

Advances in Group Theory and Applications © 2021 AGTA - www.advgrouptheory.com/journal 12 (2021), pp. 1–18 ISSN: 2499-1287 DOI: 10.32037/agta-2021-007

On Groups of Commutator Symmetries

MARTIN L. NEWELL

(Received July 3, 2019; Accepted Feb. 26, 2021 — Communicated by F. de Giovanni)

Abstract

It is proved that certain subsets of a group, defined by suitable commutator identities, are characteristic subgroups.

Mathematics Subject Classification (2020): 20F12, 20F45

Keywords: permutation extension; characteristic subgroup

1 Introduction

Let G be a group and let S_n denote the permutation group on the set $\{1, 2, ..., n\}$, n > 1. Let $\pi \in S_n$ and let $x = (x_1, x_2, ..., x_n)$ be an n-tuple of elements $x_i \in G$. Let $x\pi = y = (y_1, y_2, ..., y_n)$ be the positional permutation, defined by π , which takes $x_i \in x$ to y_k and $k = i\pi$. The concept of *permutation extension* is introduced in Section 4. For this purpose the positional form of π is preferable to its standard form.

In this paper we consider the following subsets of G:

 $\pi G = \left\{ a \in G : [a, x_1, x_2, \dots, x_n] = [a, y_1, y_2, \dots, y_n] : for all x, y such that x\pi = y \right\}$

and

$$\overline{\pi}G = \{ a \in G : [a, x_1, x_2, \dots, x_n] = [a, y_1, y_2, \dots, y_n]^{-1} :$$

for all x, y such that $x\pi = y \}.$

For a subgroup K of S_n , we define $KG = \bigcap_{\pi \in K} \pi G$. Clearly, $\pi G = \langle \pi \rangle G$ and for $H \leq K \leq S_n$ the inclusion $KG \subseteq HG$ holds.

In [1] W. Kappe proved that

$$\mathsf{R}_2\mathsf{G} = \{ \mathfrak{a} \in \mathsf{G} : [\mathfrak{a}, \mathfrak{x}, \mathfrak{x}] = 1 \, \forall \mathfrak{x} \in \mathsf{G} \}$$

is a characteristic subgroup of G and that $[a, x, y] = [a, y, x]^{-1}$ for all $x, y \in G$. Thus $R_2G \subseteq \overline{\pi}G$, where $\pi = (1, 2) \in S_2$. More generally, he showed that for $x, z_i \in G$ the set

$$B_{n-2}(G) = \{a \in G : [a, x, z_1, z_2, \dots, z_{n-2}, x] = 1\}$$

is a characteristic subgroup of G with the property that

$$[a, x, z_1, z_2, \dots, z_{n-2}, y] = [a, y, z_1, z_2, \dots, z_{n-2}, x]^{-1}$$

for all $x, y \in G$. Hence $B_{n-2}(G) \subseteq \overline{\pi}(G)$, where $\pi = (1, n) \in S_n$.

Here we show that πG and $\overline{\pi} G$ are characteristic subgroups of G when 1 and n belong to the same cyclic component of $\pi \in S_n$, $n \ge 2$.

2 Notation

Let a, b, c be elements of a group G. Then $[a, b] = a^{-1}b^{-1}ab$, and $a^b = a[a, b] = b^{-1}ab$. The following identities are used.

C(1) (i) $[a, bc] = a^{-1}a^{bc} = a^{-1}a^{c}a^{-c}a^{bc} = [a, c][a, b]^{c}$ (ii) $[bc, a] = [b, a]^{c}[c, a] = [a, b, c]^{-1}[b, a][c, a]$

C(2)
$$[a^{bc}, [c, b]] = a^{-bc}a^{cb} = [a, b, c]^{-1}[[a, b], [a, c]][a, c, b]$$

C(3) For normal subgroups A, B, C of G, C(2) implies that

$$[A, [B, C]] \leq [A, B, C][A, C, B]$$

since [C, B] = [B, C] and $[A, C] \leq C$. This is called the *Three Sub*group Lemma.

 $\Gamma_n G$ and $Z_n(G)$ represent the n-th term of the lower and upper central series, respectively.

Remark 2.1 By replacing c by c^{-1} in identity C(2), one obtains the more familiar Hall-Witt identity:

$$[a, b, c^{a}][c, a, b^{c}][b, c, a^{b}] = 1.$$

This can also be derived from the identity $[a,b]^c = [a^c,b^c]$ noting that

$$[a^{c}, b^{c}] = \left([a, b^{c}][c, a, b^{c}]^{-1}\right)^{\lfloor a, c \rfloor}$$

and hence $[a, b]^{c^{\alpha}} = [a, b^{c}][c, a, b^{c}]^{-1}$, which gives the Hall-Witt identity.

3 Preliminaries

We begin with some elementary results for n < 5. These will be used for inductive purposes later.

Lemma 3.1 Let $\pi = (1, 2) \in S_2$, then $\pi G = C_G(\Gamma_2 G)$.

PROOF — Let $a \in \pi G$: [a, x, y] = [a, y, x] for all $x, y \in G$. Therefore $[a, x, a] = 1 = [a^x, a]$ for all x in G and hence $N = \langle a^G \rangle$ is abelian. Using C(1), it follows that $a^{yx} = a^{xy}$ and thus $a \in C_G(\Gamma_2 G)$. Conversely, when $a \in C_G(\Gamma_2 G)$, then N is abelian and $a^{xy} = a^{yx}$. Hence by C(2) [a, x, y] = [a, y, x] for all $x, y \in G$.

Remark 3.2 Let $a, b \in G$ and let [b, x, a] = 1 for all $x \in G$. Then $b \in Z(G/C_G(N))$.

PROOF — Since $[b, yx] = [b, x][b, y]^x$, it follows that $[[b, y]^x, a] = 1$ for all $x, y \in G$, and hence $[b, y] \in C_G(N)$ for all $y \in G$. \Box

Lemma 3.3 Let $a \in \overline{\pi}G$, where $\pi = (1, 2) \in S_2$. Then:

- (1) $N = \langle a^G \rangle$ is abelian;
- (2) $\overline{\pi}G \subseteq S_3G$;

(3) $a^2 \in Z_3G;$

(4) $[ag, x, y] = [a, x, y]^{g}[g, x, y]$ for all $x, y, g \in G$;

(5) $\overline{\pi}$ G is a characteristic subgroup of G;

(6) for $a \in G$, $a \in \overline{\pi}G$ if and only if $[a, [x, y]] = [a, x, y]^2$ for all $x, y \in G$.

PROOF — (1) Let $a \in \overline{\pi}G$: $[a, x, y] = [a, y, x]^{-1}$ for all $x, y \in G$. Then $[a, x, a] = 1 = [a^x, a]$ for all x and so N is abelian.

(2)–(3) Replacing x by xt, we obtain

$$[a, t, y][a, x, y][a, x, t, y] = [a, y, t]^{-1}[a, y, x]^{-1}[a, y, x, t]^{-1}$$

and hence

$$[a, x, t, y] = [a, y, x, t]^{-1} = [a, t, y, x] = [a, x, t, y]^{-1}.$$

Therefore $[a, x, t, y]^2 = 1$ and [a, x, t, y] = [a, y, x, t]. Hence $a \in \sigma G$, where $\sigma = (1, 2, 3) \in S_3$. Also since [a, x, t, y] = [a, y, t, x], it follows that $a \in \tau G$, where $\tau = (1, 3) \in S_3$. Since $\langle \tau, \sigma \rangle = S_3$ and $[a, x, t, y]^2 = 1 = [a^2, x, t, y]$, (2) and (3) follow.

(4) Since

$$[a, x, t, y] = [a, y, x, t] = [a, x, y, t],$$

it follows that $[a, x] \subseteq C_G(\Gamma_2 G)$ and

$$[ag, x] = [a, x]^{g}[g, x] = [g, x][a, x]^{g}.$$

Therefore

$$[ag, x, y] = [g, x, y][a, x, y]^g = [a, x, y]^g[g, x, y].$$

- (5) Follows directly from (4).
- (6) Since N is abelian, using C(2) we get

$$[a^{yx}, [x, y]] = [a, [x, y]] = [a, y, x]^{-1}[a, x, y] = [a, x, y]^{2}.$$

Conversely, when $[a, x, y]^2 = [a, [x, y]]$ for all $x, y \in G$, then

$$[a, [a, y]] = 1 = [a^y, a]$$

and N is abelian. Then by C(2),

$$[a, x, y]^2 = [a, [x, y]] = [a, y, x]^{-1}[a, x, y]$$

and thus $[a, x, y] = [a, y, x]^{-1}$.

Remark 3.4 The marginal subgroup concept introduced by P. Hall is described in [1]. For example, let

$$w = w(g, x, y) = [g, x, y][g, y, x].$$

The first marginal subgroup of *w* is defined to be the set

$$\{a \in G : w(ag, x, y) = w(g, x, y) \ \forall g, x, y\}.$$

This set is always a group and the proof of (4), given above, shows that it contains $\overline{\pi}G$. Similarly, it follows from Lemma 3.3 that $\overline{\pi}G$ is also contained in the first marginal subgroup of the word $z = z(g, x, y) = [g, [x, y]][g, x, y]^2$.

The elements a in G for which $[a, [x, y]] = [a, x, y][a, y, x]^{-1}$ for all $x, y \in G$ are similar to the ones featured in a Lie algebra: (x, y) = xy - yx. These group elements play a central role in our results. The following special case of identity C(2) is helpful in our deliberations.

Lemma 3.5 Let $a, b, c \in G$ satisfy the following conditions:

- (1) v = [a, cb] commutes with [b, c];
- (2) [a, [b, c]] commutes with z = [a, b][a, c].
- *Then* $[a, [b, c]] = [[a, c], [a, b]][a, b, c][a, c, b]^{-1}$.

Proof — Let

$$[a, cb] = v = [a, b][a, c][a, c, b] = z[a, c, b].$$

Then

$$[a^{cb}, [b, c]] = [a, b, c]^{v} = [a, b, c]^{[a, c, b]}$$

by condition (2). By C(2)

$$[a^{cb}, [b, c]] = [a, c, b]^{-1} [[a, c], [a, b]] [a, b, c].$$

П

Therefore

$$[a, [b, c]] = [[a, c], [a, b]][a, b, c][a, c, b]^{-1}.$$

The statement is proved.

Lemma 3.6 Let $L(G) = \{a \in G : [[a, x], [x, y]] = 1, \forall x, y \in G\}$. Then the following statements hold.

- (1) L(G) is a characteristic subgroup of G.
- (2) H = [a, G] is an abelian normal subgroup of G for all $a \in L(G)$.
- (3) $[a, [x, y]] = [a, x, y][a, y, x]^{-1}$ for all $x, y \in G$ and $a \in L(G)$.
- (4) $[a, [x, y, z]] = [a, x, y, z][a, y, x, z]^{-1}[a, z, y, x][a, z, x, y]^{-1}$ for all $x, y, z \in G$ and $a \in L(G)$.

PROOF — (1) Let $a \in L(G)$ and $x, y, z \in G$. Then [a, x] commutes with

$$[\mathbf{x},\mathbf{y}\mathbf{z}] = [\mathbf{x},\mathbf{z}][\mathbf{x},\mathbf{y}]^{\mathbf{z}}$$

and hence with $[x, y]^z$. For z = a, [a, x] commutes with $[x, y]^a$ and hence $a^{-1} \in L(G)$. Similarly let $b \in L(G)$. Since

$$[ab, x] = [a, x]^b [b, x],$$

it follows that [ab, x] commutes with [x, y] for all $x, y \in G$.

(2) Let $a \in L(G)$ and $x, y \in G$. Since [a, ax] commutes with [ax, y], it also commutes with $[a, y]^x$. Thus H is an abelian normal subgroup of G.

(3) This follows from Lemma 3.5.

(4) Let $a \in L(G)$ and $x, y, z \in G$. Clearly, [x, y, z] = [c, z], where c = [x, y]. Therefore

$$[a, c] = [a, x, y][a, y, x]^{-1}$$

and

$$[[a, c], z] = [a, x, y, z][a, y, x, z]^{-1}$$

Similarly

$$[[a, z], c] = [a, z, x, y][a, z, y, x]^{-1}.$$

Therefore

$$[a, [x, y, z]] = [[a, c], z][[a, z], c]^{-1}$$
$$= [a, x, y, z][a, y, x, z]^{-1}[a, z, y, x][a, z, x, y]^{-1}.$$

The statement is proved.

Remark 3.7 Let M be a normal subgroup of G such that [M, G] is contained in $C_G(\Gamma_2 G)$, then $M \leq L(G)$, since [[m, x], [x, y]] = 1 for all $x, y \in G$, $m \in M$. In particular, $S_3G \subseteq L(G)$ and $Z_3G \leq L(G)$.

Lemma 3.8 Let $\pi = (1, 2, 3) \in A_3$. Let $a \in \pi G$ and let $N = \langle a^G \rangle$. Then:

- (1) $[a, x, y] \in Z(N)$ for all $x, y \in G$.
- (2) $a \in S_4G$, $a \in L(G)$, $a \in C_G(\Gamma_3G)$.
- (3) [ag, x, y] = [a, x, y][a, x, g, y][g, x, y] for all $x, y, g \in G$.
- (4) A_3G is a characteristic subgroup of G.

Proof — (1) For $a \in \pi G$:

$$[a, x, y, z] = [a, z, x, y] = [a, y, z, x]$$

for all $x, y, z \in G$. For z = a, [a, x, y, a] = 1 and $[a, x, y] \in Z(N)$ for all $x, y \in G$, by Remark 3.2. This proves (1).

(2) By expanding the identity

$$[a, x, yt, z] = [a, z, x, yt],$$

we obtain the extended symmetry

$$[a, x, y, t, z] = [a, z, x, y, t]$$

for all x, y, t \in G. Hence $a \in \tau G$, where $\tau = (1, 2, 3, 4) \in S_4$. Since $\langle \pi, \tau \rangle = S_4$, $a \in S_4 G$. Since $S_2 G = C_G(\Gamma_2 G)$ it follows from the remark above that $S_3 G \subseteq L(G)$. Let d = [a, x]. Then $d \in S_3 G$ and

$$[d, [x, y]] = [d, x, y][d, y, x]^{-1} = [a, x, x, y][a, x, y, x]^{-1} = 1,$$

since

$$[\mathfrak{a}, \mathfrak{x}, \mathfrak{x}, \mathfrak{y}] = [\mathfrak{a}, \mathfrak{x}, \mathfrak{y}, \mathfrak{x}],$$

when $a \in A_3G$. Therefore [[a, x], [x, y]] = 1 for all $x, y \in G$. Since

$$[a, [x, y, z]] = [a, x, y, z][a, y, x, z]^{-1}[a, z, y, x][a, z, x, y]^{-1}$$

by Lemma 3.6, it follows that [a,[x, y, z]] = 1, since [a, x, y, z] = [a, z, x, y]and [a, y, x, z] = [a, z, y, x] for all $x, y, z \in G$. Therefore $a \in C_G(\Gamma_3 G)$. Thus (2) is established.

(3) [ag, x] = [a, x][a, x, g][g, x] and [ag, x, y] = [a, x, y][a, x, g, y][g, x, y], since $[a, x, y] \in Z(N)$ and [[a, x], [y, x]] = 1, since $a \in L(G)$.

(4) Follows from (3).

Lemma 3.9 Let $\pi = (1,4)(2,3) \in S_4$, $a \in \pi G$ and $N = \langle a^G \rangle$. Then $\pi G \subseteq S_5 G$.

PROOF — For $a \in \pi G$, [a, x, y, z, w] = [a, w, z, y, x] for all $x, y, z, w \in G$. In particular, [a, x, y, z, a] = 1 and $[a, x, y, z] \in C_G(N)$ for all $x, y, z \in G$ by Remark 3.2. By expanding the defining relation, we get the extended relation

$$[\mathfrak{a}, \mathfrak{x}, \mathfrak{y}, \mathfrak{t}, \mathfrak{z}, \mathfrak{w}] = [\mathfrak{a}, \mathfrak{w}, \mathfrak{z}, \mathfrak{y}, \mathfrak{t}, \mathfrak{x}]$$

on replacing y by yt. Therefore $a \in \gamma G$, where $\gamma = (1,5)(2,3,4) \in S_5$. Since $\langle \pi, \gamma \rangle = S_5$ the result follows.

4 Permutation extension and commutator expansion

Let $\pi \in S_n$ and let

$$\pi: (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \longrightarrow (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n).$$

Let $\pi : x_r \mapsto y_k$. We view π as a positional permutation and write $\pi : r \mapsto k$. If a new element $t \in G$ is placed immediately after x_r on both sides, we obtain the extended permutation:

$$\pi_{\mathbf{r}}: (\mathbf{x}_1, \ldots, \mathbf{x}_r, \mathbf{t}, \mathbf{x}_{r+1}, \ldots, \mathbf{x}_n) \to (\mathbf{y}_1, \ldots, \mathbf{y}_{k-1}, \mathbf{x}_r, \mathbf{t}, \mathbf{y}_{k+1}, \ldots, \mathbf{y}_n).$$

Using the natural embedding of π into S_{n+1} , we obtain a subgroup $E(\pi)$ of S_{n+1} , where

$$\mathsf{E}(\pi) = \langle \pi, \pi_1, \ldots, \pi_n \rangle.$$

 $E(\pi)$ is the extension group defined by π .

Example Let $\pi = (1,2)(4,5)(3) \in S_5$. Then $\pi_1 = (1,2,3)(5,6) = \pi_2^{-1}$, $\pi_3 = (1,2)(5,6)(4)$, $\pi_4 = (1,2)(4,5,6)(3) = \pi_5^{-1}$ and thus $E(\pi)$ is the direct product of 2 copies of S_3 .

We require some further notation on commutator expansions. Let N be a normal subgroup of G. The series of normal subgroups defined inductively by: $N_0 = N$, $N_{i+1} = [N_i, G]$ for i > 0 is a decreasing lower central G-series in N. Let M and N be normal subgroups of G and let $K = K^{(0)} = [M, N]$. For r > 0,

$$\mathsf{K}^{(\mathsf{r})} = \prod_{\mathfrak{i}+\mathfrak{j}=\mathfrak{r}} [\mathsf{M}_{\mathfrak{i}},\mathsf{N}_{\mathfrak{j}}].$$

The series defined by $K^{\left(r\right) }$ is also a decreasing lower central G-series in G, since

 $[M_i,N_j,G] \leqslant [M_{i+1},N_i][M_i,N_{j+1}]$

by the Three Subgroup Lemma. Thus $K^{(r+1)} \leq K^{(r)}$.

Lemma 4.1 Let $R_r = [M, N_r][M_r, N]$, r > 3. Then $K^{(r)} = R_r C^{(r-2)}$, where $C = [M_1, N_1]$.

PROOF — Let $M_1 = A$ and $N_1 = B$, then C = [A, B]. Let i + j = r, i, j > 0. Then

$$[\mathsf{M}_{i},\mathsf{N}_{j}] = [\mathsf{A}_{i-1},\mathsf{B}_{j-1}] \leqslant \mathsf{C}^{(r-2)}$$

and so $K^{(r)} = R_r C^{(r-2)}$.

Lemma 4.2 Let N be a normal subgroup of G and let K = [N, N]. When $[N, N_{r+1}] = 1$ and $K^{(r)} \leq Z(G)$, then $K^{(r+1)} = 1$.

PROOF — Since $[N, N_{r+1}] = 1$, the leading term of the product defining $K^{(r+1)}$ is $[N_1, N_r]$. K^r has leading term $[N, N_r]$. Let [a, b] in $[N, N_r] \leq Z(G)$. Then [a, b, g] = 1 for all $g \in G$. Since [[g, a], [g, b]] belongs to $[N_r, N_{r+1}] = 1$, using C(2), it follows that [g, a, b] = 1. Thus $[g, b, a] \in [N_{r+1}, N] = 1$ for all $g, b, a \in G$ and so $[N_1, N_r] = 1$.

Inductively, using this argument we conclude that every term in $K^{(r+1)}$ is trivial. $\hfill \Box$

Theorem 4.3 Let $[N, N_n] = 1$ and let $K^{(n)} = K^{(n+1)}$, then $K^{(n)} = 1$, where K = [N, N].

PROOF — Suppose not. There exists an integer 0 < r < n, such that $K^{(r)} = K^{(r+1)} \neq K^{(r+2)}$. Since

$$[K^{(r)}, G] = [K^{(r+1)}, G] \leq K^{(r+2)},$$

it follows that $K^{(r)} \leq Z(G) \mod K^{(r+2)}$ and hence $K^{(r+1)} \leq K^{r+2}$, by Lemma 4.2. So $K^{(r)} = K^{(r+1)} = K^{(r+2)}$, a contradiction.

We now establish some results on commutator extensions.

Lemma 4.4 Let M be a normal subgroup of G. Let $u, v \in M$. Let

 $\mathfrak{u}_k = [\mathfrak{u}, \mathfrak{x}_1, \mathfrak{x}_2, \dots, \mathfrak{x}_k]$ and $\mathfrak{v}_k = [\mathfrak{v}, \mathfrak{x}_1, \mathfrak{x}_2, \dots, \mathfrak{x}_k],$

where $x_i \in G$ and $k \ge 1$. Then $[uv, x_1, x_2, ..., x_k] \equiv u_k v_k \mod B^{(k)}$ for all k, where B = [M, M].

Proof — For k = 1

$$[uv, x_1] = [u, x_1]^{v}[v, x_1] = u_1v_1 \mod [M_1, M] = B^{(1)}.$$

Assume the result is true for r = k - 1 Then

$$[uv, x_1, x_2, \ldots, x_r] = abc,$$

where $a = u_r$, $b = v_r$ and $c \in B^{(r)}$. Let $d = x_{r+1}$. Then

$$[abc, d] = [a, d]^{bc}[b, d]^{c}[c, d] \equiv [a, d][b, d] \mod B^{(r+1)}$$
$$\equiv u_{r+1}v_{r+1} \mod B^{(r+1)}$$

and the result follows by induction.

Corollary 4.5 Let $a \in G$ and let $H = [a, G] = \langle [a, g], \forall g \in G \rangle$. Let C = [H, H] and $x_1, x_2, \ldots, x_n, t \in G$. Then

$$[\mathfrak{a}, \mathfrak{x}_1 \mathfrak{t}, \mathfrak{x}_2, \dots, \mathfrak{x}_n] \equiv \mathfrak{u}_n \mathfrak{v}_n \mathfrak{w}_n \mod \mathbb{C}^{(n-1)},$$

where

$$u_{n} = [a, t, x_{2}, \dots, x_{n}], \quad v_{n} = [a, x_{1}, x_{2}, \dots, x_{n}]$$

and $w_{n} = [a, x_{1}, t, x_{2}, \dots, x_{n}].$

PROOF — Since $[a, x_1t] = u_1v_1w_1$, where $u_1 = [a, t]$, $v_1 = [a, x_1]$, $w_1 = [a, x_1, t]$, the result follows from Lemma 4.4, by replacing u by u_1 and v by v_1w_1 and replacing M by H.

Theorem 4.6 Let $a \in G$, H = [a, G], C = [H, H] and $C^{(n-1)} = 1$. If $a \in \pi G$, then $a \in E(\pi)G$.

PROOF — Let $b = [a, z_1, z_2, ..., z_r] \in H_{r-1}$, $z_i \in G$. Let [b, G] = B. Then $[B, B]^{(n-r)} \leq C^{(n+r-2)} = 1$ for $r \geq 1$. Let π map $(x_1, x_2, ..., x_n)$ to $(y_1, y_2, ..., y_n)$. Let $x_1 \pi = y_j$, where $j \leq i$. Then

$$[a, x_1, x_2, \dots, x_n] = [a, y_1, y_2, \dots, y_{j-1}, x_1, y_{j+1}, \dots, y_n]$$

and hence $a \in \pi_1 G$. Replacing x_1 by $x_1 t$ on both sides we obtain

$$[a, x_1 t, x_2, \ldots, x_n] = u_n v_n w_n,$$

by Corollary 4.5, where $u_n = [a, t, x_1, x_2, ..., x_n]$, $v_n = [a, x_1, x_2, ..., x_n]$ and $w_n = [a, x_1, t, x_2, ..., x_n]$.

Similarly, the right-hand side becomes $\overline{u}_n \overline{v}_n \overline{w}_n$, where

$$\overline{u}_{n} = [a, y_{1}, y_{2}, \dots, y_{j-1}, t, x_{1}, y_{j+1}, \dots, y_{n}],$$

$$\overline{v}_{n} = [a, y_{1}, y_{2}, \dots, y_{j-1}, x_{1}, y_{j+1}, \dots, y_{n}] \text{ and}$$

$$\overline{w}_{n} = [a, y_{1}, y_{2}, \dots, y_{j-1}, x_{1}, t, y_{j+1}, \dots, y_{n}].$$

Since $u_n = \overline{u}_n$, $v_n = \overline{v}_n$ for $a \in \pi G$, it follows that

$$[a, x_1, t, x_2, \dots, x_n] = [a, y_1, y_2, \dots, y_{j-1}, x_1, t, y_{j+1}, \dots, y_n]$$

and hence $a \in \pi_1 G$.

This argument shows that when $x_r \pi = y_k$, r < k, then $a \in \pi_r G$. When k < r, then $a \in \sigma_k G$, where $\sigma = \pi^{-1}$ and $\sigma_k = \pi_r^{-1}$.

5 Properties of $A_{n+1}(G)$

We have noted earlier that the commutator [a, [b, c]] is a product of eight simple commutators. For $a \in L(G)$ this reduces to the product of [a, b, c] and $[a, c, b]^{-1}$, $a, b, c \in G$.

Let $x_1, x_2, ..., x_n$ be a sequence of elements belonging to a group G. Let $a \in G$. We make the following definitions:

$$a\delta(x_1, x_2) = [a, x_1, x_2][a, x_2, x_1]^{-1},$$

for $2 \leq i \leq n$,

$$a\delta_{i+1}(x_1, x_2, \dots, x_{i+1}) = [a\delta(x_1, x_2, \dots, x_i), x_{i+1}] \{ [a, x_{i+1}]\delta(x_1, \dots, x_i) \}^{-1}.$$

For example:

$$\begin{split} a\delta_3(x, y, z) &= [a\delta_2(x, y), z]\{[a, z]\delta(x, y)\}^{-1} \\ &= [[a, x, y][a, y, x]^{-1}, z]\{[a, z, x, y][a, z, y, x]\}^{-1} \\ &\equiv [a, x, y, z][a, y, x, z]^{-1}[a, z, y, x][a, z, x, y]^{-1} \mod [\mathsf{H}_2, \mathsf{H}_1] \leqslant \mathsf{C}^{(3)}, \end{split}$$

where [a, G] = H and C = [H, H]. Thus, if $a \in A_4(G)$ and $C^{(3)} = 1$, then

$$[\mathfrak{a},[\mathfrak{x},\mathfrak{y},\mathfrak{z}]]=\mathfrak{a}\delta(\mathfrak{x},\mathfrak{y},\mathfrak{z})$$

is a product of 4 simple commutators of alternating sign. The result in this case is a consequence of the following theorem.

Theorem 5.1 Let $a \in A_{n+1}(G)$, $n \ge 2$. Let $N = \langle a^G \rangle$ and K = [N, N]. Then:

- (1) $K^{(n)} = 1$.
- (2) $[N, \Gamma_{n+1}(G)] = 1.$
- (3) $[a, [x_1, x_2, \ldots, x_n]] = a\delta(x_1, x_2, \ldots, x_n).$
- (4) $[ag, x_1, x_2, ..., x_n] =$ = $[a, x_1, x_2, ..., x_n][a, x_1, g, x_2, ..., x_n][g, x_1, x_2, ..., x_n]$ for all $x_i, g \in G$.

PROOF — For n = 2 this result is contained in Lemma 3.8. We can assume that (i) $aZ \in A_n(G/Z(G))$ and (ii) $[a, g] \in A_n(G)$ for all $g \in G$.

(1) Since the permutation $(1, n+1)(2, n) \in A_{n+1}$, it follows that

$$[a, x_1, x_2, \dots, x_n, a] = 1$$

and thus $[N, N_n] = 1$. Hence we can assume that $K^{(n-1)} \leq Z(G)$. So for r = n - 1, $[N, N_{r+1}] = 1$ and $K^{(n-1)} \leq Z(G)$, and therefore $K^{(r+1)} = K^{(n)} = 1$ by Lemma 4.2. (2) By (i) and (ii) we can further assume that $[N,\Gamma_n(G)]\leqslant Z(G)$ and $[N_1,\Gamma_n(G)]=1.$ Therefore

$$[\Gamma_{n+1}(G), N] = [[\Gamma_{n}(G), G], N] \leq [[N, \Gamma_{n}(G)], G][N_{1}, \Gamma_{n}(G)] = 1$$

(3) Let $b = [x_1, x_2, ..., x_{n-1}]$ and $c = x_n$. Then

$$[x_1, x_2, \ldots, x_n] = [b, c] \in \Gamma_n(G)$$

and

$$[a, [x_1, x_2, \dots, x_n]] = [a, [b, c]] \in \Gamma_{n+1}(G).$$

Using (ii) we see that a, b, c satisfy the conditions of Lemma 3.5 and so

$$[a, [b, c]] = [a, b, c][a, c, b]^{-1}.$$

By (i),

$$[\mathfrak{a},\mathfrak{b}] = [\mathfrak{a},[\mathfrak{x}_1,\mathfrak{x}_2,\ldots,\mathfrak{x}_{n-1}]] \equiv \mathfrak{a}\delta(\mathfrak{x}_1,\mathfrak{x}_2,\ldots,\mathfrak{x}_{n-1}) \mod \mathsf{Z}(\mathsf{G})$$

and hence $[a, b, c] = [a\delta(x_1, x_2, ..., x_{n-1}), x_n] = 1$, since $K^{(n)} = 1$. By (ii),

$$[\mathfrak{a},\mathfrak{c},\mathfrak{b}]=[\mathfrak{a},\mathfrak{x}_n]\delta(\mathfrak{x}_1,\mathfrak{x}_2,\ldots,\mathfrak{x}_{n-1}).$$

Therefore

$$[a, [x_1, x_2, \dots, x_n]]$$

= $[a\delta(x_1, x_2, \dots, x_{n-1}), x_n]\{[a, x_n]\delta(x_1, x_2, \dots, x_{n-1})\}^{-1}$
= $a\delta(x_1, x_2, \dots, x_n).$

This proves (3).

(4) By (i), we may assume that

$$[ag, x_1, x_2, \dots, x_{n-1}] \equiv uvw \mod Z(G),$$

where $u = [a, x_1, x_2, ..., x_{n-1}]$, $v = [a, x_1, g, x_2, ..., x_{n-1}]$ and $w = [g, x_1, x_2, ..., x_{n-1}]$. Since $[a, x_1, x_2, ..., x_{n-2}] \in A_3(G) \leq C_G(\Gamma_3(G))$, it follows that

$$[ag, x_1, x_2, \dots, x_n] = [u, x_n][v, x_n][w, x_n]$$

and the result is established.

6 Properties of $E(\pi)G$ for $\pi \in S_n$

In this section we consider properties of $E(\pi)G$, for $\pi \in S_n$. In particular, the permutations π for which 1 and n are co-cyclic in π . For every $\pi \in S_n$, the group $E(\pi)$ is defined as follows. Let

$$\pi\colon (\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n)\longrightarrow (\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_n)$$

and let $x_r \pi = y_k$. We will describe this as $r\pi = k$ and $r = k\sigma$ where $\sigma = \pi^{-1}$. We describe $E(\pi)$ using this notation. Let $1 \le r \le n$ and define π_r in the following way:

$$r\pi_r = k,$$
$$(r+1)\pi_r = k+1,$$

for $1 \leq i \leq r-1$,

$$i\pi_r = \begin{cases} i\pi & \text{if } i\pi < k \\ i\pi + 1 & \text{if } i\pi > k \end{cases}$$

for $r + 1 \leq j \leq n$,

$$(j+1)\pi_r = \begin{cases} j\pi & \text{if } j\pi < k \\ j\pi + 1 & \text{if } j\pi > k \end{cases}$$

Here $\sigma_k = \pi_r^{-1}$, where $\sigma = \pi^{-1}$. As outlined earlier

$$\mathsf{E}(\pi) = \langle \pi, \pi_1, \ldots, \pi_n \rangle \leqslant \mathsf{S}_{n+1}.$$

For example, let $1\pi = n$. Then $1\pi_1 = n$, $2\pi_1 = n+1$ and for $2 \le j < n$,

$$(j+1)\pi_1 = j\pi,$$
 $(n+1)\pi_1 = n\pi,$

 $\alpha_1 = \pi_1 \pi^{-1} = (1) \ (n+1, n, \dots, 3, 2) \text{ and } \langle \pi, \pi_1 \rangle = S_{n+1}.$

Let $\pi = \gamma \rho$, where $\gamma = (1, a_1, \dots, a_k)$, and $1\pi = a_1$, $a_i\pi = a_{i+1}$ for $2 \leq i \leq k-1$, $a_k\pi = 1$. In Theorem 6.5 we show that $A_{n+1}(G) \leq E(\pi)$, when 1 and n are co-cyclic in π and so belong to the set $\{1, a_1, \dots, a_k\}$. Throughout this section, $r\pi = n = s\sigma$, $\sigma = \pi^{-1}$. By the example given above, we can assume 1 < r, s < n and hence $k \geq 4$.

Lemma 6.1 Let $\alpha_r = \pi_r \pi^{-1}$ and $\beta_s = \sigma_s \sigma^{-1}$. Let $S = Stab(n+1) \leq S_{n+1}$. Then:

- (1) α_r and β_s are cycles in S_{n+1} ;
- (2) $(n+1, n, s) = [\alpha_r, \beta_s]$, where r < s;
- (3) $(n, r, s) \in S$.

PROOF — $r\pi_r = r\pi = n$, $(r+1)\pi_r = n+1$. For $1 \le i \le r-1$, $i\pi_r = i\pi$, $i\alpha_r = i$. For $r+2 \le j \le n$, $(j+1)\pi_r = j\pi$, $(j+1)\alpha_r = j$. Thus

$$\alpha_{r} = (n+1, n, \dots, r+2, r+1).$$

Similarly $\beta_s = (n + 1, n, \dots, s + 2, s + 1)$. When r < s the commutator $[\alpha_r, \beta_s] = (n + 1, n, s)$. When r > s, $[\alpha_r, \beta_s] = (n + 1, r, n)$. Since $(n + 1, n, s)^{\sigma} = (n + 1, r, n)$, it follows that both belong to S_{n+1} and their product $(n, s, r) \in \text{Stab}(n + 1) = S$.

Lemma 6.2 Let x, y, z be a triple of non-zero integers \leq n. Let $x\pi = z$ and $z\pi = y$. Let x, y < z. Then:

- (1) $(z+1)\pi_x \sigma_y = z;$
- (2) when z < s, $\pi_x \pi_y \in \text{Stab}(n+1) \leq S_{n+1}$.

PROOF — (1) $(z+1)\pi_x = z\pi = y$, since $z\pi = y < x\pi = z$. Moreover, $y\sigma_y = y\sigma = z$ and so $(z+1)\pi_x\sigma_y = z$.

(2) When $z < s = n\pi$, $(n + 1)\pi_x = n\pi + 1 = s + 1$, and $(s + 1)\sigma_y = s\sigma + 1 = n + 1$. So $\pi_x \sigma_y \in \text{Stab}(n + 1)$.

Lemma 6.3 Let z be a fixed point of π . Let a, b be positive integers such that a < z < b < n, $a\pi = b$. Then:

- (1) $(z+1)\sigma_z\pi_a = z$
- (2) when z < r, the permutation $\sigma_z \pi_a \in \text{Stab}(n+1)$.

PROOF — (1) $(z+1)\sigma_z = z\sigma + 1 = z+1$ and $(z+1)\pi_a = z\pi = z$ since $a < z < a\pi = b$. Therefore $(z+1)\sigma_z\pi_a = z$.

(2) When z < r, $(n + 1)\sigma_z = n\sigma + 1 = r + 1$, since $r > z\sigma = z$. Also $(r + 1)\pi_a = r\pi + 1 = n + 1$, since $r\pi = n > a\pi$. Therefore $\sigma_z \pi_a$ belongs to Stab(n + 1).

Lemma 6.4 $E(\pi)$ is a transitive subgroup of S_{n+1} , when 1 and n are co-cyclic in π .

PROOF — Suppose not. Then there exists a positive integer *z*, such that $\{n + 1, n, ..., z + 1\}$ belong to the orbit of n + 1, but no element of $E(\pi)$ maps z + 1 to *z*. We consider two cases.

(1) *z* is *not* a fixed point of π .

Then it follows, by Lemma 6.1, that z < r, z < s, since $\alpha_r, \beta_s \in S_{n+1}$. So $z\pi = y$ and $x = z\sigma$ have the property that $\pi_x \sigma_y$ maps z + 1 to z, by Lemma 6.2.

(2) *z* is a fixed point of π .

Let γ be the cycle containing 1 and n. Then

$$z \notin \{1, a_1, \ldots, a_k\}$$
 and $1 < z < n$.

There exists a largest integer a_i such that $a_i < z$ and $z < a_{i+1}$. Let $a = a_i$, then $a\pi = b = a_{i+1}$. We can assume a < b, since if a > b then $z\sigma = z$ and $b\sigma = a > b$. Then, by Lemma 6.3, $\sigma_z \pi_a$ maps z + 1 to z. Therefore $E(\pi)$ is transitive.

Theorem 6.5 Let 1 and n belong to the same cycle in π . Then $A_{n+1} \leq E(\pi)$.

PROOF — $E(\pi)$ is a transitive group containing three cycles

$$(n+1, n, s), (n+1, r, n), (n, s, r), n \ge 5.$$

By a well-known result of Marggraf, it suffices to show that $E(\pi)$ is 2-transitive. Thus it suffices to show that S = Stab(n + 1) acts transitively on the set {1,2,...,n}. Suppose not. Then there exists *z* in {1,2,...,n} with the property that no element of S maps *z* + 1 to *z*. Then, using Lemma 6.2 (2) and Lemma 6.3 (2), we obtain the required contradiction.

Theorem 6.6 Let 1 and n be co-cyclic in $\pi \in S_n$. Let $a \in \pi G$, then $a \in E(\pi)G$.

PROOF — Let $\langle a^G \rangle = N$ and K = [N, N]. Let H = [a, G] and C = [H, H]. Then, by Theorem 4.6, it suffices to show that $C^{(n-1)} = 1$. Suppose not. Then by Theorem 6.5, $E(\pi)G \leq A_{n+1}G \mod C^{(n-1)}$. Therefore, by Theorem 5.1, $K^{(n)} \equiv 1 \mod C^{(n-1)}$ and thus

$$\mathsf{K}^{(\mathfrak{n})} \leqslant \mathsf{C}^{(\mathfrak{n}-1)} \leqslant \mathsf{K}^{(\mathfrak{n}+1)}.$$

Hence $K^{(n)} = K^{(n+1)}$ and, by Theorem 4.3, $K^{(n)} = 1 = C^{(n-1)}$.

Theorem 6.7 Let 1 and n be co-cyclic in $\pi \in S_n$. Then:

- (1) πG is contained in the first marginal subgroup of the group word $w \equiv [x_1, x_2, \dots, x_n][y_1, y_2, \dots, y_n]^{-1}$ for $x_i, y_i \in G$.
- (2) πG is contained in the first marginal subgroup of

$$\overline{w} \equiv [x_1, x_2, \dots, x_n] [y_1, y_2, \dots, y_n].$$

PROOF — (1) We are required to show that

$$[ag, x_1, x_2, \dots, x_n][ag, y_1, y_2, \dots, y_n]^{-1} = [g, x_1, x_2, \dots, x_n][g, y_1, y_2, \dots, y_n]^{-1}$$

for $g \in G$. Using Theorem 5.1 (4), it suffices to show that

$$[a, x_1, g, x_2, \dots, x_n] = [a, y_1, g, y_2, \dots, y_n].$$

When π is an odd permutation, $E(\pi) = S_{n+1}$ and the result is immediate for $a \in E(\pi)G$. When π is an even permutation, then the permutation $\mu \in A_{n+1}$, where $\mu = \tau^{-1}\pi\tau$ and $\tau = (2, 3, ..., n+1)$. In sequence μ maps:

$$(\mathbf{x}_1, \mathbf{g}, \mathbf{x}_2, \dots, \mathbf{x}_n) \to (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \mathbf{g})$$
$$\to (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n, \mathbf{g}) \to (\mathbf{y}_1, \mathbf{g}, \mathbf{y}_2, \dots, \mathbf{y}_n).$$

Since $a \in \mu G$, it follows that

$$[a, x_1, g_2, x_2, \dots, x_n] = [a, y_1, g, y_2, \dots, y_n]$$

and thus (1) is established.

(2) When
$$a \in \overline{\pi}(G)$$
, $[a, x_1, x_2, \dots, x_n] = [a, y_1, y_2, \dots, y_n]^{-1}$, where
 $\pi \colon (x_1, x_2, \dots, x_n) \to (y_1, y_2, \dots, y_n).$

In this case $[a, x_1g, x_2, ..., x_n] = [a, y_1, g, y_2, ..., y_n]^{-1}$.

Theorem 6.8 Let ρ : $(x_1, x_2, \dots, x_n) \rightarrow (x_n, x_{n-1}, \dots, x_1)$, n > 1. Then $\rho G \leq C_G(\Gamma_n G)$, when n is even, and $\overline{\rho} G \leq C_G(\Gamma_n G)$, when n is odd. **PROOF** — ρ is a product of involutions beginning with (1,n). Let $a \in \rho G$. Then, by Theorem 5.1,

$$[a, [x_1, x_2, \dots, x_n]] = a\delta(x_1, x_2, \dots, x_n).$$

In the expansion of $a\delta(x_1, x_2, ..., x_n)$, the simple commutators

$$[a, z_1, z_2, \dots, z_n]$$
 and $[a, z_n, z_{n-1}, \dots, z_1]$

occur as a pair, where $\{z_1, z_2, ..., z_n\}$ is the set $\{x_1, x_2, ..., x_n\}$. When n is even, these elements have opposite sign and $a\delta(x_1, x_2, ..., x_n) = 1$. So $[a, [x_1, x_2, ..., x_n]] = 1$. When n is odd, these elements have the same sign and thus for $a \in \overline{\rho}G$ the expansion of $a\delta(x_1, x_2, ..., x_n)$ is again equal to 1.

REFERENCES

[1] W.P. KAPPE: "Some subgroups defined by identities", *Illinois J. Math.* 47 (2003), 317–326.

Martin L. Newell School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway (Ireland) e-mail: martin.newell@nuigalway.ie