥ 3)). Also, using
the MAGMA commands “M:= GModule(G,26)” and “M:Maximal”
the group G/26 ' 24:(A5 ⇥ 3) is represented as a matrix group of
dimension 6 over GF(2). The generators g1 and g2 of 24:(A5 ⇥ 3) ,
with respective orders of 2 and 15, are as follows:

g1=

0

BBBBBB@

0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 1 1 0
1 0 1 0 0 1

1

CCCCCCA
, g2=

0

BBBBBB@

1 0 1 0 0 0
1 1 1 0 0 0
1 1 0 1 0 0
0 1 0 1 0 0
0 0 0 0 1 1
0 0 0 0 1 0

1

CCCCCCA
.

5 The action of 24:(A5 ⇥ 3) on 26 and Irr(26)

For the remainder of the paper we represent G by its non-split form,
that is

G = 26·(24:(A5 ⇥ 3))

a non-split extension of N = 26 by

G = 24:(A5 ⇥ 3),

where N is the vector space of dimension 6 over GF(2) on which
the linear group G = hg1, g2i acts. When G acts on the conjugacy
classes of elements of 26, we obtain 3 orbits of lengths 1, 15 and 48
with respective point stabilizers P1 = G, P2 = 24:(22:3) and P3 = A5.
Since G has 3 orbits on N, then by Brauer’s Theorem [7] the action
of G on Irr(N) will also has 3 orbits. The lengths of these orbits
are 1, 3 and 60, with corresponding inertia factor groups
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H1 = G, H2 = 24:A5 and H3 = 22:A4.

Note that H2 is isomorphic to the Mathieu group M20 (see [24]). See
Table 5.1 for a summary of the action of 24:(A5⇥ 3) on 26 and Irr(26),
respectively.

Table 5.1: Action of G on N and Irr(N)

Action of G on N Action of G on Irr(N)

Number and |O1| = 1 |O1| = 1
size of Orbits |O2| = 15 |O2| = 3

Oi |O3| = 48 |O3| = 60

Structure of P1 = 24:(A5 ⇥ 3) H1 = 24:(A5 ⇥ 3)
point stabilizers P2 = 24:(22:3) H2 = 24:A5

Pi and Hi P3 = A5 H3 = 22:A4

Size of |P1| = 2880 |H1| = 2880
stabilizers |P2| = 192 |H2| = 960
Pi and Hi |P3| = 60 |H3| = 48

Number of |[g]P1
| = 19 |[g]H1

| = 19
conjugacy classes |[g]P2

| = 17 |[g]H2
| = 9

[g] of Pi and Hi |[g]P3
| = 5 |[g]H3

| = 16

6 Fusion maps of inertia factors into 24:(A5 ⇥ 3)

We obtain the fusion maps (Tables 6.1 and 6.2) of the inertia fac-
tors H2 and H3 into G by using their permutation characters in G
of degree 3 and 60, respectively and if necessary direct computation
in MAGMA.

Table 6.1: The fusion of H2 into G

[h]H2
�! [g]G [h]H2

�! [g]G
1A 1A 4B 4A
2A 2A 4C 4A
2B 2B 5A 5A
3A 3E 5B 5B
4A 4A
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Table 6.2: The fusion of H3 into G

[h]H3
�! [g]G [h]H3

�! [g]G [h]H3
�! [g]G

1A 1A 2F 2B 6B 6D
2A 2B 2G 2B 6C 6C
2B 2B 3A 3A 6D 6D
2C 2B 3B 3B 6E 6C
2D 2A 6A 6C 6F 6D
2E 2B

7 Projective character tables of inertia factors

In this section, it will be shown that a projective character table with
a non-trivial factor set for H2 and the ordinary character table for
H3 are required in the construction of the character table of G. Read-
ers are referred to [1],[14] and [15] for the computational techniques
being used in this section.

The Fischer-Clifford matrix M(1A) is obtained by using the proper-
ties of Fischer-Clifford matrices (see[1]). The action of G on N results
in 3 orbits being formed and hence we obtained 3 classes 1A, 2A
and 2B of elements of G with centralizer orders of 184320, 12288 and
3840, respectively. The matrix M(1A) with corresponding weights at-
tached to rows and columns is given as:

M(1A) =

0

@

184320 12288 3840

2880 1 1 1
960 3 3 -1
48 60 -4 0

1

A

1 15 48

Let consider 65a, 78a 2 Irr(G2(4)) as listed in the ATLAS [4]. Then
we have

[x]G2(4) 1A 2A 2B
65a 65 1 5
78a 78 14 -6
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Let �1, �2 and �3 be the rows of the Fischer-Clifford matrix M(1A).
Since h(65a)N, 1Ni = 5 and h(78a)N, 1Ni = 0 we have the following
decompositions (65a)N = 5�1 + �3 and (78a)N = 6�2 + �3. Now
by considering the coefficient of �3 we deduce that we have a cha-
racter � 2 Irr(G) with deg(�) = 60. If

[x1, x2, x3, . . . , xs]

is the transpose of the partial entries for the projective characters
of H3 on 1A, then

C3(1A)M3(1A)

is a s⇥ 3 matrix with the first entry 60x1 = 60. Here C3(1A) is the
partial character table (ordinary or projective) of H3 corresponding
to the identity class of H3 and M3(1A) is the third row of entries
of M(1A) associated with the inertia factor group H3. Hence x1 = 1
and this shows that the character table of H3 that will be used con-
tains a character of degree 1. Thus the partial character table C3(1A)
comes from the ordinary characters of H3.

Similarly, by considering the coefficients of �2 in the decomposi-
tion of (78a)N, we obtain that there is an irreducible character of G
of degree 18. Let

[y1,y2,y3, . . . ,yt]

be the transpose of the partial entries for the projective character
table of H2 on 1A. Then C2(1A)M2(1A) is a t⇥ 3 matrix with the
first entry 3y1 = 18 and hence we obtain that y1 = 6. This shows that
the partial projective character table C2(1A) of H2 should contain a
character of degree 6. But the ordinary character table of H2 does not
contain a character of degree 6 and therefore a projective character
table IrrProj(H2,↵-1) of H2, with a non-trivial factor set ↵-1, will be
used in the construction of the character table of G.

Since the Schur multiplier of M(H2) = Z4 ⇥Z4 ⇥Z2 is the abelian
group of order 32, we have 7 classes of order 2 and 24 classes of or-
der 4. Hence we have 7 projective characters tables with factor sets
of order 2 and 24 projective character tables with factor sets of or-
der 4. We know that the degrees of the characters of the desire pro-
jective character table IrrProj(H2,↵-1) of H2 must be divisible by
the order of the corresponding factor set ↵-1. Now a non-trivial
class of M(H2) has either order of 2 or 4 and we also showed ear-
lier that the set IrrProj(H2,↵-1) contains an irreducible projective
character of degree 6. But 4 does not divide 6, hence we deduce that
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a set IrrProj(H2,↵-1) such that ↵2 ⇠ 1 is needed to construct the
set Irr(G).

Haggarty and Humphreys [8] show that it is possible to deter-
mine the projective characters of H2 with a given factor set ↵-1,
without the full representation group M(H2)·H2 of H2. So the aim
is to find a double cover of H2 which contains the correct choice
of IrrProj(H2,↵-1). Since we have a known permutation representa-
tion of G, the inertia group

H2 = 26·H2

of G on Irr(N) is generated within GAP. Next, we compute the nor-
mal subgroups of H2 which are contained in N and found there is a
normal subgroup N1 = 25 of order 32 in H2. The factor group

R = H2/N1

is the double cover 2.H2 which we are interested in. Thus the de-
sired projective characters of H2 with factor set ↵-1 such that ↵2 ⇠ 1
can be determined from the ordinary character table of the double
cover R. The ordinary character table of R is computed and it is found
that |Irr(R)| = 16, where 9 of these are the liftings of the ordinary irre-
ducible characters of H2 to R, while the other 7 ordinary characters
represent the desired set IrrProj(H2,↵-1) needed in the construction
of the set Irr(G). The following GAP code was use to “extract” the
set IrrProj(H2,↵-1) (see Table 7.1) from the set Irr(R):

gap> t:= CharacterTable("H2");
gap> 2t:= CharacterTable("R");
gap> F:=GetFusionMap( 2t, t );
gap> map:= ProjectionMap(F);
gap> projchars:=List(2t,x- >x{map});

Hence we can formulate the following theorem with G,N,N1,G,H2,
H3 and H2 defined as above.

Theorem 7.1 The sets

Irr(G), Irr(H3) and IrrProj(H2,↵-1)

such that ↵2 ⇠ 1 are required in the construction of the set Irr(G) using Fi-
scher-Clifford matrices. Moreover, IrrProj(H2,↵-1) is obtained
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from Irr(2.H2), where the double cover 2.H2 is isomorphic to the quo-
tient H2/N1.

Table 7.1: Projective character table of H2 with factor set ↵-1

[h]H2
1A 2A 2B 3A 4A 4B 4C 5A 5B

|CH2
(h)| 960 64 16 3 16 16 16 5 5

�1 6 -2 -2 0 0 0 2 1 1
�2 6 -2 2 0 0 0 -2 1 1
�3 10 2 2 1 0 0 2 0 0
�4 10 2 -2 1 0 0 -2 0 0
�5 12 -4 0 0 0 0 0 A A⇤

�6 12 -4 0 0 0 0 0 A⇤ A
�7 20 4 0 -1 0 0 0 0 0

where A = 1

2
(-1+

p
5)

8 Fischer-Clifford Matrices of G

The fusion of classes [h]Hi
of elements of the inertia factors Hi into

a class [g] of G will determine the size of a Fischer-Clifford ma-
trix M(g). The sizes of these matrices M(g) vary from 1⇥ 1 to 8⇥ 8

matrices. Note that only the fusion of the ↵-1

i
- regular classes of H2

into the classes of G is permitted. Hence, we have the number of con-
jugacy classes of G lying above a class [g] of G and the centralizer
orders of these classes are given by the equation

|C
G
(x)| =

k|CG(g)|

fj

which is obtained from the method of coset analysis. The values of
the k’s can be obtained by evaluating the permutation character

� (G|N) = 1aaabc+ 4a+ 5aa+ 15abc

of G on N for each class representative g 2 G (see, for exam-
ple, [13],[17] and [18]). The properties of Fischer-Clifford matri-
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ces (see [1]), the equation for the centralizer order |C
G
(x)|, the per-

mutation character

�(G2(4)|G) = 1a+ 350a+ 364b+ 650a

of G2(4) on the classes of G and some computational techniques used
in [14] are used to compute the conjugacy classes (see Table 8.2) and
entries of the Fischer-Clifford matrices (see Table 8.1) of G which cor-
respond to a coset Ng, g 2 G. Also, we made use of the information
about the classes of G which can be obtained from the uploaded char-
acter table of 24+6:(A5 ⇥ 3) in GAP. The fusion map of G into G2(4)
is also found in the last column of Table 8.2.

For example, consider the conjugacy class 2A of G. Observe that
the only class fusions into 2A are from the ↵-1-regular class 2A of H2

and the class 2D of H3. Hence the Fischer-Clifford matrix M(2A) will
be a 3⇥ 3 matrix. Therefore the coset Ng, for a class representative g
in 2A, is splitting into 3 classes [x1]G, [x2]G and [x3]G of G. Then
we obtain that M(2A) has the following form with corresponding
weights attached to the rows and columns:

M(2A) =

0

@

|C
G
(x1)| |C

G
(x2)| |C

G
(x3)|

|CH1
(2A)| a d g

|CH2
(2A)| b e h

|CH3
(2D)| c f i

1

A.

By Theorem 1.3 found in [1], we have the following form of M(2A):

M(2A) =

0

@

|C
G
(x1)| |C

G
(x2)| |C

G
(x3)|

192 1 1 1
64 b e h
16 c f i

1

A.

Further, if we assume that Ng is a split coset (see Definition 2.5
in [1]), then the first property of Lemma 2.8 (found in [1]) applies
and M(2A) will have the form:

M(2A) =

0

@

|C
G
(x1)| |C

G
(x2)| |C

G
(x3)|

192 1 1 1
64 3 e h
16 12 f i

1

A.

Then by the column orthogonality property (c) in [1], it follows
that

|C
G
(x1)| = 192+ 64x9+ 16x144 = 3072.
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But according to the uploaded character table of 24+6:(A5⇥3) in GAP,
there does not exist an element y 2 G such that the centralizer order

|C
G
(y)| = 3072.

Hence Ng is not a split coset and M(2A) cannot assume the above
form. If the two classes of involutions 2A and 2B of G coming from
the identity coset N are excluded, then it follows from the uploaded
character table of 24+6:(A5 ⇥ 3) in GAP that the remaining 11 classes
of order two and four of G must come from the cosets corresponding
to the classes 2A, 2B and 4A of G. But again according to the up-
loaded character table of 24+6:(A5⇥ 3), there are only two classes, 8A
and 8B, of order eight for G. Since G does not have any classes of
order eight, we must have that the classes 8A and 8B of G must
come from the class 4A of G. Therefore the 11 classes [xj]G of or-
der 2 and 4 of G must be obtained from the classes 2A and 2B of G.
Since the coset Ng which is obtained from the class 2B of G is a split
coset, the centralizer orders |C

G
(xj)| of the eight classes [xj] coming

from this coset (see Table 8.2) are easily computed from the corre-
sponding Fischer-Clifford matrix M(2B) using the matrix properties
in [1]. The centralizer orders 768, 512 and 512 of the remaining 3
classes of order 2 and 4 of G obtained from the uploaded character
table of 24+6:(A5 ⇥ 3) must come from the coset associated with the
class 2A of G. Together with the remaining properties of Fischer-Clif-
ford matrices found in [1], we conclude that M(2A) must have the
following form

M(2A) =

0

@

768 512 512

192 1 1 1
64 3 -1 -1
16 0 4 -4

1

A.

The other Fischer-Clifford matrices were obtained in a much easier
way using the properties in [1].
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Table 8.1: The Fischer-Clifford Matrices of G

M(g) M(g)

M(1A) =

0

@
1 1 1

3 3 -1

60 -4 0

1

A M(2A) =

0

@
1 1 1

3 -1 -1

0 4 -4

1

A

M(2B)=

0

BBBBBBBBB@

1 1 1 1 1 1 1 1

3 3 3 3 -1 -1 -1 -1

1 -1 -1 1 1 -1 -1 1

1 -1 1 -1 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1

-3 3 3 -3 1 -1 -1 1

-3 3 -3 3 1 -1 1 -1

3 3 -3 -3 -1 -1 1 1

1

CCCCCCCCCA

M(3A) =

✓
1 1

15 -1

◆

M(3B) =

✓
1 1

15 -1

◆
M(3C) =

�
1

�

M(3D) =
�

1
�

M(3E) =

✓
1 1

3 -1

◆

M(4A) =

✓
1 1

1 -1

◆
M(5A) =

✓
1 1

3 -1

◆

M(5B) =

✓
1 1

3 -1

◆

M(6A) =
�

1
�

M(6B) =
�

1
�

M(6C) =

0

BB@

1 1 1 1

1 -1 1 -1

1 -1 -1 1

1 1 -1 -1

1

CCA M(6D) =

0

BB@

1 1 1 1

1 -1 1 -1

1 -1 -1 1

1 1 -1 -1

1

CCA

M(15A) =
�

1
�

M(15B) =
�

1
�

M(15C) =
�

1
�

M(15D) =
�

1
�
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Table 8.2: The classes of G

[g]G k fj [x]
G

|C
G
(x)| ! [y]G2(4)

1A 64 f1 = 1 1A 184320 1A
f2 = 15 2A 12288 2A
f3 = 48 2B 3840 2B

2A 16 f1 = 4 2C 768 2B
f2 = 6 4A 512 4A
f3 = 6 4B 512 4C

2B 16 f1 = 1 2D 768 2A
f2 = 1 4C 768 4A
f3 = 1 4D 768 4B
f4 = 1 4E 768 4B
f5 = 3 2E 256 2B
f6 = 3 4F 256 4B
f7 = 3 4G 256 4C
f8 = 3 4H 256 4C

3A 16 f1 = 1 3A 2880 3A
f2 = 15 6A 192 6A

3B 16 f1 = 1 3B 2880 3A
f2 = 15 6B 192 6A

3C 1 f1 = 1 3C 36 3B
3D 1 f1 = 1 3D 36 3B
3E 4 f1 = 1 3E 36 3B

f2 = 3 6C 12 6B
4A 4 f1 = 2 8A 32 8A

f2 = 2 8B 32 8B
5A 4 f1 = 1 5A 60 5A

f2 = 3 10A 20 10C
5B 4 f1 = 1 5B 60 5B

f2 = 3 10B 20 10D
6A 1 f1 = 1 6D 12 6B
6B 1 f1 = 1 6E 12 6B
6C 4 f1 = 1 6F 48 6A

f2 = 1 12A 48 12A
f3 = 1 12B 48 12B
f4 = 1 12C 48 12C

6D 4 f1 = 1 6G 48 6A
f2 = 1 12D 48 12A
f3 = 1 12E 48 12C
f4 = 1 12F 48 12B

15A 1 f1 = 1 15A 15 15A
15B 1 f1 = 1 15B 15 15A
15C 1 f1 = 1 15C 15 15B
15D 1 f1 = 1 15D 15 15B
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9 The character table of G

Having obtained the Fischer-Clifford matrices of G, the projective
characters of the inertia factor H2, the ordinary characters of H1

and H3, the fusion of the ↵-1

i
- regular classes of H2 into G, and the

fusion of the classes of H3 into G, we are able to construct the ordi-
nary character table of G using Fischer-Clifford theory.
The set of irreducible characters of G will be partitioned
into 3 blocks, namely 41 = {�j | 1 6 j 6 19}, 42 = {�j | 20 6 j 6 26}
and 43 = {�j | 27 6 j 6 42} corresponding to the inertia factor
groups H1,H2 and H3, respectively, where �j 2 Irr(G). The consis-
tency and accuracy of the character table of G (see Table 9.1) have
been tested by using the GAP code labeled as Programme E in [23].

Table 9.1: The character table of G = 26·(24:(A5 ⇥ 3))

[g]G 1A 2A 2B 3A 3B 3C 3D 3E
[g]

G
1A 2A 2B 2C 4A 4B 2D 4C 4D 4E 2E 4F 4G 4H 3A 6A 3B 6B 3C 3D 3E 6E

�1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A A A A A A 1 1
�3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A A A A A A 1 1
�4 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 0 0 0 0
�5 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 3 3 3 3 0 0 0 0
�6 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 B B B B 0 0 0 0
�7 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 B B B B 0 0 0 0
�8 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 B B B B 0 0 0 0
�9 3 3 3 3 3 3 -1 -1 -1 -1 -1 -1 -1 -1 B B B B 0 0 0 0
�10 4 4 4 4 4 4 0 0 0 0 0 0 0 0 4 4 4 4 1 1 1 1
�11 4 4 4 4 4 4 0 0 0 0 0 0 0 0 C C C C A A 1 1
�12 4 4 4 4 4 4 0 0 0 0 0 0 0 0 C C C C A A 1 1
�13 5 5 5 5 5 5 1 1 1 1 1 1 1 1 5 5 5 5 -1 -1 -1 -1
�14 5 5 5 5 5 5 1 1 1 1 1 1 1 1 D D D D -A -A -1 -1
�15 5 5 5 5 5 5 1 1 1 1 1 1 1 1 D D D D -A -A -1 -1
�16 15 15 15 -1 -1 -1 3 3 3 3 3 3 3 3 0 0 0 0 3 3 0 0
�17 15 15 15 -1 -1 -1 3 3 3 3 3 3 3 3 0 0 0 0 B B 0 0
�18 15 15 15 -1 -1 -1 3 3 3 3 3 3 3 3 0 0 0 0 B B 0 0
�19 45 45 45 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 0 0 0 0 0 0 0 0
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�20 18 18 -6 -6 2 2 -6 -6 -6 -6 2 2 2 2 0 0 0 0 0 0 0 0
�21 18 18 -6 -6 2 2 6 6 6 6 -2 -2 -2 -2 0 0 0 0 0 0 0 0
�22 30 30 -10 6 -2 -2 6 6 6 6 -2 -2 -2 -2 0 0 0 0 0 0 3 -1
�23 30 30 -10 6 -2 -2 -6 -6 -6 -6 2 2 2 2 0 0 0 0 0 0 3 -1
�24 36 36 -12 -12 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�25 36 36 -12 -12 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�26 60 60 -20 12 -4 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 1

�27 60 -4 0 0 4 -4 0 8 -4 -4 4 -4 0 0 15 -1 15 -1 0 0 0 0
�28 60 -4 0 0 4 -4 -4 -4 0 8 0 0 4 -4 15 -1 15 -1 0 0 0 0
�29 60 -4 0 0 4 -4 -4 -4 8 0 0 0 -4 4 15 -1 15 -1 0 0 0 0
�30 60 -4 0 0 4 -4 8 0 -4 -4 -4 4 0 0 15 -1 15 -1 0 0 0 0
�31 60 -4 0 0 4 -4 -4 -4 0 8 0 0 4 -4 E -A E -A 0 0 0 0
�32 60 -4 0 0 4 -4 -4 -4 0 8 0 0 4 -4 E -A E -A 0 0 0 0
�33 60 -4 0 0 4 -4 -4 -4 8 0 0 0 -4 4 E -A E -A 0 0 0 0
�34 60 -4 0 0 4 -4 -4 -4 8 0 0 0 -4 4 E -A E -A 0 0 0 0
�35 60 -4 0 0 4 -4 8 0 -4 -4 -4 4 0 0 E -A E -A 0 0 0 0
�36 60 -4 0 0 4 -4 8 0 -4 -4 -4 4 0 0 E -A E -A 0 0 0 0
�37 60 -4 0 0 4 -4 0 8 -4 -4 4 -4 0 0 E -A E -A 0 0 0 0
�38 60 -4 0 0 4 -4 0 8 -4 -4 4 -4 0 0 E -A E -A 0 0 0 0
�39 180 -12 0 0 -4 4 0 0 12 -12 -4 -4 8 0 0 0 0 0 0 0 0 0
�40 180 -12 0 0 -4 4 0 0 -12 12 -4 -4 0 8 0 0 0 0 0 0 0 0
�41 180 -12 0 0 -4 4 -12 12 0 0 0 8 -4 -4 0 0 0 0 0 0 0 0
�42 180 -12 0 0 -4 4 12 -12 0 0 8 0 -4 -4 0 0 0 0 0 0 0 0

where A = -1-
p
3i

2
,B = -3-3

p
3i

2
,C = -2- 2

p
3i,D = -5-5

p
3i

2
,

E = -15+15
p
3i

2
.
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Table 9.1 (continued)

[g]G 4A 5A 5B 6A 6B 6C 6D 15A 15B 15C 15D
[g]G 8A 8B 5A 10A 5B 10B 6D 6E 6F 12A 12B 12C 6G 12D 12E 12F 15A 15B 15C 15D

�1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
�2 1 1 1 1 1 1 A A A A A A A A A A A A A A

�3 1 1 1 1 1 1 A A A A A A A A A A A A A A

�4 -1 -1 F F
⇤
F

⇤
F 0 0 -1 -1 -1 -1 -1 -1 -1 -1 F F

⇤
F

⇤
F

�5 -1 -1 ⇤
F

⇤
F F F 0 0 -1 -1 -1 -1 -1 -1 -1 -1 ⇤

F
⇤
F F F

�6 -1 -1 F F
⇤
F

⇤
F 0 0 -A -A -A -A -A -A -A -A H -H I I

�7 -1 -1 ⇤
F

⇤
F F F 0 0 -A -A -A -A -A -A -A -A I I H H

�8 -1 -1 F F
⇤
F

⇤
F 0 0 -A -A -A -A -A -A -A -A H H I I

�9 -1 -1 ⇤
F

⇤
F F F 0 0 -A -A -A -A -A -A -A -A I I H H

�10 0 0 -1 -1 -1 -1 1 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1
�11 0 0 -1 -1 -1 -1 A A 0 0 0 0 0 0 0 0 -A -A -A -A
�12 0 0 -1 -1 -1 -1 A A 0 0 0 0 0 0 0 0 -A -A -A -A
�13 1 1 0 0 0 0 -1 -1 1 1 1 1 1 1 1 1 0 0 0 0
�14 1 1 0 0 0 0 -A -A A A A A A A A A 0 0 0 0
�15 1 1 0 0 0 0 -A -A A A A A A A A A 0 0 0 0
�16 -1 -1 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
�17 -1 -1 0 0 0 0 -A -A 0 0 0 0 0 0 0 0 0 0 0 0
�18 -1 -1 0 0 0 0 -A -A 0 0 0 0 0 0 0 0 0 0 0 0
�19 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�20 2 -2 3 -1 3 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�21 -2 2 3 -1 3 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�22 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�23 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�24 0 0 G

⇤
F

⇤
G F 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�25 0 0 ⇤
G F G

⇤
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�27 0 0 0 0 0 0 0 0 3 -1 -1 -1 3 -1 -1 -1 0 0 0 0
�28 0 0 0 0 0 0 0 0 -1 -1 -1 3 -1 -1 -1 3 0 0 0 0
�29 0 0 0 0 0 0 0 0 -1 -1 3 -1 -1 -1 3 -1 0 0 0 0
�30 0 0 0 0 0 0 0 0 -1 3 -1 -1 -1 3 -1 -1 0 0 0 0
�31 0 0 0 0 0 0 0 0 -A -A -A B -A -A -A B 0 0 0 0
�32 0 0 0 0 0 0 0 0 -A -A -A B -A -A -A B 0 0 0 0
�33 0 0 0 0 0 0 0 0 -A -A B -A -A -A B -A 0 0 0 0
�34 0 0 0 0 0 0 0 0 -A -A B -A -A -A B -A 0 0 0 0
�35 0 0 0 0 0 0 0 0 -A B -A -A -A B -A -A 0 0 0 0
�36 0 0 0 0 0 0 0 0 -A B -A -A -A B -A -A 0 0 0 0
�37 0 0 0 0 0 0 0 0 B -A -A -A B -A -A -A 0 0 0 0
�38 0 0 0 0 0 0 0 0 B -A -A -A B -A -A -A 0 0 0 0
�39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
�42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

where F = 1-
p
5

2
, G = -3-3

p
5

2
, H = -2E(15)7 - E(15)13,

I = -E(15)- E(15)4.

GAP is used to compute possible power maps from the character
table of G. The GAP code, found in [23] as Programme E, produces
unique p-power maps (see Table 9.2) for Table 9.1.
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Table 9.2: The power maps of the elements of 26·(24:(A5 ⇥ 3))

[g]G [x]
G

2 3 5 [g]G [x]
G

2 3 5
1A 1A 5B 5B 1A

2A 1A 10B 5A 2B
2B 1A

2A 2C 1A 6A 6D 3D 2C
4A 2A
4B 2A

2B 2D 1A 6B 6E 3C 2C
4C 2A
4D 2A
4E 2A
2E 1A
4F 2A
4G 2A
4H 2A

3A 3A 1A 6C 6F 3B 2D
6A 3B 2A 12A 6B 4C

12B 6B 4E
12C 6B 4D

3B 3B 1A 6D 6G 3A 2D
6B 3A 2A 12D 6A 4C

12E 6A 4E
12F 6A 4D

3C 3C 1A 15A 5B 3B
3D 3D 1A 15B 5B 3A
3E 3E 1A 15C 5A 3B

6C 3E 2B
4A 8A 4A 15D 5A 3A

8B 4B
5A 5A 1A

10A 5B 2B

Acknowledgments

I am most grateful to my Lord Jesus Christ.



A maximal subgroup 24+6:(A5 ⇥ 3) of G2(4) 65

R E F E R E N C E S

[1] F. Ali – J. Moori: “The Fischer-Clifford matrices of a maximal
subgroup of Fi 0

24
”, Repr. Theory 7 (2003), 300–321.

[2] A.B.M. Basheer – J. Moori: “A survey on Clifford-Fischer the-
ory”, in London Math. Soc. Lecture Notes Series 422 (2015), Cam-
bridge University Press, 160–172.

[3] W. Bosma – J.J. Canon: “Handbook of Magma Functions”,
Department of Mathematics, University of Sydney (Novem-
ber, 1994).

[4] J.H. Conway – R.T. Curtis – S.P. Norton – R.A. Parker –
R.A. Wilson: “Atlas of Finite Groups”, Oxford University Press,
Oxford (1985).

[5] B. Fischer: “Clifford-matrices”, in Progr. Math. 95 (1991), 1–16.

[6] The GAP Group: “GAP — Groups, Algorithms, and Program-
ming”, Version 4.6.3 (2013).

[7] D. Gorenstein: “Finite Groups”, Harper and Row, New York
(1968).

[8] R.J. Haggarty – J.F. Humphreys, “Projective characters of finite
groups”, Proc. London Math. Soc. 36 (1975), 176–192.

[9] I.M. Isaacs: “Character Theory of Finite Groups”, Academic
Press, San Diego (1976).

[10] G. Karpilovsky: “Group Representations: Introduction to
Group Representations and Characters”, Vol. 1, Part B, North-
Holland, Amsterdam (1992).

[11] G. Karpilovsky: “Projective Representations of Finite Groups”,
Marcel Dekker, New York (1985).

[12] J. Moori: “On certain groups associated with the smallest Fis-
cher group”, J. London Math. Soc. 2 (1981), 61–67.

[13] J. Moori – Z.E. Mpono: “The Fischer-Clifford matrices of the
group 26:SP6(2)”, Quaestiones Math. 22 (1999), 257–298.

[14] A.L. Prins: “The character table of an involution centralizer in
the Dempwolff group 25·GL5(2)”, Quaestiones Math. 39 (2016),
561–576.



66 Abraham L. Prins

[15] A.L. Prins: “The projective character tables of a solvable
group 26:(6 ⇥ 2)”, Int. J. Math. Mathematical Sci. (2019), 15pp.;
doi:10.1155/2019/8684742.

[16] A.L. Prins: “The number of irreducible projective characters
with associated factor set of any finite group”; mathover-
flow.net/q/163208 (2014-05-05).

[17] A.L. Prins – R.L. Fray: “The Fischer-Clifford matrices of the
inertia group 27:O-(6, 2) of a maximal subgroup 27:SP(6, 2)
in Sp8(2)”, Int. J. Group Theory 2(3) (2013), 19–38.

[18] A.L. Prins – R.L. Fray: “The Fischer-Clifford matrices of an ex-
tension group of the form 27:(25:S6)”, Int. J. Group Theory 3(2)
(2014), 21–39.

[19] E.W. Read: “On the centre of a representation group”, J. London
Math. Soc. 16 (1977), 43–50.

[20] G. Robinson: “The number of irreducible projective charac-
ters with associated factor set of any finite group”; mathover-
flow.net/q/163229 (2014-05-05).

[21] D. Rossi: “Definition from Character Theory”;
math.stackexchange.com/q/2834116 (2018-06-29).

[22] J. Schmidt: “Projective characters with corresponding factor
set”; mathoverflow.net/q/165226 (2017-04-13).

[23] T.T. Seretlo: “Fischer Clifford Matrices and Character Tables
of Certain Groups Associated with Simple Groups O+

10
(2), HS

and Ly”, PhD Thesis, University of KwaZulu Natal (2011).

[24] R.A. Wilson – P. Walsh – J. Tripp – I. Suleiman – S. Rogers –
R. Parker – S. Norton – S. Nickerson – S. Linton – J. Bray –
R. Abbot: “ATLAS of Finite Group Representations”;
brauer.maths.qmul.ac.uk/Atlas/v3/

Abraham Love Prins
Department of Mathematics and Applied Mathematics
Nelson Mandela University
PO Box 77000, Port Elizabeth 6031 (South Africa)
e-mail: abraham.prins@mandela.ac.za


	A note on formations with the Shemetkov property
	L.A. Kurdachenko — P. Longobardi — M. Maj: Groups with finitely many classes of non-normal subgroups
	A.L. Prins: A maximal subgroup 24+6:(A53) of G2(4) treated as a non-split extension G=26(24:(A53))
	Hossein Shahrtash: Conjugacy class sizes in affine semi-linear groups
	L.A. Kurdachenko – A.A. Pypka – I.Ya. Subbotin: On groups whose non-normal subgroups are either contranormal or core-free
	B.A.F. Wehrfritz: On groups with finite HIrsch number
	Amel Zitouni: Groups whose proper subgroups of infinite rank are minimax-by-nilpotent or nilpotent-by-minimax

