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1 Introduction

Let G be a group and let S, denote the permutation group on the
set {1,2,...,n}, n > 1. Let 1 € S, and let x = (x1,%x2,...,Xn) be
an n-tuple of elements x; € G. Let xm =y = (y1,Y2,...,Yn) be
the positional permutation, defined by 7, which takes x; € x to yx
and k = i7t. The concept of permutation extension is introduced in Sec-
tion 4. For this purpose the positional form of 7 is preferable to its
standard form.
In this paper we consider the following subsets of G:

nG={aeG: lax,x2....,xn] =0, y1,Y2,...,yn] :

for all x,y such that xmt = y}
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and

ﬁG = {(1 E G : [a/X1/X2/"-/XTL] = [0/91/92,---/911]7] :
for all x,y such that xt = y}.

For a subgroup K of Sy, we define KG = [, cx G. Clearly, nG = (m)G
and for H < K < S, the inclusion KG € HG holds.
In [1] W. Kappe proved that

R)G={aeG: [axx] =1Vx e G}
is a characteristic subgroup of G and that [a,x,y] = [a,y,x]~" for
all x,y € G. Thus R;G C G, where 7 = (1,2) € S,. More generally,
he showed that for x,z; € G the set
Bnh_2(G)={aeG:laxz,22,...,2n2,x] =1}
is a characteristic subgroup of G with the property that
[CL,X, 21,22, /ZTL—Z/y] = [019121 722w IZTL—ZIX]_1
for all x,y € G. Hence B, _»(G) C ®(G), where = (1,n) € Sy.

Here we show that G and 7tG are characteristic subgroups of G
when 1 and n belong to the same cyclic component of 7w € S, n > 2.

2 Notation

Let a,b,c be elements of a group G. Then [a,b] = a b 'ab, and
a® = ala,b] = b Tab. The following identities are used.

C(1) (i) [a,bc) =aTab® =aTa®a<abc =[q,c]la, b]¢
(i) [be,a] = [b,al®lc,al = [a,b,c]~ " [b, dllc, d]

C(2) [a®®,[c, b)) = a ®a® =[a,b,c] ' [[a,b], [a,cl]la,c,b]

C(3) For normal subgroups A, B, C of G, C(2) implies that

[A,[B,Cl] < [A,B,Cl[A, C,B]
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since [C,B] = [B, C] and [A, C] < C. This is called the Three Sub-
group Lemma.

G and Z,(G) represent the n-th term of the lower and upper
central series, respectively.

Remark 2.1 By replacing c by ¢!

more familiar Hall-Witt identity:

in identity C(2), one obtains the

[a,b,c%[c,a,bC][b,c,a’] = 1.

This can also be derived from the identity [a, b]® = [a®, b¢] noting
that
[a¢,b¢] = (la, b%][c, @, b] 1) ¥

and hence [a,b]¢" = [a,b¢][c,a,b¢]~!, which gives the Hall-Witt
identity.

3 Preliminaries

We begin with some elementary results for n < 5. These will be used
for inductive purposes later.

Lemma 3.1 Let m=(1,2) € Sy, then nG = Cg(2G).

Proor — Let a € ©G: [a,x,y] = [a,y,x] for all x,y € G. Therefore
[a,x,a] =1 = [a*,a] for all x in G and hence N = <aG> is abelian.
Using C(1), it follows that a¥* = a*¥ and thus a € Cg(I2G). Con-
versely, when a € Cg(I2G), then N is abelian and a*¥ = a¥*. Hence
by C(2) [a,x,y] = [a,y,x] for all x,y € G. O

Remark 3.2 Let a,b € G and let [b,x,a] = 1 for all x € G. Then
be Z(G/Cg(N)).

Proor — Since [b,yx] = [b, x][b, y]*, it follows that [[b,y]*, a] =1 for
all x,y € G, and hence [b,y] € Cg(N) for ally € G. O

Lemma 3.3 Let a € TG, where m = (1,2) € S,. Then:
(1) N = (a®) is abelian;

(2) G C S3G;
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(3) a? € Z3G;

(4) lag,x,yl =la,x,yl9%g,x,yl forall x,y,g € G;

(5) G is a characteristic subgroup of G;

(6) for a € G, a € G ifand only if [a, [x,yl] = [a,x,y]? forall x,y € G.

Proor — (1) Leta € @G: [a,x,y] = [(1,y,x]_1 for all x,y € G. Then
[a,%x,a] =1 =[a*,a] for all x and so N is abelian.

(2)-(3) Replacing x by xt, we obtain

la,t,ylla,x,ylla,x, t,yl = [a,y, 1 a,y,x] a,y,xt]"
and hence
la, %ty =la,y,xt " =latyx =laxty "
Therefore [a,x,t,y]2 =1 and [a,x,t,y]l = [a,y,x,t]l. Hence a € oG,
where 0 = (1,2,3) € S3. Also since [a,x,t,y] = [a,y,t,x], it fol-
lows that a € t©G, where T = (1,3) € S3. Since (t,0) = S3 and
[a,x, t,y]2 =1=1[d?,x, t,yl, (2) and (3) follow.

(4) Since
la,x,t,y] =[a,y,x,t] =[a,x,y,t],

it follows that [a,x] € Cg (I G) and
lag,x] = [a,x]?[g,x] = [g,x][a,x]9.
Therefore
lag,x,yl = [g,x,ylla,x,y]? = [a,x,y]%(g,x,yl.

(5) Follows directly from (4).

(6) Since N is abelian, using C(2) we get
(@Y%, [x,yll = [a, %, yll = [a,y,x) " [a,x,y] = [a,x,y]*.
Conversely, when [a, x,y]2 = [a, [x,y]] for all x,y € G, then

la,[a,yll =1 =[a¥,d]
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and N is abelian. Then by C(2),

[a,%,y]? = la,[x,yl] = [a,y,x] " 'a,x,y]
and thus [a, x, y] = [a,y,x]q. |

Remark 3.4 The marginal subgroup concept introduced by P. Hall
is described in [1]. For example, let

w=w(g,x,y) =Ilg,xyllg,y,x.

The first marginal subgroup of w is defined to be the set

{a e G :wl(ag,x,y) =w(g,x,y) Vg, x,y}.

This set is always a group and the proof of (4), given above, shows
that it contains 7tG. Similarly, it follows from Lemma 3.3 that G is
also contained in the first marginal subgroup of the word

z=1z2(g9,%,y) = lg, x,ylllg,x,y]*.

The elements a in G for which [q, [x,y]] = [a,x,y][a,y,x]*] for
all x,y € G are similar to the ones featured in a Lie algebra:
(x,y) = xy —yx. These group elements play a central role in our re-
sults. The following special case of identity C(2) is helpful in our
deliberations.

Lemma 3.5 Let a,b,c € G satisfy the following conditions:
(1) v = [a, cb] commutes with [b,cl;
(2) [a, [b,c]] commutes with z = [a, b][a, c].
Then [a,[b,c]l = [[a,c], [a,bl][a,b,clla,c, b=,

Proor — Let
[a,cb] =v =[a, blla, clla, ¢, b] =zla,c, bl.

Then
[a®?, [b,c]] = [a,b,c]” = [a, b, c]lveP]

by condition (2). By C(2)

[a®®, [b,c]] = [a,¢,b] ' [[a,c], [a,b]][a,b,cl.
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Therefore
[a, [b,cl] = [la,c], [a,b]][a, b, clla,c,b] .

The statement is proved. 0

Lemma 3.6 Let L(G) ={a€ G : [[a,x],[x,yl] =1,Vx,y € G}. Then
the following statements hold.

(1) L(G) is a characteristic subgroup of G.
(2) H = [a, G] is an abelian normal subgroup of G for all a € L(G).
(3) la,x,yl] = [a,x,ylla,y,x] ! forall x,y € Gand a € L(G).

(4) o, xy,2l = [a,xy,2layx 2 azyxXlazxy " for al
x,Y,z € Gand a € L(G).

Proor — (1) Let a € L(G) and x,y,z € G. Then [a,x] commutes
with

[x,yzl = [x, z][x, y*
and hence with [x,y]*. For z = a, [a,x] commutes with [x,y]* and
hence a~! € L(G). Similarly let b € L(G). Since

[ab,x] = [a,x]°[b,x],

it follows that [ab, x] commutes with [x,y] for all x,y € G.

(2) Let a € L(G) and x,y € G. Since [a, ax] commutes with [ax,y],
it also commutes with [a, y]*. Thus H is an abelian normal subgroup
of G.

(3) This follows from Lemma 3.5.

(4) Let a € L(G) and x,y,z € G. Clearly, [x,y,z] = [c,z|, where
¢ = [x,yl. Therefore

la,c] = [a,x,y][a,y,x]*]

and

e, cl, 2] = [a,%y,2la,y,x2 .

Similarly

lla,z], c] =la,z x,ylla, z,y,x]q .
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Therefore
[a, [x,y,2]] = [[a,cl,zll[a,z],c] !
= [a,%,vy,2la,y,%x,2 'a,zy,xllazxyl .
The statement is proved. 0

Remark 3.7 Let M be a normal subgroup of G such that [M, G] is
contained in Cg(IG), then M < L(G), since [[m,x], [x,yl] = 1 for
all x,y € G, m € M. In particular, S3G C L(G) and Z3G < L(G).

Lemma 3.8 Let m=(1,2,3) € A3. Let a € nG and let N = (a®). Then:
(1) [a,x,y]l € Z(N) for all x,y € G.
(2) a€854G, a€L(G), ae Cg(I3G).
(3) lag,x,yl = la,x,ylla,x, g,yllg,x,yl forall x,y,g € G.
(4) A3G is a characteristic subgroup of G.

Proor — (1) For a € nG:
la,x,y,z] =[a,z,x,y] =[a,y,z,x]

for all x,y,z € G. For z = q, [a,x,y,a] = 1 and [a,x,y] € Z(N) for
all x,y € G, by Remark 3.2. This proves (1).

(2) By expanding the identity

la,x,yt, z] = la,z,x,yt],
we obtain the extended symmetry

l[a,x,y,t,z] = [a,z,x,y,t]
for all x,y,t € G. Hence a € G, where T = (1,2,3,4) € S,.
Since (7, T) =S4, a € S4G. Since S;G = Cg(I2G) it follows from
the remark above that S3G C L(G). Let d = [a,x]. Then d € S3G and

[d, byl = [d,xylld,y, X" =la,xxyllaxyx' =1,

since
la,x,x,y]l = [a,x,y,x],
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when a € A3G. Therefore [[a,x], [x,y]] =1 for all x,y € G. Since

[, [x,y,2]] = [a,%x,v,2[a,y,x,2 'a,zy,xa,zxy] "

by Lemma 3.6, it follows that [a,[x, y, z]] =1, since [a, x, y, z] =[a, z, x, Y]
and [a,y,x,z] =la,z,y,x] for all x,y,z € G. Therefore a € Cg(I3G).
Thus (2) is established.

(3) lag,x] = la,x]la,x, gllg,x] and [ag, x,y] = [a, x, ylla,x, g,yllg, x, yl,
since [a,x,y] € Z(N) and [[a,x], [y, x]] =1, since a € L(G).

(4) Follows from (3). O
Lemma 3.9 Lett=(1,4)(2,3)€S4, acnG and N=(aS). Then nG CS5G.

Proor — For a € 7G, [a,x,y,z, W] = [a,w,z,y,x] forall x,y,z,w € G.
In particular, [a,x,y,z,al =1and [a,x,y,z] € Cg(N) forallx,y,z € G
by Remark 3.2. By expanding the defining relation, we get the ex-
tended relation

la,x,y,t,z,w] =[a,w,z,y,t,X]

on replacing y by yt. Therefore a € yG, where vy = (1,5)(2,3,4) € Ss.
Since (7, y) = S5 the result follows. 0

4 Permutation extension and
commutator expansion

Let T € S;; and let
Tt (X]/XZ/"'fXTl) — (91,92,-- -,Un)-
Let 7t : X+ +— yyx. We view 7 as a positional permutation and write

m:7T— k. If a new element t € G is placed immediately after x; on
both sides, we obtain the extended permutation:

T (X1, 0o, X, X1, 000, Xn) = (Y1, - Yk—1, %0, 6, Yk 1, - -+, Yn)-

Using the natural embedding of m into S, i1, we obtain a sub-
group E(7) of S;,41, where

E(m) = (7,711, ..., 7).
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E(mr) is the extension group defined by m.

Example Letm = (1,2)(4,5)(3) € S5. Then m; = (1,2,3)(5,6) = ﬂ£1,
n3 = (1,2)(5,6)(4), mg = (1,2)(4,5,6)(3) = m5 ' and thus E(n) is the
direct product of 2 copies of S3.

We require some further notation on commutator expansions. Let N
be a normal subgroup of G. The series of normal subgroups defined
inductively by: No = N, Nj;1 = [Ny, G] for i > 0 is a decreasing
lower central G-series in N. Let M and N be normal subgroups of G
and let K = K(©) = [M, N]. For r > 0,

KO =TT M, Nl
it+j=r

The series defined by K() is also a decreasing lower central G-series
in G, since
[Mi, Nj, GI < [Miy1, Nil[My, Nj 1]

by the Three Subgroup Lemma. Thus K{"+1) < K(7).

Lemma 4'1 L(:‘t RT - [M/ NT}[MT/ N]/ T > 3- Then K(T) - RrC(T_Z)/
where C = [My, Nq].

ProoF — Let M7 = A and Ny = B, then C = [A,B]. Leti+j =,
i, > 0. Then
[Mi/Nj] = [Aif1,Bj,1] < C(r—Z)

and so K(") =R, C(r=2), O

Lemma 4.2 Let N be a normal subgroup of G and let K = [N, N].
When [N, Ny 1] =1 and K" < Z(G), then KU+1) =1,

Proor — Since [N,N,;1] = 1, the leading term of the product
defining K+ is [Ny, Ny]. K™ has leading term [N, N,]. Let [a,b]
in [N,N;] < Z(G). Then [a,b,g] = 1 for all g € G. Since [[g, al, [g,b]]
belongs to [N, N,4+1] = 1, using C(2), it follows that [g,a,b] = 1.
Thus [g,b,a] € [N, 1,N] =1forall g,b,a € Gand so [Ny,N;] =1.
Inductively, using this argument we conclude that every term
in K"+ is trivial. O

Theorem 4.3 Let [N,Ny] = 1 and let K = KOVHD) e KW =1,
where K = [N, N].
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ProorF — Suppose not. There exists an integer 0 < r < n, such that
K =kOr+1) £ K(r+2) Since

K™,G = KO+, g < k(r+2),

it follows that K(") < Z(G) mod K(*+2) and hence K1) < K™+2, by
Lemma 4.2. So K(") = K(r+1) = K(*+2) 3 contradiction. O

We now establish some results on commutator extensions.

Lemma 4.4 Let M be a normal subgroup of G. Let u,v € M. Let
we = [u,x1,x,..,x] and v =1[v,xg, %2, xd,

where x; € G and k > 1. Then [uv,x1,X2, ..., %K) = wvy mod BK) for
all k, where B = [M, M].

Proor — For k=1
[wv, x1] = [w,x1]V v, x1] =uwyv;  mod Mq,M] =B,
Assume the result is true for r =k — 1 Then
[uv, x1,%2,...,%r] = abg,
where a =u,, b=v, and c € B("). Let d = Xr+1. Then

[abe, d] = [a, d]P¢[b, d]¢[c,d] = [a,d][b,d] mod B(r+1)

=, 1vry1 mod BTt

and the result follows by induction. 0

Corollary 4.5 Let a € G and let H = [a,G] = ([a,gl,Vg € G).
Let C=[H,H] and x1,%2,...,%xn,t € G. Then

[alX1 tIXZI"-/Xn] = UnVnWn mOd C(n_1),

where
Un:[a/t/XZI---/Xn]z vn:[a/X1/X21---/X1’L]
and wn = [a,x1,t,%2,...,Xn).
ProoF — Since [a,x7t] = wyviwi, where u; = [a,t], vi = [a,x1],
w1 = [a,x1,t], the result follows from Lemma 4.4, by replacing u

by u; and v by viw; and replacing M by H. 0
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Theorem 4.6 Let a € G, H = [a,G], C = [H,H] and C("1) =1,
If a € G, then a € E(7)G.

ProoF — Letb = [a,z1,22,...,2z+] € Hy_1, z; € G. Let [b,G] = B.
Then [B,B]("=") < Cm7=2) — 1 forr > 1. Let m map (x1,%2,...,%n)
to (Yy1,92,...,Yn). Let xyt = y;, where j < i. Then

[a/X11X2/ .. -/XTL] - [a/y1IUZ/ .. -;Uj—1/X1;Uj+1; .. -/\_—Jn]
and hence a € 71 G. Replacing x7 by x1t on both sides we obtain
[(1, x1t,x2,... /XTL] = UnVnWn,

by Corollary 4.5, where un=I[a, t,x1,%2,...,xnl, v =[a,x1,%2, ..., %Xn]
and wn = [a,x1,t,%2,...,Xn].
Similarly, the right-hand side becomes u,, v, Wy, where

ﬁn - [arUbUZ,- --/Uj—lxt/XhUjJr]r---/Un]/
vTIZ[0—/1.:,1/1;}2/'--/yj—‘lrqufy]'—k]/''-/yn] and

Wn =[a,Y1,Y2,-- -, Yj—1, X1, 5, Yj4 1, -, Ynl

Since un = Un, Vn = Vn, for a € ntG, it follows that

[a/X]/t1X2/"'/Xn] — [a/ybyzn--;yjf1;X1;t/yj+],-~-;Un]

and hence a € 1 G.
This argument shows that when x;m = yy, v < k, then a € m;G.

When k < 1, then a € 01 G, where 0 = ! and oy = T(r_]. O

5 Properties of A, 1(G)

We have noted earlier that the commutator [a, [b, c]] is a product of
eight simple commutators. For a € L(G) this reduces to the product
of [a,b,c] and [a,c,b]" ", a,b,¢c € G.

Let x1,%x2,...,xn be a sequence of elements belonging to a group G.
Let a € G. We make the following definitions:

ad(x1,x2) = la,x1,x2]la,x2, %1177,
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for2<ig<n,
adip1(x1,%2, -+, %i41)
= [ad(x1,%2, ..., i), Xip1l{la, xi118(x1, ..., xg)} T
For example:
ad3(x,y,2) = [ad2(x,y), 2{[a, 2I5(x, y)} !

= [[a,x,y][a,y,x]*],z]{[a,z,x,y][a,z,y,x]}*]

= [a,%,y,2a,y,% 2 'a,z,y,x][a,z%yl~" mod [Hy, Hi] < CB),

where [a,G] = H and C = [H, H]. Thus, if a € A4(G) and C3) =1,
then
[a, [x,y,zl] = ad(x,y,z)

is a product of 4 simple commutators of alternating sign. The result
in this case is a consequence of the following theorem.

Theorem 5.1 Let a € Ay 1(G), n > 2. Let N = (a®) and K = [N, N].
Then:

(1) KM =1.

(2) IN, Ty 1 (G =1.

(3) la, [x1,%2,...,xnll = ad(x1,x2,...,%Xn).

(4) lag,x1,%2,...,xXn]l =
=la,x1,%x2,...,xnlla,x1,9,%2,...,xnllg,X1,%X2, ..., Xn]

forall xi, g € G.

Proor — For n = 2 this result is contained in Lemma 3.8. We can
assume that (i) aZ € An(G/Z(G)) and (ii) [a, g] € An(G) forall g € G.

(1) Since the permutation (1,n+1)(2,n) € A4, it follows that
[G-/X]/XZI' e Xny CI.] = ]

and thus [N,Ny,] = 1. Hence we can assume that K(™=1) < Z(G).
Soforr=n—1,[N,N,. 1] =1 and K(M=1) < 7(G), and therefore
Kr+1) = K(m) =1 by Lemma 4.2.
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(2) By (i) and (ii) we can further assume that [N, I, (G)] < Z(G) and
[IN1,Th(G)] = 1. Therefore

[Mn+1(G),N] =[N (G), GI, NI < [IN, Tn(G)], GI[Ny, Tn (G)] =1

(3) Letb=I[x1,x2,...,xn_1] and ¢ = xn,. Then
[X11x2/---zxn] = [b/C] S rn(G)
and
la, [x1,%2,...,xn]l = [a,[b,c]] € Th41(G).

Using (ii) we see that a, b, c satisfy the conditions of Lemma 3.5 and
SO
[a, b, c]] = [a,b,clla,c,b] .

By (i),
la,b]l = [a,[x1,%x2,...,%Xn—1]] = abd(x1,%2,...,Xn—1) mod Z(G)

and hence [a,b,c] = [ad(x1,%X2,...,Xn_1),%Xn] = 1, since KM = 1.
By (ii),
[a,c, bl = [a,xnld(x1,%2,..., Xn_1).

Therefore

la, [x1,%2,...,xnl]

= [ad(x1,%X2, .+, Xn—1), xnl{la, xn)8(x1, X2, ., Xn—1)} ]
=ad(x1,X2,...,Xn).

This proves (3).
(4) By (i), we may assume that

lag,x1,X2,...,Xn_1] =uvw mod Z(G),
where u = [a,x1,X2,...,Xn_1], v = [a,X1,9,X2,...,Xn_1] and w =
[g,X1,%X2,.+.,Xn_1]. Since [a,x1,%X2,...,xn_2] € A3(G) < Cg(T3(G)),
it follows that

[0-9/ X] /X2/ ey XTI] = [u/ X‘I’l] [vl XTI] [W/ X‘I’l]

and the result is established. O
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6 Properties of E(71)G for T € S,

In this section we consider properties of E(7)G, for m € Sy. In par-
ticular, the permutations 7t for which 1 and n are co-cyclic in 7. For
every 7 € Sy, the group E(7) is defined as follows. Let

TU: (X1/X2/"-/XT1) — (ULUZ/---,Un)

and let x,m = yx. We will describe this as vt = k and r = ko where
o = '. We describe E(n) using this notation. Let 1 < r < n and
define 7, in the following way:

7T = K,
(r+1Dm =k+1,

for1<igr—1,

. it ifimt <k
T )i+l ifim>k

forr+1<j<n,

, in ifjm<k
1)y =
G+ D Ln+1iﬁn>k

Here oy = m L , where 0 = w'. As outlined earlier
E(m) = (m,my,...,mn) < Shyt-
For example, let 1t =n. Then 1711 =n, 2y =n+1 and for 2 <j < n,
G+ 1m =jm, (n+1)m =nm,

o« =mm ' = (1) (n+1,m,...,3,2) and (7, 711) = Spuy.

Let m =+vyp, where y = (1,ay,...,ax), and 1t = a, a;t = a1 for
2<i<k—1,axm=1.InTheorem 6.5 we show that A, ; 1(G) < E(m7),
when T and n are co-cyclic in 7t and so belong to the set {1, ay,..., ax}.
Throughout this section, 1t = n = so, = . By the example given
above, we can assume 1 <1, s < n and hence k > 4.

Lemma 6.1 Let «y =77t and s =050 . Let S=Stab(n+1) < Sy 1.
Then:
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(1) o and B are cycles in Sy 1;
(2) Mm+1,mn,s) = [otr, Bs), where T < s;
(3) (n,7,8) €S,

PROOF — 1ty =rn=mn, (r+ 1), =n+1.For1 <i<r—1,in. =1im,
iy =1 Forr+2<j<n, G+ 1) =jm, (j+ 1)y =j. Thus

or=(Mn+1,n,...,r+2,7r+1).

Similarly s = (n+1,n,...,54+2,s+1). When r < s the commuta-

tor [or, Bs] = (n+1,1,s). When r > s, [, Bs] = (n+1,7,n). Since
(m+1,1n,5)° = (n+1,7r,n), it follows that both belong to S;, ;1 and
their product (n,s,r) € Stab(n+1) = S. O

Lemma 6.2 Let x,y,z be a triple of non-zero integers < n. Let xm = z
and zmt = y. Let x,y < z. Then:

(1) (z+1)7mx0oy =2
(2) when z <'s, mymy € Stab(n+1) < Sy 7.

ProoF — (1) (z+ 1)y = zm =y, since zm =y < x7m = z. Moreover,
yoy =yo =zand so (z+ 1)moy = z.

(2) Whenz<s=mnm n+1)ny =nn+1=s+1,and (s+1)oy =
so+1=mn+1.5S0 myoy € Stab(n +1). a

Lemma 6.3 Let z be a fixed point of 7. Let a,b be positive integers such
that a <z<b <mn, ant=Db. Then:

(1) (z+1)omtq =2
(2) when z < r, the permutation o,mg € Stab(n+1).

ProoF — (1) (z+ 1o, = zo0+1 =z+1and (z+ 1)1q = zm = 2z
since a < z < ant = b. Therefore (z+ 1)o7t = z.

(2) Whenz <1, (n+1)o, =no+1=r+1, since r > zo = z. Also
(r+1Dmg = 1t+1 =n+1, since vt = n > an. Therefore 0,7y
belongs to Stab(n + 1). O

Lemma 6.4 E(m) is a transitive subgroup of Sn1, when 1 and n are
co-cyclic in .
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ProorF — Suppose not. Then there exists a positive integer z, such
that {(n+1,n,...,z+ 1} belong to the orbit of n + 1, but no element
of E(nr) maps z+ 1 to z. We consider two cases.

(1) z is not a fixed point of 7.

Then it follows, by Lemma 6.1, that z < 1,z < s, since &y, Bs € Sn+1.
So zmt = y and x = zo have the property that myoy maps z+ 1 to z,
by Lemma 6.2.

(2) z is a fixed point of .
Let v be the cycle containing 1 and n. Then

z&{l,a7,...,ax;} and 1 <z<n.

There exists a largest integer a; such that a; < z and z < ajq7.
Let a = a4, then am =b = aj, 1. We can assume a < b, since if a > b
then zo = z and bo = a > b. Then, by Lemma 6.3, 0,74 maps z + 1
to z. Therefore E(7) is transitive. O

Theorem 6.5 Let 1 and n belong to the same cycle in 7. Then A1 <E(7).

Proor — E(7) is a transitive group containing three cycles
(m+1,n,s), (n+1,7,n), (n,s,7), n=>5.

By a well-known result of Marggraf, it suffices to show that E(m)
is 2-transitive. Thus it suffices to show that S = Stab(n + 1) acts
transitively on the set {1,2,...,n}. Suppose not. Then there exists z
in {1,2,...,n} with the property that no element of S maps z+1 to z.
Then, using Lemma 6.2 (2) and Lemma 6.3 (2), we obtain the required
contradiction. O

Theorem 6.6 Let 1 and n be co-cyclic in m € Sy. Let a € G, then
ac E(n)G.

Proor — Let <aG> =Nand K =[N, N].LetH = [a, G] and C = [H, HJ.
Then, by Theorem 4.6, it suffices to show that C{™"~1) = 1. Suppose
not. Then by Theorem 6.5, E(n)G < A;;;41G mod C(m=1)_ Therefore,
by Theorem 5.1, K™ = 1 mod C(™~1) and thus

K < cn=1) ¢ K1),

Hence K(M) = K(n+1) and, by Theorem 4.3, KW =1 =cn-1), O
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Theorem 6.7 Let 1 and n be co-cyclic in 7w € Sy,. Then:

(1) G is contained in the first marginal subgroup of the group word
W= [x1,%2, -, Xn)[Y1,Y2,-- -, Yynl ! for xi,y; € G.

(2) ©G is contained in the first marginal subgroup of

WE [X1/X2/--'/Xn][y]IHZ/-'-/yn]-

ProOF — (1) We are required to show that
lag,x1,%2,...,x)[ag, y1,y2,...,ynl "
=[g,x1,%X2, ..., xnll9,Y1,Y2, ..., yn] !
for g € G. Using Theorem 5.1 (4), it suffices to show that
la,x1,9,%2,...,xn) =[a,Y1,9,Y2,...,Ynl

When 7t is an odd permutation, E(mr) = Sy, and the result is im-
mediate for a € E(nm)G. When 7 is an even permutation, then the
permutation u € A, 1, where p = v 'nrand 1= (2,3,...,n+1). In
sequence | maps:

(x1,9,%X2, .-, Xn) = (X1,X2,.-+,%Xn,9)
= (Y1,92,---,Yn, 9) = (Y1,9,Y2,---, Yn).
Since a € uG, it follows that
la,x1,92,%2,---,xn] = [0, Y1,9,Y2,---,Yn]
and thus (1) is established.
(2) When a € T(G), [a,x1,X2,...,Xn] = [a,yhyz,...,yn]*], where
e (X1,%2,-+-,%n) = (Y1,Y2,---,Yn).

In this case [a,%1g,X2,...,Xn] = [a,Y1,9,Y2,...,ynl . O

Theorem 6.8 Let p : (xX1,%X2,...,%Xn) — (Xn, Xn—1,---,%1), 1 > 1.
Then pG < Cg(ThG), when n is even, and pG < Cg(ThG), when n is
odd.
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PrRoOF — p is a product of involutions beginning with (1,n).
Let a € pG. Then, by Theorem 5.1,

la, [x1,%2,...,xnl] = abd(x1,%2,...,%Xn).
In the expansion of ad(xy,x2,...,xn), the simple commutators
la,z1,22,...,zn] and [a,zn,Zn—1,-..,21]
occur as a pair, where {z1,z5,...,zn}is the set {x1,x2,...,xn}. Whenn
is even, these elements have opposite sign and ad(x1,x2,...,xn)=1.
So [a,[x1,%x2,...,xn]] = 1. When n is odd, these elements have the

same sign and thus for a € pG the expansion of ad(x1,x2,...,xn) is
again equal to 1. 0
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