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Abstract
It is proved that certain subsets of a group, defined by suitable commutator identities,
are characteristic subgroups.
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1 Introduction

Let G be a group and let Sn denote the permutation group on the
set {1, 2, . . . ,n}, n > 1. Let ⇡ 2 Sn and let x = (x1, x2, . . . , xn) be
an n-tuple of elements xi 2 G. Let x⇡ = y = (y1,y2, . . . ,yn) be
the positional permutation, defined by ⇡, which takes xi 2 x to yk
and k = i⇡. The concept of permutation extension is introduced in Sec-
tion 4. For this purpose the positional form of ⇡ is preferable to its
standard form.

In this paper we consider the following subsets of G:

⇡G =
�
a 2 G : [a, x1, x2, . . . , xn] = [a,y1,y2, . . . ,yn] :

for all x,y such that x⇡ = y
 



2 M.L. Newell

and

⇡G =
�
a 2 G : [a, x1, x2, . . . , xn] = [a,y1,y2, . . . ,yn]-1 :

for all x,y such that x⇡ = y
 

.

For a subgroup K of Sn, we define KG =
T

⇡2K
⇡G. Clearly, ⇡G=h⇡iG

and for H 6 K 6 Sn the inclusion KG ✓ HG holds.
In [1] W. Kappe proved that

R2G = {a 2 G : [a, x, x] = 1 8x 2 G}

is a characteristic subgroup of G and that [a, x,y] = [a,y, x]-1 for
all x,y 2 G. Thus R2G ✓ ⇡G, where ⇡ = (1, 2) 2 S2. More generally,
he showed that for x, zi 2 G the set

Bn-2(G) = {a 2 G : [a, x, z1, z2, . . . , zn-2, x] = 1}

is a characteristic subgroup of G with the property that

[a, x, z1, z2, . . . , zn-2,y] = [a,y, z1, z2, . . . , zn-2, x]-1

for all x,y 2 G. Hence Bn-2(G) ✓ ⇡(G), where ⇡ = (1,n) 2 Sn.
Here we show that ⇡G and ⇡G are characteristic subgroups of G

when 1 and n belong to the same cyclic component of ⇡ 2 Sn, n > 2.

2 Notation

Let a,b, c be elements of a group G. Then [a,b] = a-1b-1ab, and
ab = a[a,b] = b-1ab. The following identities are used.

C(1) (i) [a,bc] = a-1abc = a-1aca-cabc = [a, c][a,b]c

(ii) [bc,a] = [b,a]c[c,a] = [a,b, c]-1[b,a][c,a]

C(2) [abc, [c,b]] = a-bcacb = [a,b, c]-1
⇥
[a,b], [a, c]

⇤
[a, c,b]

C(3) For normal subgroups A,B,C of G, C(2) implies that

[A, [B,C]] 6 [A,B,C][A,C,B]
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since [C,B] = [B,C] and [A,C] 6 C. This is called the Three Sub-
group Lemma.

�nG and Zn(G) represent the n-th term of the lower and upper
central series, respectively.

Remark 2.1 By replacing c by c-1 in identity C(2), one obtains the
more familiar Hall-Witt identity:

[a,b, ca][c,a,bc][b, c,ab] = 1.

This can also be derived from the identity [a,b]c = [ac,bc] noting
that

[ac,bc] =
�
[a,bc][c,a,bc]-1

�[a,c]

and hence [a,b]ca = [a,bc][c,a,bc]-1, which gives the Hall-Witt
identity.

3 Preliminaries

We begin with some elementary results for n < 5. These will be used
for inductive purposes later.

Lemma 3.1 Let ⇡ = (1, 2) 2 S2, then ⇡G = CG(�2G).

Proof — Let a 2 ⇡G: [a, x,y] = [a,y, x] for all x,y 2 G. Therefore
[a, x,a] = 1 = [ax,a] for all x in G and hence N = haGi is abelian.
Using C(1), it follows that ayx = axy and thus a 2 CG(�2G). Con-
versely, when a 2 CG(�2G), then N is abelian and axy = ayx. Hence
by C(2) [a, x,y] = [a,y, x] for all x,y 2 G. ut

Remark 3.2 Let a,b 2 G and let [b, x,a] = 1 for all x 2 G. Then
b 2 Z(G/CG(N)).

Proof — Since [b,yx] = [b, x][b,y]x, it follows that [[b,y]x,a] = 1 for
all x,y 2 G, and hence [b,y] 2 CG(N) for all y 2 G. ut

Lemma 3.3 Let a 2 ⇡G, where ⇡ = (1, 2) 2 S2. Then:

(1) N = haGi is abelian;

(2) ⇡G ✓ S3G;
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(3) a2 2 Z3G;

(4) [ag, x,y] = [a, x,y]g[g, x,y] for all x,y, g 2 G;

(5) ⇡G is a characteristic subgroup of G;

(6) for a 2 G, a 2 ⇡G if and only if [a, [x,y]] = [a, x,y]2 for all x,y 2 G.

Proof — (1) Let a 2 ⇡G: [a, x,y] = [a,y, x]-1 for all x,y 2 G. Then
[a, x,a] = 1 = [ax,a] for all x and so N is abelian.

(2)–(3) Replacing x by xt, we obtain

[a, t,y][a, x,y][a, x, t,y] = [a,y, t]-1[a,y, x]-1[a,y, x, t]-1

and hence

[a, x, t,y] = [a,y, x, t]-1 = [a, t,y, x] = [a, x, t,y]-1.

Therefore [a, x, t,y]2 = 1 and [a, x, t,y] = [a,y, x, t]. Hence a 2 �G,
where � = (1, 2, 3) 2 S3. Also since [a, x, t,y] = [a,y, t, x], it fol-
lows that a 2 ⌧G, where ⌧ = (1, 3) 2 S3. Since h⌧,�i = S3 and
[a, x, t,y]2 = 1 = [a2, x, t,y], (2) and (3) follow.

(4) Since
[a, x, t,y] = [a,y, x, t] = [a, x,y, t],

it follows that [a, x] ✓ CG(�2G) and

[ag, x] = [a, x]g[g, x] = [g, x][a, x]g.

Therefore

[ag, x,y] = [g, x,y][a, x,y]g = [a, x,y]g[g, x,y].

(5) Follows directly from (4).

(6) Since N is abelian, using C(2) we get

[ayx, [x,y]] = [a, [x,y]] = [a,y, x]-1[a, x,y] = [a, x,y]2.

Conversely, when [a, x,y]2 = [a, [x,y]] for all x,y 2 G, then

[a, [a,y]] = 1 = [ay,a]
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and N is abelian. Then by C(2),

[a, x,y]2 = [a, [x,y]] = [a,y, x]-1[a, x,y]

and thus [a, x,y] = [a,y, x]-1. ut

Remark 3.4 The marginal subgroup concept introduced by P. Hall
is described in [1]. For example, let

w = w(g, x,y) = [g, x,y][g,y, x].

The first marginal subgroup of w is defined to be the set

{a 2 G : w(ag, x,y) = w(g, x,y) 8g, x,y}.

This set is always a group and the proof of (4), given above, shows
that it contains ⇡G. Similarly, it follows from Lemma 3.3 that ⇡G is
also contained in the first marginal subgroup of the word
z = z(g, x,y) = [g, [x,y]][g, x,y]2.

The elements a in G for which [a, [x,y]] = [a, x,y][a,y, x]-1 for
all x,y 2 G are similar to the ones featured in a Lie algebra:
(x,y) = xy- yx. These group elements play a central role in our re-
sults. The following special case of identity C(2) is helpful in our
deliberations.

Lemma 3.5 Let a,b, c 2 G satisfy the following conditions:

(1) v = [a, cb] commutes with [b, c];

(2) [a, [b, c]] commutes with z = [a,b][a, c].

Then [a, [b, c]] =
⇥
[a, c], [a,b]

⇤
[a,b, c][a, c,b]-1.

Proof — Let

[a, cb] = v = [a,b][a, c][a, c,b] = z[a, c,b].

Then
[acb, [b, c]] = [a,b, c]v = [a,b, c][a,c,b]

by condition (2). By C(2)

[acb, [b, c]] = [a, c,b]-1
⇥
[a, c], [a,b]

⇤
[a,b, c].
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Therefore
[a, [b, c]] =

⇥
[a, c], [a,b]

⇤
[a,b, c][a, c,b]-1.

The statement is proved. ut

Lemma 3.6 Let L(G) =
�
a 2 G :

⇥
[a, x], [x,y]

⇤
= 1, 8x,y 2 G

 
. Then

the following statements hold.

(1) L(G) is a characteristic subgroup of G.

(2) H = [a,G] is an abelian normal subgroup of G for all a 2 L(G).

(3) [a, [x,y]] = [a, x,y][a,y, x]-1 for all x,y 2 G and a 2 L(G).

(4) [a, [x,y, z]] = [a, x,y, z][a,y, x, z]-1[a, z,y, x][a, z, x,y]-1 for all
x,y, z 2 G and a 2 L(G).

Proof — (1) Let a 2 L(G) and x,y, z 2 G. Then [a, x] commutes
with

[x,yz] = [x, z][x,y]z

and hence with [x,y]z. For z = a, [a, x] commutes with [x,y]a and
hence a-1 2 L(G). Similarly let b 2 L(G). Since

[ab, x] = [a, x]b[b, x],

it follows that [ab, x] commutes with [x,y] for all x,y 2 G.

(2) Let a 2 L(G) and x,y 2 G. Since [a,ax] commutes with [ax,y],
it also commutes with [a,y]x. Thus H is an abelian normal subgroup
of G.

(3) This follows from Lemma 3.5.

(4) Let a 2 L(G) and x,y, z 2 G. Clearly, [x,y, z] = [c, z], where
c = [x,y]. Therefore

[a, c] = [a, x,y][a,y, x]-1

and
[[a, c], z] = [a, x,y, z][a,y, x, z]-1.

Similarly
[[a, z], c] = [a, z, x,y][a, z,y, x]-1.
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Therefore

[a, [x,y, z]] = [[a, c], z][[a, z], c]-1

= [a, x,y, z][a,y, x, z]-1[a, z,y, x][a, z, x,y]-1.

The statement is proved. ut

Remark 3.7 Let M be a normal subgroup of G such that [M,G] is
contained in CG(�2G), then M 6 L(G), since [[m, x], [x,y]] = 1 for
all x,y 2 G, m 2 M. In particular, S3G ✓ L(G) and Z3G 6 L(G).

Lemma 3.8 Let ⇡ = (1, 2, 3) 2 A3. Let a 2 ⇡G and let N = haGi. Then:

(1) [a, x,y] 2 Z(N) for all x,y 2 G.

(2) a 2 S4G, a 2 L(G), a 2 CG(�3G).

(3) [ag, x,y] = [a, x,y][a, x, g,y][g, x,y] for all x,y, g 2 G.

(4) A3G is a characteristic subgroup of G.

Proof — (1) For a 2 ⇡G:

[a, x,y, z] = [a, z, x,y] = [a,y, z, x]

for all x,y, z 2 G. For z = a, [a, x,y,a] = 1 and [a, x,y] 2 Z(N) for
all x,y 2 G, by Remark 3.2. This proves (1).

(2) By expanding the identity

[a, x,yt, z] = [a, z, x,yt],

we obtain the extended symmetry

[a, x,y, t, z] = [a, z, x,y, t]

for all x,y, t 2 G. Hence a 2 ⌧G, where ⌧ = (1, 2, 3, 4) 2 S4.
Since h⇡, ⌧i = S4, a 2 S4G. Since S2G = CG(�2G) it follows from
the remark above that S3G ✓ L(G). Let d = [a, x]. Then d 2 S3G and

[d, [x,y]] = [d, x,y][d,y, x]-1 = [a, x, x,y][a, x,y, x]-1 = 1,

since
[a, x, x,y] = [a, x,y, x],
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when a 2 A3G. Therefore
⇥
[a, x], [x,y]

⇤
= 1 for all x,y 2 G. Since

[a, [x,y, z]] = [a, x,y, z][a,y, x, z]-1[a, z,y, x][a, z, x,y]-1

by Lemma 3.6, it follows that [a,[x,y, z]]=1, since [a, x,y, z]=[a, z, x,y]
and [a,y, x, z] = [a, z,y, x] for all x,y, z 2 G. Therefore a 2 CG(�3G).
Thus (2) is established.
(3) [ag, x] = [a, x][a, x, g][g, x] and [ag, x,y] = [a, x,y][a, x, g,y][g, x,y],
since [a, x,y] 2 Z(N) and [[a, x], [y, x]] = 1, since a 2 L(G).

(4) Follows from (3). ut

Lemma 3.9 Let ⇡=(1,4)(2,3)2S4,a2⇡G and N=haGi. Then ⇡G✓S5G.

Proof — For a 2 ⇡G, [a, x,y, z,w] = [a,w, z,y, x] for all x,y, z,w 2 G.
In particular, [a, x,y, z,a] = 1 and [a, x,y, z] 2 CG(N) for all x,y, z 2 G
by Remark 3.2. By expanding the defining relation, we get the ex-
tended relation

[a, x,y, t, z,w] = [a,w, z,y, t, x]

on replacing y by yt. Therefore a 2 �G, where � = (1, 5)(2, 3, 4) 2 S5.
Since h⇡,�i = S5 the result follows. ut

4 Permutation extension and
commutator expansion

Let ⇡ 2 Sn and let

⇡ : (x1, x2, . . . , xn) �! (y1,y2, . . . ,yn).

Let ⇡ : xr 7! yk. We view ⇡ as a positional permutation and write
⇡ : r 7! k. If a new element t 2 G is placed immediately after xr on
both sides, we obtain the extended permutation:

⇡r : (x1, . . . , xr, t, xr+1, . . . , xn) ! (y1, . . . ,yk-1, xr, t,yk+1, . . . ,yn).

Using the natural embedding of ⇡ into Sn+1, we obtain a sub-
group E(⇡) of Sn+1, where

E(⇡) = h⇡,⇡1, . . . ,⇡ni.
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E(⇡) is the extension group defined by ⇡.

Example Let ⇡ = (1, 2)(4, 5)(3) 2 S5. Then ⇡1 = (1, 2, 3)(5, 6) = ⇡-1

2
,

⇡3 = (1, 2)(5, 6)(4), ⇡4 = (1, 2)(4, 5, 6)(3) = ⇡-1

5
and thus E(⇡) is the

direct product of 2 copies of S3.

We require some further notation on commutator expansions. Let N
be a normal subgroup of G. The series of normal subgroups defined
inductively by: N0 = N, Ni+1 = [Ni,G] for i > 0 is a decreasing
lower central G-series in N. Let M and N be normal subgroups of G
and let K = K(0) = [M,N]. For r > 0,

K(r) =
Y

i+j=r

[Mi,Nj].

The series defined by K(r) is also a decreasing lower central G-series
in G, since

[Mi,Nj,G] 6 [Mi+1,Ni][Mi,Nj+1]

by the Three Subgroup Lemma. Thus K(r+1) 6 K(r).

Lemma 4.1 Let Rr = [M,Nr][Mr,N], r > 3. Then K(r) = RrC
(r-2),

where C = [M1,N1].

Proof — Let M1 = A and N1 = B, then C = [A,B]. Let i+ j = r,
i, j > 0. Then

[Mi,Nj] = [Ai-1,Bj-1] 6 C(r-2)

and so K(r) = RrC
(r-2). ut

Lemma 4.2 Let N be a normal subgroup of G and let K = [N,N].
When [N,Nr+1] = 1 and K(r) 6 Z(G), then K(r+1) = 1.

Proof — Since [N,Nr+1] = 1, the leading term of the product
defining K(r+1) is [N1,Nr]. Kr has leading term [N,Nr]. Let [a,b]
in [N,Nr] 6 Z(G). Then [a,b, g] = 1 for all g 2 G. Since

⇥
[g,a], [g,b]

⇤

belongs to [Nr,Nr+1] = 1, using C(2), it follows that [g,a,b] = 1.
Thus [g,b,a] 2 [Nr+1,N] = 1 for all g,b,a 2 G and so [N1,Nr] = 1.

Inductively, using this argument we conclude that every term
in K(r+1) is trivial. ut

Theorem 4.3 Let [N,Nn] = 1 and let K(n) = K(n+1), then K(n) = 1,
where K = [N,N].



10 M.L. Newell

Proof — Suppose not. There exists an integer 0 < r < n, such that
K(r) = K(r+1) 6= K(r+2). Since

[K(r),G] = [K(r+1),G] 6 K(r+2),

it follows that K(r) 6 Z(G) mod K(r+2) and hence K(r+1) 6 Kr+2, by
Lemma 4.2. So K(r) = K(r+1) = K(r+2), a contradiction. ut

We now establish some results on commutator extensions.

Lemma 4.4 Let M be a normal subgroup of G. Let u, v 2 M. Let

uk = [u, x1, x2, . . . , xk] and vk = [v, x1, x2, . . . , xk],

where xi 2 G and k > 1. Then [uv, x1, x2, . . . , xk] ⌘ ukvk mod B(k) for
all k, where B = [M,M].

Proof — For k = 1

[uv, x1] = [u, x1]v[v, x1] = u1v1 mod [M1,M] = B(1).

Assume the result is true for r = k- 1 Then

[uv, x1, x2, . . . , xr] = abc,

where a = ur, b = vr and c 2 B(r). Let d = xr+1. Then

[abc,d] = [a,d]bc[b,d]c[c,d] ⌘ [a,d][b,d] mod B(r+1)

⌘ ur+1vr+1 mod B(r+1)

and the result follows by induction. ut
Corollary 4.5 Let a 2 G and let H = [a,G] = h[a, g], 8g 2 Gi.
Let C = [H,H] and x1, x2, . . . , xn, t 2 G. Then

[a, x1t, x2, . . . , xn] ⌘ unvnwn mod C(n-1),

where
un = [a, t, x2, . . . , xn], vn = [a, x1, x2, . . . , xn]

and wn = [a, x1, t, x2, . . . , xn].

Proof — Since [a, x1t] = u1v1w1, where u1 = [a, t], v1 = [a, x1],
w1 = [a, x1, t], the result follows from Lemma 4.4, by replacing u
by u1 and v by v1w1 and replacing M by H. ut
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Theorem 4.6 Let a 2 G, H = [a,G], C = [H,H] and C(n-1) = 1.
If a 2 ⇡G, then a 2 E(⇡)G.

Proof — Let b = [a, z1, z2, . . . , zr] 2 Hr-1, zi 2 G. Let [b,G] = B.
Then [B,B](n-r) 6 C(n+r-2) = 1 for r > 1. Let ⇡ map (x1, x2, . . . , xn)
to (y1,y2, . . . ,yn). Let x1⇡ = yj, where j 6 i. Then

[a, x1, x2, . . . , xn] = [a,y1,y2, . . . ,yj-1, x1,yj+1, . . . ,yn]

and hence a 2 ⇡1G. Replacing x1 by x1t on both sides we obtain

[a, x1t, x2, . . . , xn] = unvnwn,

by Corollary 4.5, where un=[a, t, x1, x2, . . . , xn], vn=[a, x1, x2, . . . , xn]
and wn = [a, x1, t, x2, . . . , xn].

Similarly, the right-hand side becomes unvnwn, where

un = [a,y1,y2, . . . ,yj-1, t, x1,yj+1, . . . ,yn],

vn = [a,y1,y2, . . . ,yj-1, x1,yj+1, . . . ,yn] and

wn = [a,y1,y2, . . . ,yj-1, x1, t,yj+1, . . . ,yn].

Since un = un, vn = vn for a 2 ⇡G, it follows that

[a, x1, t, x2, . . . , xn] = [a,y1,y2, . . . ,yj-1, x1, t,yj+1, . . . ,yn]

and hence a 2 ⇡1G.
This argument shows that when xr⇡ = yk, r < k, then a 2 ⇡rG.

When k < r, then a 2 �kG, where � = ⇡-1 and �k = ⇡-1
r . ut

5 Properties of An+1(G)

We have noted earlier that the commutator [a, [b, c]] is a product of
eight simple commutators. For a 2 L(G) this reduces to the product
of [a,b, c] and [a, c,b]-1, a,b, c 2 G.

Let x1, x2, . . . , xn be a sequence of elements belonging to a group G.
Let a 2 G. We make the following definitions:

a�(x1, x2) = [a, x1, x2][a, x2, x1]-1,
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for 2 6 i 6 n,

a�i+1(x1, x2, . . . , xi+1)

= [a�(x1, x2, . . . , xi), xi+1]{[a, xi+1]�(x1, . . . , xi)}-1.

For example:

a�3(x,y, z) = [a�2(x,y), z]{[a, z]�(x,y)}-1

=
⇥
[a, x,y][a,y, x]-1, z

⇤
{[a, z, x,y][a, z,y, x]}-1

⌘ [a, x,y, z][a,y, x, z]-1[a, z,y, x][a, z, x,y]-1 mod [H2,H1] 6 C(3),

where [a,G] = H and C = [H,H]. Thus, if a 2 A4(G) and C(3) = 1,
then

[a, [x,y, z]] = a�(x,y, z)

is a product of 4 simple commutators of alternating sign. The result
in this case is a consequence of the following theorem.

Theorem 5.1 Let a 2 An+1(G), n > 2. Let N = haGi and K = [N,N].
Then:

(1) K(n) = 1.

(2) [N, �n+1(G)] = 1.

(3) [a, [x1, x2, . . . , xn]] = a�(x1, x2, . . . , xn).

(4) [ag, x1, x2, . . . , xn] =
= [a, x1, x2, . . . , xn][a, x1, g, x2, . . . , xn][g, x1, x2, . . . , xn]
for all xi, g 2 G.

Proof — For n = 2 this result is contained in Lemma 3.8. We can
assume that (i) aZ 2 An(G/Z(G)) and (ii) [a, g] 2 An(G) for all g 2 G.

(1) Since the permutation (1,n+ 1)(2,n) 2 An+1, it follows that

[a, x1, x2, . . . , xn,a] = 1

and thus [N,Nn] = 1. Hence we can assume that K(n-1) 6 Z(G).
So for r = n- 1, [N,Nr+1] = 1 and K(n-1) 6 Z(G), and therefore
K(r+1) = K(n) = 1 by Lemma 4.2.
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(2) By (i) and (ii) we can further assume that [N, �n(G)] 6 Z(G) and
[N1, �n(G)] = 1. Therefore

[�n+1(G),N] = [[�n(G),G],N] 6 [[N, �n(G)],G][N1, �n(G)] = 1

(3) Let b = [x1, x2, . . . , xn-1] and c = xn. Then

[x1, x2, . . . , xn] = [b, c] 2 �n(G)

and
[a, [x1, x2, . . . , xn]] = [a, [b, c]] 2 �n+1(G).

Using (ii) we see that a,b, c satisfy the conditions of Lemma 3.5 and
so

[a, [b, c]] = [a,b, c][a, c,b]-1.

By (i),

[a,b] = [a, [x1, x2, . . . , xn-1]] ⌘ a�(x1, x2, . . . , xn-1) mod Z(G)

and hence [a,b, c] = [a�(x1, x2, . . . , xn-1), xn] = 1, since K(n) = 1.
By (ii),

[a, c,b] = [a, xn]�(x1, x2, . . . , xn-1).

Therefore

[a, [x1, x2, . . . , xn]]

= [a�(x1, x2, . . . , xn-1), xn]{[a, xn]�(x1, x2, . . . , xn-1)}
-1

= a�(x1, x2, . . . , xn).

This proves (3).

(4) By (i), we may assume that

[ag, x1, x2, . . . , xn-1] ⌘ uvw mod Z(G),

where u = [a, x1, x2, . . . , xn-1], v = [a, x1, g, x2, . . . , xn-1] and w =
[g, x1, x2, . . . , xn-1]. Since [a, x1, x2, . . . , xn-2] 2 A3(G) 6 CG(�3(G)),
it follows that

[ag, x1, x2, . . . , xn] = [u, xn][v, xn][w, xn]

and the result is established. ut
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6 Properties of E(⇡)G for ⇡ 2 Sn

In this section we consider properties of E(⇡)G, for ⇡ 2 Sn. In par-
ticular, the permutations ⇡ for which 1 and n are co-cyclic in ⇡. For
every ⇡ 2 Sn, the group E(⇡) is defined as follows. Let

⇡ : (x1, x2, . . . , xn) �! (y1,y2, . . . ,yn)

and let xr⇡ = yk. We will describe this as r⇡ = k and r = k� where
� = ⇡-1. We describe E(⇡) using this notation. Let 1 6 r 6 n and
define ⇡r in the following way:

r⇡r = k,

(r+ 1)⇡r = k+ 1,

for 1 6 i 6 r- 1,

i⇡r =

�
i⇡ if i⇡ < k

i⇡+ 1 if i⇡ > k
,

for r+ 1 6 j 6 n,

(j+ 1)⇡r =

�
j⇡ if j⇡ < k

j⇡+ 1 if j⇡ > k

Here �k = ⇡-1
r , where � = ⇡-1. As outlined earlier

E(⇡) = h⇡,⇡1, . . . ,⇡ni 6 Sn+1.

For example, let 1⇡ = n. Then 1⇡1=n, 2⇡1=n+1 and for 2 6 j < n,

(j+ 1)⇡1 = j⇡, (n+ 1)⇡1 = n⇡,

↵1=⇡1⇡
-1 = (1) (n+1,n, . . . , 3, 2) and h⇡,⇡1i = Sn+1.

Let ⇡ = �⇢, where � = (1,a1, . . . ,ak), and 1⇡ = a1, ai⇡ = ai+1 for
2 6 i 6 k- 1, ak⇡ = 1. In Theorem 6.5 we show that An+1(G) 6 E(⇡),
when 1 and n are co-cyclic in ⇡ and so belong to the set {1,a1, . . . ,ak}.
Throughout this section, r⇡ = n = s�, � = ⇡-1. By the example given
above, we can assume 1 < r, s < n and hence k > 4.

Lemma 6.1 Let ↵r=⇡r⇡
-1 and �s=�s�

-1. Let S=Stab(n+1)6Sn+1.
Then:
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(1) ↵r and �s are cycles in Sn+1;

(2) (n+ 1,n, s) = [↵r,�s], where r < s;

(3) (n, r, s) 2 S.

Proof — r⇡r = r⇡ = n, (r+ 1)⇡r = n+ 1. For 1 6 i 6 r- 1, i⇡r = i⇡,
i↵r = i. For r+ 2 6 j 6 n, (j+ 1)⇡r = j⇡, (j+ 1)↵r = j. Thus

↵r = (n+ 1,n, . . . , r+ 2, r+ 1).

Similarly �s = (n+ 1,n, . . . , s+ 2, s+ 1). When r < s the commuta-
tor [↵r,�s] = (n+ 1,n, s). When r > s, [↵r,�s] = (n+ 1, r,n). Since
(n+ 1,n, s)� = (n+ 1, r,n), it follows that both belong to Sn+1 and
their product (n, s, r) 2 Stab(n+ 1) = S. ut

Lemma 6.2 Let x,y, z be a triple of non-zero integers 6 n. Let x⇡ = z
and z⇡ = y. Let x,y < z. Then:

(1) (z+ 1)⇡x�y = z;

(2) when z < s, ⇡x⇡y 2 Stab(n+ 1) 6 Sn+1.

Proof — (1) (z+ 1)⇡x = z⇡ = y, since z⇡ = y < x⇡ = z. Moreover,
y�y = y� = z and so (z+ 1)⇡x�y = z.

(2) When z < s = n⇡, (n+ 1)⇡x = n⇡+ 1 = s+ 1, and (s+ 1)�y =
s�+ 1 = n+ 1. So ⇡x�y 2 Stab(n+ 1). ut

Lemma 6.3 Let z be a fixed point of ⇡. Let a,b be positive integers such
that a < z < b < n, a⇡ = b. Then:

(1) (z+ 1)�z⇡a = z

(2) when z < r, the permutation �z⇡a 2 Stab(n+ 1).

Proof — (1) (z + 1)�z = z� + 1 = z + 1 and (z + 1)⇡a = z⇡ = z
since a < z < a⇡ = b. Therefore (z+ 1)�z⇡a = z.

(2) When z < r, (n+ 1)�z = n�+ 1 = r+ 1, since r > z� = z. Also
(r + 1)⇡a = r⇡ + 1 = n + 1, since r⇡ = n > a⇡. Therefore �z⇡a

belongs to Stab(n+ 1). ut

Lemma 6.4 E(⇡) is a transitive subgroup of Sn+1, when 1 and n are
co-cyclic in ⇡.
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Proof — Suppose not. Then there exists a positive integer z, such
that {n+ 1,n, . . . , z+ 1} belong to the orbit of n+ 1, but no element
of E(⇡) maps z+ 1 to z. We consider two cases.

(1) z is not a fixed point of ⇡.
Then it follows, by Lemma 6.1, that z < r, z < s, since ↵r,�s 2 Sn+1.

So z⇡ = y and x = z� have the property that ⇡x�y maps z+ 1 to z,
by Lemma 6.2.

(2) z is a fixed point of ⇡.
Let � be the cycle containing 1 and n. Then

z 62 {1,a1, . . . ,ak} and 1 < z < n.

There exists a largest integer ai such that ai < z and z < ai+1.
Let a = ai, then a⇡ = b = ai+1. We can assume a < b, since if a > b
then z� = z and b� = a > b. Then, by Lemma 6.3, �z⇡a maps z+ 1
to z. Therefore E(⇡) is transitive. ut

Theorem 6.5 Let 1 and n belong to the same cycle in ⇡. Then An+16E(⇡).

Proof — E(⇡) is a transitive group containing three cycles

(n+ 1,n, s), (n+ 1, r,n), (n, s, r), n > 5.

By a well-known result of Marggraf, it suffices to show that E(⇡)
is 2-transitive. Thus it suffices to show that S = Stab(n + 1) acts
transitively on the set {1, 2, . . . ,n}. Suppose not. Then there exists z
in {1, 2, . . . ,n} with the property that no element of S maps z+ 1 to z.
Then, using Lemma 6.2 (2) and Lemma 6.3 (2), we obtain the required
contradiction. ut

Theorem 6.6 Let 1 and n be co-cyclic in ⇡ 2 Sn. Let a 2 ⇡G, then
a 2 E(⇡)G.

Proof — Let haGi = N and K = [N,N]. Let H = [a,G] and C = [H,H].
Then, by Theorem 4.6, it suffices to show that C(n-1) = 1. Suppose
not. Then by Theorem 6.5, E(⇡)G 6 An+1G mod C(n-1). Therefore,
by Theorem 5.1, K(n) ⌘ 1 mod C(n-1) and thus

K(n) 6 C(n-1) 6 K(n+1).

Hence K(n) = K(n+1) and, by Theorem 4.3, K(n) = 1 = C(n-1). ut
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Theorem 6.7 Let 1 and n be co-cyclic in ⇡ 2 Sn. Then:

(1) ⇡G is contained in the first marginal subgroup of the group word
w ⌘ [x1, x2, . . . , xn][y1,y2, . . . ,yn]-1 for xi,yi 2 G.

(2) ⇡G is contained in the first marginal subgroup of

w ⌘ [x1, x2, . . . , xn][y1,y2, . . . ,yn].

Proof — (1) We are required to show that

[ag, x1, x2, . . . , xn][ag,y1,y2, . . . ,yn]-1

= [g, x1, x2, . . . , xn][g,y1,y2, . . . ,yn]-1

for g 2 G. Using Theorem 5.1 (4), it suffices to show that

[a, x1, g, x2, . . . , xn] = [a,y1, g,y2, . . . ,yn].

When ⇡ is an odd permutation, E(⇡) = Sn+1 and the result is im-
mediate for a 2 E(⇡)G. When ⇡ is an even permutation, then the
permutation µ 2 An+1, where µ = ⌧-1⇡⌧ and ⌧ = (2, 3, . . . ,n+ 1). In
sequence µ maps:

(x1, g, x2, . . . , xn) ! (x1, x2, . . . , xn, g)

! (y1,y2, . . . ,yn, g) ! (y1, g,y2, . . . ,yn).

Since a 2 µG, it follows that

[a, x1, g2, x2, . . . , xn] = [a,y1, g,y2, . . . ,yn]

and thus (1) is established.

(2) When a 2 ⇡(G), [a, x1, x2, . . . , xn] = [a,y1,y2, . . . ,yn]-1, where

⇡ : (x1, x2, . . . , xn) ! (y1,y2, . . . ,yn).

In this case [a, x1g, x2, . . . , xn] = [a,y1, g,y2, . . . ,yn]-1. ut

Theorem 6.8 Let ⇢ : (x1, x2, . . . , xn) ! (xn, xn-1, . . . , x1), n > 1.
Then ⇢G 6 CG(�nG), when n is even, and ⇢G 6 CG(�nG), when n is
odd.
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Proof — ⇢ is a product of involutions beginning with (1,n).
Let a 2 ⇢G. Then, by Theorem 5.1,

[a, [x1, x2, . . . , xn]] = a�(x1, x2, . . . , xn).

In the expansion of a�(x1, x2, . . . , xn), the simple commutators

[a, z1, z2, . . . , zn] and [a, zn, zn-1, . . . , z1]

occur as a pair, where {z1, z2, . . . , zn} is the set {x1, x2, . . . , xn}. When n
is even, these elements have opposite sign and a�(x1, x2, . . . , xn)=1.
So [a, [x1, x2, . . . , xn]] = 1. When n is odd, these elements have the
same sign and thus for a 2 ⇢G the expansion of a�(x1, x2, . . . , xn) is
again equal to 1. ut
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