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Abstract
We study groups in which the non-normal subgroups fall into finitely many isomor-
phism classes. We prove that a locally generalized radical group with this property
is abelian-by-finite and minimax. Here a generalized radical group is a group with
an ascending series whose factors are either locally nilpotent or locally finite. We
give also a complete description of locally finite groups with finitely many classes
of non-normal subgroups.
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1 Introduction

Let G be a group and ⌫ be a subgroup theoretical property. This
property can be external to the group as the property of being “an
abelian or nilpotent or soluble subgroup”, or internal to the group
such as the property of being “a normal or subnormal or permutable
subgroup”. Denote by L⌫(G) the family of all subgroups of G having
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the property ⌫ and, respectively, by Lnon-⌫(G) the family of all sub-
groups of G which do not have the property ⌫. Many authors studied
the groups in which the family L⌫(G) is “very big” in some sense,
or the family Lnon-⌫(G) is “very small” in some sense, for many
natural subgroup properties ⌫, such as to be a normal, subnormal,
permutable, almost normal, infinite, abelian, nilpotent, finitely gen-
erated subgroup and many others. But what means “to be small” in
infinite group theory? Very often it means “to satisfy some finiteness
condition”(see, for example, the survey [6]).

On a group G there are some natural equivalence relations related
to its subgroups. One of them is the relation “the subgroups H and K
are conjugate”. In the paper [12] J. Lennox, F. Menegazzo, H. Smith
and J. Wiegold worked with the following relation: “there is an auto-
morphism � of the group G such that K = �(H)”. It appears that this
relation was very strong.

In this paper we will consider a more general equivalence relation
on subgroups. Let G be a group, M a family of subgroups of the
group G and H,K 2 M. Then the relation “H is isomorphic to K” is
an equivalence relation in M. Denote by IsomM(H) the equivalence
class of H defined by this relation. Then

IsomM(H) = {L | L 2 M , L ' H}.

Choose in every equivalence class one representative and denote
the set of all these representatives by Itype(M). The set Itype(M) is
called the isomorphism type of the family M. If M = L(G) is the family
of all subgroups of G, with G 6= {1}, then the set Itype(L(G)) con-
tains at least two elements: G and {1}. If Itype(L(G)) contains only
these two elements, then clearly G is a group of prime order or G
is an infinite cyclic group. In the last case G is isomorphic to each
proper non-trivial subgroup. If |Itype(L(G))| = 3, then the situation
is more complicated. In the paper [21] A.Yu. Olshanskii constructed
an infinite p-group, whose proper non-trivial subgroups have or-
der p. In [20] A.Yu. Olshanskii constructed a simple torsion-free
group, whose proper non-trivial subgroups are cyclic. He used for
these examples very complicated constructions, which show that we
cannot obtain a full description of groups with |Itype(L(G))| = 3. But
in the universe of generalized soluble groups the description of such
groups is not difficult, and also it is possible to obtain information on
the structure of groups for which |Itype(L(G))| is small. If G is a finite
group, then the set Itype(M) is finite for every family set M of sub-
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groups of G. Therefore the finiteness of the set Itype
�
Lnon-⌫(G)

�

is one of the possibilities “to be small” for the family Lnon-⌫(G).
Thus we come naturally to the following problem: what can be said
about the structure of the groups in which the cardinality of the
set Itype(L

non-⌫
(G)) is finite for some basic property ⌫ of sub-

groups? One of the basic properties of subgroups is the property
“to be an abelian subgroup”. The groups in which the family of all
non-abelian subgroups has finite isomorphism type were studied in
the paper [11]. Under some natural restrictions such groups are min-
imax and abelian-by-finite. Another important family of subgroups
is the family of normal subgroups of G. The behaviour of normal
subgroups has an important effect on the structure of a group. There
is an enormous array of papers, concerning the groups G in which
the family Lnorm(G) of normal subgroups “is very big”or the fam-
ily Lnon-norm(G) of all non-normal subgroup “is very small”. Of
course, if G is an abelian or, more generally, a Dedekind group, then
the family Lnon-norm(G) is empty. Suppose now that

|Lnon-norm(G)| = 1.

This means that the family Lnon-norm(G) is not empty and all non-
normal subgroups are isomorphic to some unique subgroup K. If we
suppose that K is not cyclic, then each cyclic subgroup of G must
be normal. But in this case every subgroup of G is normal, and we
obtain a contradiction. This contradiction shows that K is cyclic. It
follows that every non-cyclic subgroup of G is normal. Such groups
have been described by F.N. Liman in the papers [14] and [15].

In this paper we consider groups in which the family

Lnon-norm(G)

of all non-normal subgroups has finite isomorphism type. We will
write C this class of groups.

The examples of groups constructed by A.Yu. Olshanskii in [20]
and [21] show that a real description of groups in C is possible only
under some additional restrictions, for example in the universe of
generalized soluble groups. Our results are the following ones.

Theorem A Let G be an infinite locally finite group which is not a Dede-
kind group. Then G is in the class C if and only if G = P⇥A where A is a
finite Dedekind group, P is a Sylow p-subgroup of G (p a prime), and ⇣(P)
includes a Prüfer subgroup D such that P/D is a finite abelian group.
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Theorem B Let G be a locally generalized radical group in C. Then ei-
ther G is a Dedekind group, or G is abelian-by-finite and minimax.

Here a locally generalized radical group is a group with an ascend-
ing series whose factors are either locally nilpotent or locally finite.

Notice that the direct product of a finite non-Dedekind group with
a minimax torsion-free abelian group with infinitely many non-iso-
morphic subgroups has infinitely many non-normal non-isomorphic
subgroups, hence the converse of Theorem B is not generally true.

For the class of locally generalized radical groups we also obtained
the following result.

Theorem C Let G be a locally generalized radical group in which the
family of all subgroups has finite isomorphic type. Then G contains a normal
minimax torsion-free abelian subgroup of finite index.

Finally, we point out that for some other families M of subgroups
of the group G, similar problems have been studied before. For exam-
ple if M is the family of the commutator subgroups of all subgroups
of G, then groups G with M finite have been studied by F. de Giovan-
ni and D.J.S. Robinson in [8], as well as by M. Herzog, P. Longobardi,
M. Maj in [9]; groups with M of finite isomorphism type have been
investigated by P. Longobardi, M. Maj, D.J.S. Robinson, H. Smith in
a series of papers (see [16], [17], and [18]).

Our notation are the usual ones, see for example [13], [22] and [23].

2 The structure of locally finite subgroups

We start our investigation of groups in the class C with two easy lem-
mas.

Lemma 2.1 Suppose that G 2 C. If K is a subgroup of G, then K 2 C.

Proof — Let K be a subgroup of G. If H is a non-normal subgroup
of K, then H is a non-normal subgroup of G. It follows that

Lnon-norm(K) ✓ Lnon-norm(G).

In particular, Itype(Lnon-norm(K)) is finite. ut
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Lemma 2.2 Suppose that G 2 C. If K is an infinite locally finite subgroup
of G, then for every finite subgroup F of K there exists a finite G-invariant
subgroup D of K containing F such that every subgroup of K/D is G-in-
variant. In particular, every infinite locally finite subgroup of G is normal
in G and it is contained in the FC-center of G.

Proof — Write n the isomorphism type of G. If every finite sub-
group of K containing F is G-invariant, then every subgroup of K
containing F is G-invariant. Suppose that there exists a finite sub-
group H1 of K, H1 > F, which is not G-invariant. Since K is infinite, K
contains a finite subgroup S > H1. It follows that the family

L1 = {H |H is a finite subgroup of K and H > H1}

is not empty. If L1 contains a finite subgroup H2 which is not G-in-
variant, then the subgroups H1 and H2 cannot be isomorphic, be-
cause |H1| < |H2|. In this case we consider the family

L2 = {H |H is a finite subgroup of K and H > H2}.

This family is not empty. If L2 contains a finite subgroup H3 which
is not G-invariant, then the subgroups H1,H2 and H3 cannot be iso-
morphic. Using similar arguments, we construct a chain of finite sub-
groups H1 < H2 < . . . < Hn such that every subgroup of the family

Ln = {H |H is a finite subgroup of K and H > Hn}

is G-invariant. If D is a minimal (by inclusion) element of Ln, then D
and every finite subgroup of K containing D are G-invariant. It fol-
lows that every subgroup of K/D is G-invariant, in particular, K is
normal in G. Now, let x be an arbitrary element of K. Then there is a
finite G-invariant subgroup D of K, containing x. The finiteness of D
implies that xG is finite, so that x 2 FC(G). ut

Corollary 2.3 Suppose that G 2 C and let P be an infinite locally finite
subgroup of G. If P is a non-Chernikov subgroup, then every subgroup of P
is G-invariant.

Proof — It is enough to prove that every finite subgroup of P
is G-invariant. Suppose the contrary, let P contain a finite subgroup F
which is not G-invariant. By Lemma 2.2 the normal closure L of F is
finite. Since P is not a Chernikov group, then P contains an abelian



14 L.A. Kurdachenko – P. Longobardi – M. Maj

subgroup
A = Dr

�2⇤

ha�i,

where the set ⇤ is infinite (see [25]. The intersection A \ L is finite.
Then there is a subset � of ⇤ such that ⇤ \� is finite and

L\ (Dr
�2�

ha�i) = h1i.

The subgroup B = Dr�2�ha�i has finite index in A, in particular, B is
infinite. Then Lemma 2.2 implies that B is normal in G. By the choice
of B we have B \ L = h1i, which implies that [L,B] = h1i. Since F
is not G-invariant, there exist x 2 F and g 2 G such that g-1xg /2 F.
Notice that g-1xg 2 L. Choose in the subgroup B a countable abelian
subgroup D = Drn2Nhdni. Put

Dk = Dr
16n6k

hdni.

Notice that L\ (hxiDk) = hxi. It follows that hxiDk is not G-invariant,
because g-1xg /2 hxi. The subgroups hxiDk and hxiDk+1 cannot be
isomorphic, because |hxiDk| < |hxiDk+1|, k 2 N. Thus we can con-
struct an infinite sequence

hxiD1 < hxiD2 < . . . < hxiDn < hxiDn+1 < . . .

of finite non G-invariant subgroups, which are pairwise non-isomor-
phic, and we obtain a contradiction, which proves the result. ut

A group G is said to be a Dedekind group if every subgroup of G
is normal in G. R. Dedekind in his paper [4] studied finite groups
whose subgroups are normal. Much later, in the paper [1], R. Baer
obtained a full description of such groups, both finite and infinite.

Now we prove our first result on the structure of groups in C.

Proposition 2.4 Suppose that G 2 C, and that G contains an infinite
locally finite subgroup P which is not Chernikov. Then G is a Dedekind
group.

Proof — By Lemma 2.2, P is normal in G. It is enough to prove that
every cyclic subgroup hgi of the group G is normal in G. If g has finite
order, then the subgroup Phgi is locally finite. Clearly Phgi is not
a Chernikov group. Then Corollary 2.3 shows that every subgroup
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of Phgi is G-invariant. In particular, hgi is normal in G. Suppose now
that g has infinite order. Since P is not a Chernikov group, P contains
an abelian subgroup

A = Dr
�2⇤

ha�i,

where the set ⇤ is infinite (see [25]). Since A is periodic, hgi \A = h1i.
Choose in ⇤ two infinite subsets � and ⌃ such that

�[ ⌃ = ⇤ and �\ ⌃ = ;.

In the subgroup Dr�2�ha�i (respectively Dr�2⌃ha�i) choose a count-
able subgroup B = Drn2Nhbni (respectively C = Drn2Nhcni). By
such a choice B \C = h1i. Using Corollary 2.3 we obtain that every
subgroup of B,C is normal in G. Put Bk = Dr16n6khbni (respec-
tively Ck = Dr16n6khcni). Clearly the subgroups hgiBk and hgiBk+1

(respectively hgiCk and hgiCk+1) cannot be isomorphic, k 2 N. Con-
sider now the infinite sequences

hgiB1 < hgiB2 < . . . < hgiBn < hgiBn+1 < . . .

and
hgiC1 < hgiC2 < . . . < hgiCn < hgiCn+1 < . . .

The subgroups in each of these sequences are pairwise non-isomor-
phic. Therefore there exist numbers t and m such that hgiBt

and hgiCm are normal in G. Then their intersection

hgiBt \ hgiCm = hgi

is normal in G. ut

Now we study the situation in which G contains an infinite locally
finite subgroup which is a Chernikov group.

Lemma 2.5 Suppose that G 2 C. If C is an infinite Chernikov subgroup
of G, then every subgroup of the divisible part D of C is G-invariant. In
particular, D is G-invariant. Moreover, If D is not a Prüfer group, then G
is a Dedekind group.

Proof — Let P be an arbitrary Prüfer p-subgroup of D. Then

P = han | ap

1
= 1,ap

n+1
= an,n 2 Ni.
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The subgroups

ha1i < ha2i < . . . < hani < han+1i < . . .

are pairwise non-isomorphic. It follows that there is a number k
such that the subgroup hani is G-invariant for each n > k. The fact
that every subgroup of a cyclic group is characteristic implies that
each subgroup hami is G-invariant, m 2 N. Since P =

S
m2Nhami,

the subgroup P is G-invariant. Now let d be an arbitrary element
of D. Since D is divisible, there exists a Prüfer p-subgroup S such
that d 2 S. By the previous remarks S is G-invariant. But every sub-
group of a Prüfer p-subgroup is characteristic, thus it follows that hdi
is G-invariant. The fact that every cyclic subgroup of D is G-invariant
implies that each subgroup of D is G-invariant.

Now suppose that D is not a Prüfer group. We prove that every
cyclic subgroup hgi of the group G is normal in G.

Assume first that g has finite order. Without loss of generality we
may suppose that g is a p-element for some prime p. Then the in-
tersection hgi \D is a finite cyclic p-subgroup. Since D is divisible,
there is a Prüfer subgroup A of D, containing hgi \D. Let

A = han | ap

1
= 1,ap

n+1
= an,n 2 Ni.

Let t be the positive integer such that hgi \D = hati. Then every
subgroup hani is G-invariant. Consider the following sequence of
subgroups

hgi = hatihgi < hat+1ihgi < . . . < hat+nihgi < hat+n+1ihgi < . . .

If i, j > t, then the subgroups haiihgi and hajihgi, i 6= j, cannot be
isomorphic, because |haiihgi| < |hajihgi|. Thus the subgroups in this
sequence are pairwise non-isomorphic. Therefore there exists a posi-
tive integer m such that hamihgi is normal in G.

Since D is not a Prüfer group, A 6= D. Then D = A⇥ B (see, for
example, [7], Theorem 21.2]). Choose in B a Prüfer q-subgroup Q,
then

Q = hcn | cq
1
= 1, cq

n+1
= cn,n 2 Ni

(it is possible that q = p). Corollary 2.3 shows that every sub-
group hcni is G-invariant. The choice of Q yields that hgi \Q = h1i.
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Consider the following sequence of subgroups

hc1ihgi < hc2ihgi < . . . < hcnihgi < hcn+1ihgi < . . . .

The subgroups hciihgi and hcjihgi, i 6= j, cannot be isomorphic, be-
cause |hciihgi| < |hcjihgi|. Thus the subgroups in this sequence are
pairwise non-isomorphic. Therefore there exists a positive integer k
such that the subgroup hckihgi is normal in G. It follows that the
intersection hgi = hamihgi \ hckihgi is normal in G.

Suppose now that the element g has infinite order. Therefore
hgi \D=h1i. Since D is not a Prüfer group, we can choose in D two
Prüfer subgroups A,C such that hA,Ci = A⇥C. Put again

A = han | ap

1
= 1,ap

n+1
= an,n 2 Ni

and
C = hcn | cq

1
= 1, cq

n+1
= cn,n 2 Ni

(it is possible that q = p). Lemma 2.5 shows that, for every n 2 N,
the subgroups hani and hcni are G-invariant. Consider the following
sequences of subgroups

ha1ihgi < ha2ihgi < . . . < hanihgi < han+1ihgi < . . .

and
hc1ihgi < hc2ihgi < . . . < hcnihgi < hcn+1ihgi < . . .

The subgroups hanihgi and han+1ihgi (respectively hcnihgi
and hcn+1ihgi) cannot be isomorphic, because |hani| < |han+1i| (re-
spectively |hcni| < |hcn+1i|). Thus the subgroups in both of these
sequences are pairwise non-isomorphic. Therefore there are num-
bers s, r such that the subgroups hasihgi and hcrihgi are normal in G.
It follows that their intersection hgi = hasihgi \ hcrihgi is normal
in G. ut

Now we can say more on the structure of G 2 C, if G contains an
infinite Chernikov subgroup.

Proposition 2.6 Suppose that G 2 C and that G contains an infinite Cher-
nikov subgroup C. Then G is an FC-group. If G is a not Dedekind group,
then G is nilpotent, the set T of all elements having finite order is a char-
acteristic Chernikov subgroup, containing [G,G]. Moreover, the divisible
part D of T is a Prüfer group, D 6 ⇣(G) and G/D is a Dedekind group.
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Proof — Denote by V the divisible part of C. If V is a not Prüfer
group, then Lemma 2.5 shows that G is a Dedekind group. In partic-
ular, [G,G] is finite and trivially G is an FC-group. Suppose that V is
a Prüfer p-subgroup for some prime p. Then

V = hdn | dp

1
= 1,dp

n+1
= dn,n 2 Ni.

By Lemma 2.5 every subgroup of V is G-invariant. In particular, V
is normal in G. Let g be an arbitrary element of G. Assume first
that g has finite order. Then the subgroup Vhgi is infinite and locally
finite. Using Lemma 2.2 we obtain that hgiV 6 FC(G), in particular,
g 2 FC(G). Suppose now that g has infinite order. Then hgi \V = h1i.
Consider the following sequence of subgroups

hd1ihgi < hd2ihgi < . . . < hdnihgi < hdn+1ihgi < . . .

Again we can see that the subgroups of this sequence are pairwise
non-isomorphic. Therefore there exists a positive integer k such that
the subgroup K = hdkihgi is normal in G. The subgroup hdki is fi-
nite and G-invariant, and the factor-group K/hdki is infinite cyclic. It
follows that

gx 2 ghdki or gx 2 g-1hdki

for every element x 2 G. Since hdki is finite, it follows that gG is
finite, that is g 2 FC(G). Therefore G is an FC-group. Denote by T
the set of all elements having finite order. Then T is a (character-
istic) subgroup of G, including [G,G] (see, for example, [5], Corol-
laries 1.5.3 and 1.5.10). Moreover, if D is the divisible part of T ,
then D 6 ⇣(G) (see, for example, [5], Lemma 3.2.9). If we suppose
that T is not Chernikov, then Proposition 2.4 shows that G must be
a Dedekind group, and we obtain a contradiction. If we suppose that
the divisible part of T is not a Prüfer group, then Lemma 2.5 shows
that G must be a Dedekind group, and we again obtain a contradic-
tion. Thus the divisible part of T is a Prüfer group.

Let g be an arbitrary element of G. The inclusion D 6 ⇣(G) implies
that the subgroup hg,Di is abelian. Let

D = hdn | dp

1
= 1,dp

n+1
= dn,n 2 Ni.

Consider again the sequence of subgroups

hd1ihgi < hd2ihgi < . . . < hdnihgi < hdn+1ihgi < . . . .
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As above we can see that the subgroups of this sequence are pair-
wise non-isomorphic. Therefore there exists a numbers k such that
the subgroup K = hdkihgi is normal in G. It follows that hgiG is
abelian. Then G is locally nilpotent (see, for example, [23]). We know
that D 6 ⇣(G). Since T/D is finite, there is a positive integer m such
that T 6 ⇣m(G). And finally, G/T is abelian, so that G = ⇣m+1(G).

Now we show that G/D is a Dedekind group. Let g be an arbitrary
element of G. Suppose first that g has finite order. Then the intersec-
tion hgi \D is finite, so that hgi \D = hdti for some positive integer t.
By Lemma 2.5 every subgroup hdni is G-invariant. Consider the fol-
lowing sequence of subgroups

hgi = hdtihgi < hdt+1ihgi < . . . < hdt+nihgi < hdt+n+1ihgi < . . .

As we have seen above the subgroups in this sequence are pairwise
non-isomorphic. Therefore there exists a number m such that hdmihgi
is normal in G. It follows that Dhgi is normal in G.

If g has infinite order, then hgi \D = h1i. In this case we consider
the following sequence of subgroups

hd1ihgi < hd2ihgi < . . . < hdnihgi < hdn+1ihgi < . . .

Again the subgroups in this sequence are pairwise non-isomorphic.
Therefore there exists a number r such that hdrihgi is normal in G. It
follows that Dhgi is normal in G. Thus every cyclic subgroup of the
factor-group G/D is normal in G/D. It follows that G/D is a Dede-
kind group. ut

We are now able to prove Theorem A.

Theorem A Let G be an infinite locally finite group which is not a Dede-
kind group. Then G 2 C if and only if G = P ⇥A where A is a finite De-
dekind group, P is a Sylow p-subgroup of G (p a prime), ⇣(P) contains
a Prüfer subgroup D such that P/D is a finite abelian group.
Proof — Suppose G 2 C and that G is not a Dedekind group. Then
by Proposition 2.6 G is nilpotent and ⇣(G) contains a Prüfer p-sub-
group D such that G/D is a finite Dedekind group. Then G = P⇥A
where P is a p-group and A is a p0-group. Moreover D ✓ P, and A
and P/D are finite Dedekind groups. Now we show that P/D is
abelian. Suppose that there exist x,y 2 P such that [x,y] /2 D. Write

ps = max{o(x), o([x,y])}.
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For every i 2 N, let ti 2 D be such that

o(ti) = p↵i > p2s,

with ↵i < ↵j if i < j. Consider the subgroups Hi = htixi. We have

(tix)
p
s

= tp
s

i

of order > ps, thus [tix,y] = [x,y] /2 htixi, since every subgroup
of htixi of order 6 ps is contained in htp

s

i
i ✓ D. Therefore Hi is not

normal in G for every i. Moreover, |Hi| = o(ti), for every i, hence

Hi 6' Hj

if i 6= j. This contradiction shows that P/D is abelian.
Conversely, assume that G has the required structure. Then D is

contained in ⇣(P) and P/D finite implies that P0 is finite. Write

|P/D| = n and |P0| = m.

If S is a subgroup of G, then

S = P1 ⇥ (A\ S),

where P1 ✓ P. We have A \ S normal in G. We show that if P1 is
not normal in G, then |P1| 6 mn. In fact, we have |P1D/D| 6 n.
Moreover P0 is not contained in P1 \D since P1 is not normal in P.
Then P1 \ D < P0, thus |P1 \ D| < m. Hence |P1| 6 mn, as re-
quired. Therefore if S is a non-normal subgroup of G, then the order
of S is bounded. Since there exist only finitely many non-isomorphic
groups of fixed order, there exist only finitely many non-isomorphic
non-normal subgroups of G. The theorem is proved. ut

3 The case G non-periodic

In this section we study the structure of a non-periodic group in
which the family of all non-normal subgroups has finite isomorphic
type. We start with two very useful results.
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Lemma 3.1 Suppose that G 2 C. If G contains a free abelian subgroup of
infinite 0-rank, then G is an abelian group.

Proof — Let A be a free abelian subgroup of G with infinite 0-rank.
Without loss of generality we may suppose that r0(A) is countable.
Then A = Drn2Nhani, where an is an element of infinite order for
all n 2 N. Let v be an arbitrary element of A, then there is a posi-
tive integer m such that hvi \Drn>mhani = h1i. Then the following
subgroups

hvi ⇥ hami, hvi ⇥ hami ⇥ ham+2i, . . . ,

hvi ⇥ hami ⇥ ham+2i ⇥ . . .⇥ ham+2ni,n 2 N,

are pairwise non-isomorphic. It follows that there is a positive inte-
ger k such that the subgroup

hvi ⇥ hami ⇥ ham+2i ⇥ . . .⇥ ham+2ki

is normal in G. Using the same arguments, we obtain that there is a
positive integer t such that the subgroup

hvi ⇥ ham+1i ⇥ ham+3i ⇥ . . .⇥ ham+2t+1i

is normal in G. Then from the obvious equality
�
hvi⇥hami⇥ . . .⇥ham+2ki

�
\
�
hvi⇥ham+1i⇥ . . .⇥ham+2t+1i

�
= hvi

we obtain that the subgroup hvi is normal in G. In particular, the
subgroup hani is G-invariant for every n 2 N. Let g be an arbitrary
element of G. Then there is a positive integer k such that

hgi \ Dr
n>k

hani = h1i.

The fact that each subgroup hani is G-invariant implies that
⌧
g, Dr

k6n6k+j

hani
�

=

✓
Dr

k6n6k+j

hani
◆
o hgi,

for any j 2 N. Repeating now the above arguments, we obtain that
the subgroup hgi is normal in G. The fact that each cyclic subgroup
of G is normal implies that every subgroup of G is normal in G. Being
non-periodic, G is abelian (see for example [1]). ut
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Lemma 3.2 Suppose that G 2 C. If L is a torsion-free nilpotent subgroup
of G, then L is abelian.

Proof — Suppose the contrary and let L be non-abelian. Then

⇣2(L) 6= ⇣(L).

Choose an element a 2 ⇣2(L) \ ⇣(L). Then there exists an element b
such that [a,b] = c 6= 1. Let p be a prime and r = p2. Put

Hp = har,b, cpi,

then clearly [Hp,Hp] = hcri, ⇣(Hp) = hcpi, so that ⇣(Hp)/[Hp,Hp]
is a group of order p. It follows that if q is a prime, q 6= p, then
the subgroups Hp and Hq cannot be isomorphic. Choose an infinite
set ⇡ of primes. Then in the family {Hp|p 2 ⇡} every two subgroups
are not pairwise isomorphic. Since [a,b] = c /2 Hp, Hp cannot be
normal in G for every prime p, and we obtain a contradiction. This
contradiction shows that L is abelian. ut

We can now describe the structure of a non-periodic group G in C
if G contains a locally finite infinite subgroup.

Theorem 3.3 Suppose that G is a non-periodic group in C, and that G
contains an infinite locally finite subgroup. Then either G is an abelian
group or ⇣(G) contains a Prüfer subgroup D such that G/D is an abelian
minimax group having finite 0-rank and finite periodic part. Moreover, G
is central-by-finite.

Proof — Suppose that is not abelian, then G is not a Dedekind
group, since G is non-periodic (see for example [1]). Then Proposi-
tion 2.4 shows that every locally finite subgroup of G must be Cher-
nikov. Moreover Proposition 2.6 shows that ⇣(G) contains a Prüfer
subgroup D such that G/D is a Dedekind group with finite peri-
odic part. Being non-periodic, G/D is abelian (see for example [1]).
Suppose that r0(G/D) is infinite. Then G/D contains a free abelian
subgroup A/D of infinite countable 0-rank. In this case A contains
a free abelian subgroup B of infinite countable 0-rank (see, for ex-
ample, [10]). But then Lemma 3.1 implies that G is an abelian group.
This contradiction shows that r0(G/D) is finite. By Proposition 2.6 G
is nilpotent and an FC-group. Then G/⇣(G) is periodic ([24], Theo-
rem 1.4). Since ⇣(G) has finite 0-rank, it contains a finitely generated
torsion-free subgroup B such that ⇣(G)/B is periodic. Then G/B is
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also periodic. Put C = B8. The factor group G/C is periodic, more-
over its Sylow p-subgroups are Chernikov for each prime p. Suppose
that G is not minimax. Then the set ⇧(G/C) is infinite. Since the sub-
group T = Tor(G) is Chernikov, the subset ⇧(G/C) \⇧(T) is infinite.
Let g be an arbitrary element of G. Since the subgroup hgCi is finite,
we can choose a subset ⇡ of ⇧(G/C) such that ⇧(G/C) \ ⇡ is finite
and

; = ⇡\ (⇧(T)[⇧(hgCi)).

Choose in ⇡ two infinite subsets ⇡1 and ⇡2 such that

⇡1 [ ⇡2 = ⇡ and ⇡1 \ ⇡2 = ;.

Since the subset ⇡1 is infinite, it is possible to choose in ⇡1 a family

{⇢n | n 2 N}

of infinite subsets ⇢n such that
S

n2N ⇢n = ⇡1 and ⇢n \ ⇢m = ;
whenever n 6= m. Consider the ascending chain

S0 = C 6 S1 6 . . . 6 Sn 6 Sn+1 6 . . .

of subgroups, defined by the rule: S1/C is the Sylow ⇢1-subgroup
of G/C, S2/C is the Sylow (⇢1 [ ⇢2)-subgroup of G/C, Sn/C is the Sy-
low (⇢1 [ . . . [ ⇢n)-subgroup of G/C, n 2 N. Since G is nilpotent
and Sn \ T = h1i, Sn is a normal abelian torsion-free subgroup of G,
for all n 2 N. The choice of Sn yields that

hg, Sni/C = hgC, Sn/Ci = hgCi ⇥ Sn/C,

in particular, hgC, Sn/Ci is abelian, n 2 N. The fact that [G,G] is peri-
odic implies that hg, Sni is abelian. Suppose that the subgroups hg, Sni
and hg, Sn+ki, k > 1, are isomorphic. Let

f : hg, Sni ! hg, Sn+ki

be an isomorphism. Let E = f(C), then hg, Sn+ki/E ' hg, Sni/C. It
follows that

⇧
�
hg, Sn+ki/E

�
= ⇧

�
hg, Sni/C

�
= ⇧(Sn/C)[⇧

�
hgCi

�
.

Since r0(E) = r0(C), then both factors E/(E\C) and C/(E\C) are
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finite. Then

⇧
�
hg, Sn+ki/(E\C)

�
= ⇧(Sn/C)[⇧

�
hgCi

�
[⇧

�
E/(E\C)

�
,

where the last subset is finite. Since the subset ⇧(Sn+k/C) \⇧(Sn/C)
is infinite, we obtain a contradiction. This contradiction shows that
the subgroups hg, Sni and hg, Sn+ki cannot be isomorphic. Then there
exists a number t such that the subgroups hg, Sni are normal in G for
all n > t. Using the same arguments, we can choose a subgroup U
of G such that ⇧(U/C) ✓ ⇡2 and hg,Ui is normal in G. By such a
choice hg, Sni/C \ hg,Ui/C = hgCi, which yields that hgCi is nor-
mal in G/C. In other words, every cyclic subgroup of G/C is normal
in G/C. Therefore every subgroup of G/C is normal in G/C. Since
the factor-group G/C contains an element of order 8, G/C cannot be
a non-abelian Dedekind group (see [1]). Thus G/C is abelian. Let p
be a prime, put C1 = Cp,Cn+1 = Cp

n, n 2 N. By such a choice
\

n2N

Cn = h1i.

Repeating the above arguments, we obtain that G/Cn is abelian for
all n 2 N. In other words, [G,G] 6 Cn, for all n 2 N. Then

[G,G] 6
\

n2N

Cn = h1i,

from which it follows that G is abelian, the final contradiction.
Now we show that G is central-by-finite. We know that G0 6 D,

a Prüfer group, say a Prüfer p-group, where p is a prime. We will
show that there exists a positive integer n such that [x,y]pn

= 1,
for every x,y 2 G. From this it will follow that G/⇣(G) is a periodic
minimax group of finite exponent and then it is finite, as required.
Since

G = ha | a is torsion-freei,

it is enough to show that there exists a positive integer n such that

[x,y]p
n

= 1,

for any torsion-free elements x,y 2 G. Assume not, then there exist
positive integers

n1 < n2 < . . . < ns < . . .
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and torsion-free elements xi,yi of G such that [xi,yi]p
n
i 6= 1.

Let ci 2 D, o(ci) = pni , and consider the subgroups

Ti = hxi, cii = hxii ⇥ hcii.

Then hcii = T 0
i
, thus Ti and Tj are not isomorphic if i 6= j. More-

over, for every i, Ti is not normal in G, because [xi,yi] /2 Ti, since
Ti \G0 = hcii and cp

n
i

i
= 1 while [xi,yi]p

n
i 6= 1, and we have a con-

tradiction ut
From now on we assume that G is a generalized radical group.

By Proposition 2.4 and Theorem 3.3 we can suppose that every peri-
odic subgroup of G is finite.

Lemma 3.4 Suppose that G is a non-periodic locally generalized radical
group in C, and that all periodic subgroups of G are finite. If G is non-
abelian, then G is a soluble-by-finite group of finite 0-rank.

Proof — First assume that G is a generalized radical group. Let D
be the maximal normal radical subgroup of G. Since G is non-abelian,
by Lemma 3.1 every abelian subgroup of D has finite 0-rank. More-
over the torsion subgroup of every abelian subgroup is finite. By
a Theorem by Charin (see [3], Theorem 8) D is a soluble group of fi-
nite 0-rank, in particular D is a radical group of finite 0-rank. Let L/D
be the maximal normal locally finite subgroup of G/D. Then L has
finite 0-rank. Using Theorem 2.4.13 of [5] (see also [19]) we obtain
that L is soluble-by-finite. In particular, it follows that L/D is finite.
In turn out that G/D is finite ([5], Lemma 3.4.1). Now suppose G lo-
cally generalized radical. If every finitely generated subgroup of G is
normal in G, then clearly G is a Dedekind group and being non-perio-
dic, G is abelian (see [1]). Therefore suppose that G includes a finitely
generated subgroup D1 which is not normal in G. Then D1 is gen-
eralized radical thus D1 is a soluble-by-finite group of finite 0-rank.
Using the same arguments, we obtain that every finitely generated
subgroup F of G including D1 is a soluble-by-finite group having fi-
nite 0-rank. If r0(F) = r0(D1) for each finitely generated subgroup F
of G including D1, then G/Tor(G) is a soluble-by-finite group of fi-
nite 0-rank. Our assumption concerning all periodic subgroups of G
implies that Tor(G) is finite, so that G also is a soluble-by-finite group
of finite 0-rank. Therefore assume that G contains a finitely gener-
ated subgroup D2 including D1 such that r0(D2) > r0(D1). If we
suppose that r0(F) = r0(D2) for each finitely generated subgroup F



26 L.A. Kurdachenko – P. Longobardi – M. Maj

of G including D2, then repeating the above arguments we again
obtain that G is a soluble-by-finite group of finite 0-rank. Thus we
can assume that there exists an infinite chain of finitely generated
subgroups

D1 6 D2 6 . . . 6 Dn 6 Dn+1 6 . . .

such that r0(Dn+1) > r0(Dn) for each n 2 N. By such a choice the
subgroups Dn and Dn+1 cannot be isomorphic for each n 2 N. It fol-
lows that there exists a positive integer t such that the subgroups Dn

are normal in G for each n > t. Put D =
S

n2N Dn. Then D has an as-
cending series of normal subgroups, whose factors are soluble-by-fi-
nite. It follows that D is a generalized radical group. Let A be an ar-
bitrary abelian subgroup of D. If we assume that r0(A) is finite, then
since Tor(A) is finite we obtain that D is a soluble-by-finite group,
having finite 0-rank, and we obtain a contradiction. This contradic-
tion shows that D contains an abelian subgroup B of infinite 0-rank.
Then B/Tor(B) contains a free abelian subgroup C/Tor(B) of infi-
nite 0-rank. Since Tor(B) is finite, C = Tor(B) ⇥ E (see for exam-
ple [7], Theorem 27.5), where the subgroup E is a free abelian sub-
group of infinite 0-rank, and an application of Lemma 3.1 shows
that G is abelian. This contradiction proves the result. ut

Let G be a group and A be a normal abelian Chernikov subgroup
of G. We say that A is G-quasifinite if every proper G-invariant sub-
group of A is finite. The following lemma is very well-known.

Lemma 3.5 Let G be a nilpotent group and A be a normal abelian Cher-
nikov subgroup of G. If A is G-quasifinite, then A 6 ⇣(G).

Proof — Obviously A is divisible. Suppose that CG(A) 6= G. Choose
an element g such that

CG(A) 6= gCG(A) 2 ⇣(G/CG(A)).

Then it is not difficult to prove that the subgroups [A, g] and CA(g)
are G-invariant. Moreover the mapping a 7�! [a, g], a 2 A, is an
endomorphism of A, so that [A, g] ' A/CA(g). Since G is nilpo-
tent, we have A 6= [A, g], which implies that [A, g] is finite. We have
above noted that A is divisible. Then A does not contain proper
subgroups of finite index. Hence the finiteness of A/CA(g) means
that A = CA(g), and we obtain a contradiction with the choice of g.
This contradiction proves that A 6 ⇣(G). ut
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Let A be an abelian group having finite Prüfer rank. Choose in A
a finitely generated subgroup B such that r0(A) = r0(B), then A/B
is periodic. Recall (see for example [22]) that the set Sp(A) of all
primes p such that the Sylow p-subgroup of A/B is infinite is an
invariant of A, called the spectrum of the group A.

The following two lemmas are very important in our investigation.

Lemma 3.6 Let G1 = A1 o hg1i and G2 = A2 o hg2i be groups
such that A1 and A2 are torsion-free abelian groups of finite 0-rank r, g1
and g2 are elements of infinite orders. Suppose also that A1 (respective-
ly A2) contains a G1-invariant (respectively G2-invariant) subgroup D1

(respectively D2) such that A1/D1 (respectively A2/D2) is a periodic di-
visible abelian group. If ⇧(A1/D1) 6= ⇧(A2/D2), then the groups G1

and G2 cannot be isomorphic.

Proof — Suppose the contrary, then there is an isomorphism

f : G1 ! G2.

By our conditions the locally nilpotent radical LN(G1) of G1 (respec-
tively G2) contains A1 (respectively A2).

Suppose first that LN(G1) = A1, then the factor group G1/LN(G1)
is infinite. Since f(LN(G1)) = LN((G2), the factor group G2/LN((G2)
also must be infinite. The inclusion A2 6 LN(G2) implies that

A2 = LN(G2).

The subgroup D3 = f(D1) must be G2-invariant and the factor A2/D3

must be periodic and divisible. In particular, it follows that

r0(D3) = r0(A2) = r0(D2).

Since the subgroups D2,D3 are finitely generated, it follows that
both the factors D2/(D3 \D2) and D3/(D2 \D3) are finite. Since
the factor group A2/D2 is divisible, we obtain that

A2/(D3 \D2) = F1/(D3 \D2)⇥ P1/(D3 \D2)

where F1/(D3 \D2) is finite, P1/(D3 \D2) is divisible and

⇧
�
P1/(D3 \D2)

�
= ⇧(A2/D2).

On the other hand, the fact that the group A2/D3 is divisible and
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D3/(D2 \D3) is finite implies that

A2/(D3 \D2) = F2/(D3 \D2)⇥ P2/(D3 \D2)

where F2/(D3 \D2) is finite, P2/(D3 \D2) is divisible and

⇧(P2/(D3 \D2)) = ⇧(A2/D3).

We note that the largest divisible subgroup of a periodic abelian
group is unique. It follows that P1/(D3\D2) = P2/(D3\D2). Since f
is an isomorphism, ⇧(A2/D3) = ⇧(A1/D1). Thus we have

⇧(A1/D1) = ⇧
�
P1/(D3 \D2)

�
= ⇧(A2/D2),

and we obtain a contradiction with ⇧(A1/D1) 6= ⇧(A2/D2).

Suppose now that that

LN(G1) 6= A1.

Then
LN(G1) = L1 = A1 o hx1i

where hx1i = LN(G1) \ hg1i. Since L1 is a torsion-free subgroup of
finite 0-rank, it is nilpotent [6, Corollary 2.3.4]. We have

L1/D1 = (A1/D1)hx1D1i

where A1/D1 = Drp2⌧Sp/D1 where ⌧ = ⇧(A1/D1) and Sp/D1 is
the Sylow p-subgroup of A1/D1, p 2 ⇧(A1/D1). We note that Sp/D1

is a divisible Chernikov p-subgroup, p 2 ⇧(A1/D1). Being Cherni-
kov, Sp/D1 satisfies the minimal condition on all subgroups. It fol-
lows that there exists a finite series

D1 = R(p,1) 6 R(p,2) 6 . . . 6 R(p,s) = Sp

of hx1i-invariant subgroups, whose factors

R(p,2)/R(p,1), . . . ,R(p,s)/R(p,s-1)

are hx1i-quasifinite. By Lemma 3.5 all these factors are hx1i-central.
In particular,

[Sp, x1] 6 R(p,s-1).



Groups with finitely many classes of non-normal subgroups 29

It follows that the factor hSp, x1i/R(p,s-1) is abelian. Since this is true
for each p 2 ⇧(A1/D1),

hA1, x1i/Dr
p2⌧

R(p,s-1)

is abelian. It follows that

Sp
�
L1/[L1, L1]

�
= ⇧(A1/D1).

We note that L2 = f(LN(G1)) is the locally nilpotent radical of G2.
Since G1/L1 is finite, G2/L2 likewise is finite. Then LN(G2) 6= A2, so
we obtain that

L2 = A2 o hx2i

where hx2i = L2 \ hg2i. Using the above arguments, we obtain that

Sp
�
L2/[L2, L2]

�
= Sp(A2/D2).

The isomorphism L1 ' L2 implies that the factor groups L1/[L1, L1]
and L2/[L2, L2] must be isomorphic. It follows that

⇧(A1/D1) = Sp
�
L1/[L1, L1]

�
= Sp

�
L2/[L2, L2]

�
= ⇧(A2/D2),

and we obtain a contradiction. This contradiction proves the result. ut

Lemma 3.7 Let G1 = A1 o hg1i and G2 = A2 o hg2i be groups such
that A1 and A2 are torsion-free abelian groups of finite 0-rank r, g1 and g2
are elements of infinite orders. Suppose also that A1 (respectively A2) con-
tains a G1-invariant (respectively G2-invariant) subgroup D1 (respective-
ly D2) such that A1/D1 (respectively A2/D2) is a periodic abelian group
with finite Sylow p-subgroups for all primes p. If ⇧(A1/D1)
and ⇧(A2/D2) \⇧(A1/D1) are infinite, then the groups G1 and G2 can-
not be isomorphic.

Proof — Suppose the contrary, then there is an isomorphism

f : G1 ! G2.

By our conditions the locally nilpotent radical LN(G1) of G1 (respec-
tively G2) contains A1 (respectively A2).

Suppose first that LN(G1) = A1, then the factor group G1/N(G1)
is infinite. Since f(LN(G1)) = LN(G2), the factor group G2/LN(G2)
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also must be infinite. The inclusion A2 6 LN(G2) implies that

A2 = LN(G2).

The subgroup D3 = f(D1) has to be G2-invariant and the factor
group A2/D3 periodic. In particular, it follows that

r0(D3) = r0(A2) = r0(D2).

Since the subgroups D2,D3 are finitely generated, it follows that
both factors D2/(D3 \D2) and D3/(D2 \D3) are finite. Then

⇧
�
A2/(D3 \D2)

�
= ⇧(A2/D2)[ ⇡1

for some finite disjoint set ⇡1 of primes. In a similar way, the same
set ⇧(A2/(D3 \D2)) = ⇧(A2/D3)[ ⇡2 for some finite disjoint set ⇡2

of primes. Since f is an isomorphism, ⇧(A2/D3) = ⇧(A1/D1). Then
we have

⇧(A2/D2) \⇧(A1/D1) = ⇧(A2/D2) \⇧(A2/D3) =
�
⇧(A2/(D3 \D2)) \ ⇡1

�
\
�
⇧(A2/(D3 \D2)) \ ⇡2

�
.

Since the last set is finite, we obtain a contradiction.

Suppose now that LN(G1) 6= A1. Then

LN(G1) = L1 = A1 o hx1i

where hx1i = LN(G1)\ hg1i. Since L1 is a torsion-free subgroup hav-
ing finite 0-rank, then it is nilpotent (see [5], Corollary 2.3.4). We
have

L1/D1 = (A1/D1)hx1D1i and A1/D1 = Dr
p2⌧

Sp/D1

where ⌧ = ⇧(A1/D1) and Sp/D1 is the finite Sylow p-subgroup
of A1/D1, p 2 ⇧(A1/D1). Since hSp/D1, x1D1i is nilpotent, then

[Sp/D1, x1D1] = Rp/D1 6= Sp/D1.

It follows that the factor hSp, x1i/Rp is abelian and its periodic part
is a finite p-subgroup. Since that is true for each p 2 ⇧(A1/D1),
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then hA1, x1i/Drp2⌧Rp is abelian and

⇧

✓
hA1, x1i/Dr

p2⌧
Rp

◆
= ⇧(A1/D1).

The fact that L1/Drp2⌧Rp is abelian implies the inclusion

[L1, L1] 6 Dr
p2⌧

Rp.

On the other hand, D1 6 Drp2⌧Rp, so that [L1, L1]D1 6 Drp2⌧Rp.
Hence we obtain that A1/[L1, L1]D1 is periodic and

⇧
�
A1/[L1, L1]D1

�
= ⇧(A1/D1).

Since the factor group L1/A1 is infinite cyclic, we obtain the direct de-
composition L1/[L1, L1]D1 = (A1/[L1, L1]D1)⇥ hx1[L1, L1]D1i. Thus,
the factor L1/[L1, L1] includes a finitely generated subgroup

hx1,D1, [L1, L1]i/[L1, L1] = B1/[L1, L1]

such that (L1/[L1, L1])/(B1/[L1, L1]) is periodic and

⇧(A1/D1) = ⇧
�
(L1/[L1, L1])/(B1/[L1, L1])

�
.

We note that L2 = f(LN(G1)) is the locally nilpotent radical of G2.
Since G1/L1 is finite, then G2/L2 likewise is finite. Then LN(G2) 6=A2,
so we obtain that L2 = A2 o hx2i where hx2i = L2 \ hg2i. Repeating
the above arguments, we obtain that L2/[L2, L2] includes a finitely
generated subgroup B2/[L2, L2] such that (L2/[L2, L2])/(B2/[L2, L2]))
is periodic and

⇧
�
(L2/[L2, L2])/(B2/[L2, L2])

�
= ⇧(A2/D2).

The isomorphism L1 ' L2 implies that the factor groups L1/[L1, L1]
and L2/[L2, L2] must be isomorphic. Now we can use the above ar-
guments and obtain a contradiction. This contradiction proves the
result. ut

Now we are able to give a description of non-periodic locally gen-
eralized groups G in the class C if all subgroups of G are finite.
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Proposition 3.8 Let G 2 C be a non-periodic locally generalized radical
group. Suppose that all periodic subgroups of G are finite. If G is non-a-
belian, then G is a soluble-by-finite minimax group. Therefore, if G is not
abelian-by-finite, then G has normal subgroups A 6 K 6 G where A is an
abelian minimax torsion-free subgroup, K/A is an abelian finitely generated
torsion-free group and G/K is finite.

Proof — Lemma 3.4 shows that G is a soluble-by-finite group of
finite 0-rank. If every abelian subgroup of G is minimax then G it-
self is minimax (see [2], [26]). Therefore assume that G contains an
abelian subgroup B which is not minimax. By our assumption Tor(B)
is finite, hence

B = Tor(B)⇥A

(see for example [7], Theorem 27.5) where the subgroup A is torsion-
free and not minimax. Let C be a free abelian subgroup of A such
that A/C is periodic. Since A has finite 0-rank, the subgroup C is
finitely generated. Put D = C8. The factor group A/D is periodic.
Since A is not minimax, the set ⇧(A/D) is infinite.

Suppose first that the set � = Sp(A) is infinite. Choose two infinite
subsets �1 and �2 of � such that �1 [ �2 = � and �1 \ �2 = ;. Let

�1 = {pn|n 2 N},

and denote by Pk/D the Sylow {p1, . . . ,pk}-subgroup of A/D, k 2 N.
Then

Sp(Pk) = {p1, . . . ,pk},

and from that we get that the subgroups Pk and Pm are not isomor-
phic whenever k 6= m. Then there exists a number t such that the
subgroups Pk are normal in G for all k > t. Using similar arguments,
we can find a subgroup Q of A such that ⇧(Q/D) ✓ �2 and Q is
normal in G. By such a choice D = Pt \Q is normal in G. Let g
be an arbitrary element of G. If the element gD has infinite order,
then hgDi \A/D = h1i. If gD has finite order, then we can choose a
subgroup A1/D of A/D such that ⇧(A/D) \⇧(A1/D) is finite and

h1i = hgDi \A1/D.

In particular, the set ⇧(A1/D) is infinite. In this case instead of A we
can consider the subgroup A1. Therefore without loss of generality
we can assume that h1i = hgDi \A/D. Since the subgroups Pk are
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normal in G for all k > t, then

hgD,Pk/Di = Pk/Do hgDi.

If gD has finite order, it is not hard to prove that the subgroups
hg,Pki and hg,Pmi are not isomorphic whenever k,m > t, k 6= m.
If gD has infinite order, then an application of Lemma 3.6 shows
that the subgroups hg,Pki and hg,Pmi are not isomorphic when-
ever k,m > t, k 6= m. It follows that there exists a positive inte-
ger t1 > t such that the subgroups hg,Pki are normal in G for k > t1.
Using the same arguments, we can choose a subgroup Q1 of A such
that

⇧(Q1/D) ✓ �2

and hQ1, gi is normal in G. It follows that hgD,Pk/Di and hgD,Q1/Di
are normal in G/D, k > t1. The choice of g shows that

hgDi = hgD,Pk/Di \ hgD,Q1/Di

is normal in G/D. In other words, every cyclic subgroup of G/D is
normal in G/D. Then every subgroup of G/D is normal in G/D. Since
the factor group G/D contains an element of order 8, G/D cannot be
a non-abelian Dedekind group (see [1]). Thus G/D is abelian. Let p
be a prime, put D1 = Dp,Dn+1 = Dp

n,n 2 N. By such a choice
\

n2N

Dn = h1i.

Repeating the above arguments, we obtain that G/Dn is abelian for
all n 2 N. In other words, [G,G] 6 Dn for all n 2 N. Then

[G,G] 6
\

n2N

Dn = h1i,

therefore G is abelian, a contradiction.

So, suppose now that Sp(A) is finite. In this case the subset

⇧(A/D) \ Sp(A) = ⇡

is infinite. Let V/D be the Sylow ⇡-subgroup of A/D. By its choice
the Sylow p-subgroup of V/D is finite for each prime p 2 ⇧(V/D).
Choose in ⇡ two infinite subsets ⇡1 and ⇡2 such that ⇡1 [ ⇡2 = ⇡
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and ⇡1 \⇡2 = ;. Since the subset ⇡1 is infinite, it is possible to choose
in ⇡1 a family {⇢n|n 2 N} of infinite subsets ⇢n such that

[

n2N

⇢n = ⇡1

and ⇢n \ ⇢m = ; whenever n 6= m. Consider the ascending chain

V0 = D 6 V1 6 . . . 6 Vn 6 Vn+1 6 . . .

of subgroups of V , defined by the rule: V1/D is the Sylow ⇢1-sub-
group of V/D, V2/D is the Sylow (⇢1 [ ⇢2)-subgroup of V/D, Vn/D
is the Sylow (⇢1 [ . . .[ ⇢n)-subgroup of V/D, n 2 N. It is not hard to
prove that the subgroups Vk and Vm are not isomorphic for k 6= m.
Then there exists a number t such that the subgroups Vk are normal
in G for all k > t. Using the same arguments, we can choose a sub-
group U of V such that ⇧(U/D) ✓ ⇡2 and U is normal in G. By this
choice D = Vt \U is normal in G. Let g be an arbitrary element of G.
If the element gD has infinite order, then hgDi \ V/D = h1i. If gD
has finite order, then we can choose a subgroup W/D of V/D such
that ⇧(V/D) \⇧(W/D) is finite and h1i = hgDi \W/D. In particular,
the set ⇧(W/D) is infinite. In this case instead of V we can consider
the subgroup W. Therefore without loss of generality we can assume
that h1i = hgDi \ V/D. Since the subgroups Vk are normal in G for
all k > t, then

hgD,Vk/Di = Vk/Do hgDi.

If gD has finite order, it is not hard to prove that the subgroups hg,Vki
and hg,Vmi are not isomorphic whenever k,m > t, k 6= m. If gD has
infinite order, then we can apply Lemma 3.7 and obtain that the sub-
groups hg,Vki and hg,Vmi are not isomorphic whenever k,m > t,
k 6= m. It follows that there exists a number t1 > t such that the
subgroups hg,Vki are normal in G for k > t1. Using the same argu-
ments, we can choose a subgroup U1 of V such that ⇧(U1/D) ✓ ⇡2

and hU1, gi is normal in G. It follows that hgD,Vk/Di and hgD,U1/Di
are normal in G/D, k > t1. The choice of g shows that

hgDi = hgD,Vk/Di \ hgD,U1/Di

is normal in G/D. In other words, every cyclic subgroup of G/D is
normal in G/D. Repeating the above arguments, we obtain again
that G is abelian, the final contradiction. Hence G is a minimax
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soluble-by-finite group. Since Tor(G) is finite, G contains a normal
subgroup H of finite index such that H \ Tor(G) = h1i (see for ex-
ample [5], Corollary 2.4.6]). Then the locally nilpotent radical A of H
is torsion-free and nilpotent and H/A is finitely generated and abe-
lian-by-finite (see for example [5], Theorem 6.2.12). An application
of Lemma 3.2 shows that A is abelian. ut

Lemma 3.9 Let G be a group and A be a normal torsion-free abelian
minimax subgroup. If x is an element of infinite order such that

hxi \CG(A)=h1i,

then there exists a set {kn|n 2 N} of positive integers such that the sub-
groups hA, xkni are pairwise non-isomorphic.

Proof — Suppose that there exists an infinite set ⇡ of primes such
that A/Ap is hxi-central for each p 2 ⇡. In this case

[A, x] 6 Ap

for each p 2 ⇡. Since A is minimax, Sp(A) is finite. Therefore without
loss of generality we can assume that ⇡ \ Sp(A) = ;. Choose in A a
finitely generated subgroup D such that A/D is divisible and

⇧(A/D) = Sp(A).

Let p 2 ⇡, then D/Dp is a Sylow p-subgroup of A/Dp. It follows that

A/Dp = D/Dp ⇥Cp/D
p.

Then (A/Dp)p = Cp/D
p. On the other hand,

(A/Dp)p = ApDp/Dp = Ap/Dp.

It follows that

(Ap/Dp)\ (D/Dp) = (Cp/D
p)\ (D/Dp) = h1i,

so Ap \D = Dp. It follows that

D\
\

p2⇡

Ap =
\

p2⇡

(D\Ap) =
\

p2⇡

Dp = h1i.
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Since the factor A/D is periodic and A is torsion-free, we obtain that
\

p2⇡

Ap = h1i.

The inclusion [A, x] 6 Ap for each p 2 ⇡ implies that

[A, x] 6
\

p2⇡

Ap = h1i,

and we obtain a contradiction. This contradiction shows that there ex-
ists a set � of primes such that P \ � is finite and A/Ap is not hxi-cen-
tral for each p 2 �. Let p1 2 � and s1 = |A/Ap1 |. Put x1 = x(s1)!.
Then [A, x1] 6 Ap1 . By such a choice the subgroups

hA, xi and hA, x1i

are not isomorphic, because Ap1 6> [A, x], but [A, x1] 6 Ap1 . Choose
now a prime p2 6= p1 such that A/Ap2 is not hx1i-central.
Let s2 = |A/Ap2 |. Put x2 = xs2!

1
. Then

[A, x2] 66 Ap1 and [A, x2] 6 Ap2 .

By such a choice the subgroups hA, xi, hA, x1i and hA, x2i are not
pairwise isomorphic. Using similar arguments, we choose a sub-
set {xn|n 2 N} of elements of the subgroup hxi such that the sub-
groups hA, xni are not pairwise isomorphic, n 2 N. ut

Now we can prove Theorems B and C.

Theorem C Let G be a group in which the family of all subgroups has
finite isomorphism type. If G is a locally generalized radical group, then G
contains a normal minimax torsion-free abelian subgroup of finite index.
Proof — Clearly G does not contain an infinite locally finite sub-
group. Let A be a torsion-free abelian subgroup of G. If we suppose
that A has infinite 0-rank, then A contains a free abelian subgroup A0

of countable 0-rank. We have A0 = Drn2Nhani, where an is an el-
ement of infinite order for all n 2 N. Since r0(Dr16n6khani) = k,
the subgroups Dr16n6khani and Dr16n6mhani cannot be isomor-
phic if k 6= m. It follows that all subgroups Dr16n6khani, k 2 N are
not pairwise isomorphic, and we obtain a contradiction. This con-
tradiction shows that r0(A) is finite. Therefore A contains a (finitely
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generated) free abelian subgroup C such that A/C is periodic, more-
over its Sylow p-subgroups are Chernikov for each prime p. Suppose
that A is not minimax. Then the set ⇧(A/C) is infinite. Thus there
exists in ⇧(A/C) a family {⇢n|n 2 N} of infinite subsets ⇢n such that

[

n2N

⇢n = ⇧(A/C)

and ⇢n \ ⇢m = ; whenever n 6= m. Consider the ascending chain

S0 = C 6 S1 6 . . . Sn 6 Sn+1 6 . . .

of subgroups, defined by the rule: S1/C is the Sylow ⇢1-subgroup
of A/C, S2/C is the Sylow (⇢1 [ ⇢2)-subgroup of A/C, Sn/C is the Sy-
low (⇢1 [ . . . [ ⇢n)-subgroup of A/C, n 2 N. It is not hard to prove
that the subgroups Sn and Sn+k cannot be isomorphic for all positive
integers k, and we obtain a contradiction. This contradiction proves
that A is minimax. It turns out that every abelian subgroup of G
is minimax. Suppose that G is not (abelian-by-finite). Then Proposi-
tion 3.8 shows that G has normal subgroups A 6 K 6 G where A is
an abelian minimax torsion-free subgroup, K/A is an abelian finitely
generated torsion-free group and G/K is finite. Since G is not abe-
lian-by-finite, the subgroup K has an element x such that

hxi \CG(A) = h1i.

But in this case Lemma 3.9 shows that there exists a set {kn|n 2 N}
of positive integers such that the subgroups hA, xkni are pairwise
non-isomorphic, and we again obtain a contradiction. This contradic-
tion shows that G is abelian-by-finite. ut

Theorem B Let G be a locally generalized radical group. If G 2 C, then G
is minimax and abelian-by-finite.
Proof — If G has an infinite locally finite subgroup, the result fol-
lows from Theorem 3.3 and Theorem A. Suppose that every peri-
odic subgroup of G is finite and that G does not contain a normal
abelian subgroup of finite index. Using Proposition 3.8 we obtain
that G has normal subgroups A 6 K 6 G where A is an abelian
minimax torsion-free subgroup, K/A is an abelian finitely generated
torsion-free group, G/K is finite. Let

K/A = hy1Ai ⇥ . . .⇥ hynAi.
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If hyji \CK(A) 6= h1i for every j, 1 6 j 6 n, then the index |K : CK(A)|
is finite. Being nilpotent and torsion-free, the subgroup CK(A) must
be abelian by Lemma 3.2. But in this case G is abelian-by-finite, and
we obtain a contradiction. This contradiction shows that there is a
number j such that hyji \CK(A) = h1i. Without loss of generality we
may assume that hy1i \CK(A) = h1i. Using the arguments from the
proof of Lemma 3.9 we can find a sequence of primes {pn|n 2 N}
and a subset {xn|n 2 N} of the subgroup hy1i such that:

[A, x1] 6 Ap1 , but Ap2 does not contain [A, x1],

[A, x2] 6 Ap1 , [A, x2] 6 Ap2 , but Ap3 does not contain [A, x2],

. . .

[A, xn]6Ap1 , . . . , [A, xn] 6 Apn , but Apn+1 does not contain [A, xn].

Put now Xn = hA, xni = Ahxni. Clearly [Xn,Xn] = [A, xn]. The equal-
ity h1i = hy1i\CK(A) and Lemma 3.2 imply that the locally nilpotent
radical LN(Xn) coincides with A. Hence we have:

[Xn,Xn] 6 LN(Xn)
p1, [Xn,Xn] 6 LN(Xn)

p2 , . . . , [Xn,Xn] 6 LN(Xn)
pn ,

but LN(Xn)pn+1 does not contain [Xn,Xn].

It follows that the subgroups Xn,Xk cannot be isomorphic when-
ever n < k. Let t be a positive integer. Consider now the subgroup

Yt,n = hAt, xni = Athxni.

Using the above arguments we obtain that LN(hAt, xni) = At. Also

[Yt,n, Yt,n] = [At, xn] = [A, xn]t.

Now we obtain

[Yt,n, Yt,n] = [Xn,Xn]t 6
�
LN(Xn)pj

�t

=
�
LN(Xn)t

�pj = (At)pj = LN(Yt,n)pj ,

for j 2 {1, . . . ,n}, j 6 n. The mapping

f : A ! A,

defined by the rule f(a) = at,a 2 A, is an hxni-endomorphism, be-
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cause A is abelian. Since A is torsion-free, f is a monomorphism.
Then the fact that

Apn+1 = LN(Xn)
pn+1

does not contain [Xn,Xn] implies that

(At)pn+1 = (Apn+1)t =
�
LN(Xn)pn+1

�t

=
�
LN(Xn)t

�pn+1 = LN(Yt,n)pn+1

does not contain [Yt,n, Yt,n]. It follows that the subgroups hAt, xni
and hAt, xki cannot be isomorphic whenever n < k, n, k 2 N. Put
now Zn = hApn+1 , xni, n 2 N. Suppose that Zn is normal in G. It
follows that [A, xn] 6 Zn. On the other hand, [A, xn] 6 A, so that

[A, xn] 6 A\Zn = Apn+1 ,

and we obtain a contradiction. This contradiction shows that the sub-
group Zn is not normal in G. This is true for every n 2 N. But we
have proved above that the subgroups Zn and Zk cannot be isomor-
phic whenever n < k. This final contradiction proves the result. ut

R E F E R E N C E S

[1] R. Baer: “Situation der Untergruppen und Struktur der
Gruppe”, S.B. Heidelberg Akad. 2 (1933), 12–17.

[2] R. Baer: “Polyminimaxgruppen”, Math. Annalen 175 (1968),
1–43.

[3] V.S. Charin: “On soluble groups of type A4”, Mat. Sb. 52 (1960),
895–914.

[4] R. Dedekind: “Über Gruppen, deren sämtliche Teiler Normal-
teiler sind”, Math. Ann. 48 (1897), 548–561.

[5] M.R. Dixon – L.A. Kurdachenko – I.Ya. Subbotin: “Ranks of
Groups. The Tools, Characteristics and Restrictions”, Wiley, New
York (2017).



40 L.A. Kurdachenko – P. Longobardi – M. Maj

[6] M.R. Dixon – I.Ya. Subbotin: “Groups with finiteness conditions
on some subgroup systems: a contemporary stage”, Algebra Dis-
crete Math. 4 (2009), 29–54.

[7] L. Fuchs: “Infinite Abelian Groups”, Vol. 1, Academic Press, New
York (1970).

[8] F. de Giovanni – D.J.S. Robinson: “Groups with finitely many
derived subgroups ”, J. London Math. Soc. 71 (2005), 658–668.

[9] M. Herzog – P. Longobardi – M. Maj: “On the number of com-
mutators in groups”, Contemp. Math. 402 (2006), 181–192.

[10] M.I. Kargapolov – Yu.I. Merzlyakov: “Foundations of the The-
ory of Groups”, Nauka, Moskow (1982).

[11] L.A. Kurdachenko – P. Longobardi – M. Maj – I.Ya Subbotin:
“Groups with finitely many isomorphic classes of non-abelian
subgroups”, J. Algebra 507 (2018), 439–466.

[12] J. Lennox – F. Menegazzo – H. Smith – J. Wiegold: “Groups
with finite automorphism classes of subgroups”, Rend. Sem. Mat.
Univ. Padova 79 (1988), 87–96.

[13] J. Lennox – D.J.S. Robinson: “The Theory of Infinite Soluble
Groups”, Clarendon Press, Oxford (1984).

[14] F.N. Liman: “On 2-groups with normal non-cyclic subgroups”,
Math. Notes 4 (1968), 75-84.

[15] F.N. Liman: “Periodic groups whose abelian normal non-cyclic
subgroups are invariant”, in Groups with Restrictions on Sub-
groups, Naukova Dumka, Kiev (1971), 65–95.

[16] P. Longobardi – M. Maj – D.J.S. Robinson – H. Smith: “On
groups with two isomorphism classes of derived subgroups”,
Glasgow Math. J. 55 (2013), 655–668.

[17] P. Longobardi – M. Maj – D.J.S. Robinson: “Locally finite
groups with finitely many isomorphism classes of derived sub-
groups”, J. Algebra 393 (2013), 102–119.

[18] P. Longobardi – M. Maj – D.J.S. Robinson: “Recent results on
groups with few isomorphism classes of derived subgroups”,
Contemp. Math. 611 (2014), 121–135.

[19] A.I. Maltsev: “On certain classes of infinite solvable groups”,
Mat. Sb. 28 (1951), 567–588 (Russian); translated in: Amer. Math.
Soc. Transl. 2 (1956), 1–21.



Groups with finitely many classes of non-normal subgroups 41

[20] A.Yu. Olshanskii: “An infinite simple torsion-free Noetherian
group”, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 1328–1393 (Rus-
sian); translated in: Math. USSR-Izv. 15 (1980), 531–588.

[21] A.Yu. Olshanskii: “Groups of bounded period with subgroups
of prime order”, Algebra i Logika 21 (1982), 553–618 (Russian);
translated in: Algebra and Logic 21 (1982), 369–418.

[22] D.J.S. Robinson: “Finiteness Conditions and Generalized Solu-
ble Groups”, Parts 1 and 2, Springer, Berlin (1972).

[23] D.J.S. Robinson: “A Course in the Theory of Groups”, Springer,
New York (1982).

[24] M.J. Tomkinson: “FC-Groups”, Pitman, Melbourne (1984).

[25] V.P. Shunkov: “Locally finite groups with a minimality condi-
tion for abelian subgroups”, Algebra i Logika 9 (1970), 579–615.

[26] D.I. Zaitsev: “The groups which satisfy a weak minimality con-
dition”, Mat. Sb. 78 (1969), 323–331.

Leonid A. Kurdachenko
Department of Algebra and Geometry
School of Mathematics and Mechanics
University of Dnipro
Gagarin prospect 72
49010 Dnipro 10 (Ukraine)
e-mail: lkurdachenko@i.ua

Patrizia Longobardi – Mercede Maj
Dipartimento di Matematica
Università degli Studi di Salerno
via Giovanni Paolo II, 132
84084 Fisciano, Salerno (Italia)
e-mail: plongobardi@unisa.it; mmaj@unisa.it


	A note on formations with the Shemetkov property
	L.A. Kurdachenko — P. Longobardi — M. Maj: Groups with finitely many classes of non-normal subgroups
	A.L. Prins: A maximal subgroup 24+6:(A53) of G2(4) treated as a non-split extension G=26(24:(A53))
	Hossein Shahrtash: Conjugacy class sizes in affine semi-linear groups
	L.A. Kurdachenko – A.A. Pypka – I.Ya. Subbotin: On groups whose non-normal subgroups are either contranormal or core-free
	B.A.F. Wehrfritz: On groups with finite HIrsch number
	Amel Zitouni: Groups whose proper subgroups of infinite rank are minimax-by-nilpotent or nilpotent-by-minimax

