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1 Introduction

Let � be a property pertaining to subgroups of groups. The structure of
groups for which the set of all subgroups that do not have the property
� is small in some sense has been investigated for several possible choices
of � (see [3, 5] for a detailed introduction to this topic). The property
� in this context can be an absolute property (such as commutativity or
nilpotency) or an embedding property (such as the property of being a
normal or a subnormal subgroup). In the latter case, the �rst step is of
course the description of groups in which � holds for all subgroups. When
� is the property of being a normal subgroup, the situation is well known:
the non-abelian groups in which all subgroups are normal are precisely those
which can be decomposed as a direct product of Q8 (the quaternion group
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of order 8) and any periodic abelian group without elements of order 4.
Groups in which every non-abelian subgroup is normal were considered by
Romalis and Sesekin [7{9], who proved that a locally soluble group with this
property has �nite commutator subgroup and is soluble with derived length
at most 3. The hypothesis that the group is locally soluble can be weakened
where it is locally graded (see [5]). Recall that a group is said to be locally

graded if all its �nitely generated non-trivial subgroups have at least one
�nite non-trivial homomorphic image. In particular, every locally (soluble-
by-�nite) group is locally graded. The consideration of Tarski groups shows
that a requirement of this type is necessary when dealing with this kind of
problem. More recently, Bruno and Phillips [1] have described groups in
which every subgroup is either normal or locally nilpotent. The aim of this
article is to study locally graded groups whose non-normal subgroups satisfy
certain �nite rank conditions. In particular, our main result gives a complete
classi�cation of locally graded groups with polycyclic non-normal subgroups.
Clearly, all in�nite subgroups of a periodic group with this property are
normal, and such groups have been characterized by �Cernikov [2].

Most of our notation is standard and can be found in [6].

2 Statements and Proofs

Recall that a group is said to be a Dedekind group if all its subgroups are
normal. A non-abelian Dedekind group is called hamiltonian.

Lemma 2.1. Let G be a group whose non-normal subgroups are periodic.

Then G is either abelian or periodic.

Proof. Suppose G is not periodic and let a be any element of in�nite order
of G. Then ha8i is a normal subgroup of G and G=ha8i is a Dedekind group
so that (G0)2 is contained in ha8i. It follows that a2 does not belong to
G0, and hence, [a; x] = 1 for every element x of G so that every element of
in�nite order of G lies in Z(G). If y is any element of �nite order of G, the
product ay has in�nite order and so y also belongs to Z(G). Therefore, the
group G is abelian. 2

Corollary 2.2. Let G be a locally graded group whose non-normal sub-

groups are locally �nite. Then G is either abelian or locally �nite.

Proof. Suppose G is not abelian so that it is periodic by Lemma 2.1. Assume
now by contradiction that G contains a �nitely generated in�nite subgroup
E, and let H be any subgroup of �nite index of E. Then H is not locally
�nite so that H is normal in G and G=H is a Dedekind group. If J is the
�nite residual of E, then the factor group E=J is metabelian and so �nite,
contradicting the hypothesis that G is locally graded. Therefore, G is a
locally �nite group. 2

�Cernikov [2] showed that an in�nite locally graded group whose in�nite
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subgroups are normal is either a Dedekind group or an extension of a Pr�ufer
group by a �nite Dedekind group. Later, Phillips and Wilson [5] proved
that a locally (soluble-by-�nite) non-Dedekind group satisfying the minimal
condition on non-normal subgroups is a �Cernikov group. Our next theorem
is a special case of this result. On the other hand, we include its short proof
for convenience.

Theorem 2.3. Let G be a locally graded group whose non-normal subgroups

are �Cernikov groups. Then G is either a Dedekind group or a �Cernikov

group.

Proof. By Corollary 2.2, it can be assumed that the group G is locally
�nite. Suppose G is not a �Cernikov group so that it does not satisfy the
minimal condition on abelian subgroups (see [6, Part 1, p. 98]), and hence,
contains an abelian subgroup A which is the direct product of in�nitely
many subgroups of prime order. Let x be any element of G, and A1 and A2

in�nite subgroups of A such that A1\A2 = hA1; A2i\hxi = f1g. Then both
subgroups hA1; xi and hA2; xi are normal in G, and so hxi = hA1; xi\hA2; xi
is a normal subgroup of G. Therefore, G is a Dedekind group. 2

Let X be a subgroup-closed class of groups and G a group whose non-
normal subgroups belong to X. If H is any subgroup of N = (G0)2 which
is not an X-group, then H is normal in G and G=H is a Dedekind group so
that H = N . Therefore, every proper subgroup of N belongs to X and so
N is either an X-group or a minimal non-X-group. Our next three results
provide some information on locally graded groups whose proper subgroups
are soluble and satisfy certain �niteness conditions.

Lemma 2.4. Let G be an in�nite locally graded group whose proper sub-

groups are soluble. Then G is hyperabelian.

Proof. First, suppose G is not �nitely generated so that it is locally soluble.
Then every non-abelian homomorphic image of G is not simple, and so
contains a soluble non-trivial normal subgroup. It follows that every non-
trivial homomorphic image of G has an abelian non-trivial normal subgroup,
and hence, G is hyperabelian. Now assume G is �nitely generated so that it
contains a soluble normal subgroup H such that G=H is �nite and H=H 0 is
in�nite. Let p be a prime which does not divide the order of G=H , and put
K=H 0 = (H=H 0)p. Since H is �nitely generated, K is a proper subgroup
of �nite index of H , and the theorem of Schur{Zassenhaus applied to the
�nite group G=K yields that G contains a subgroup L such that G = HL
and H \ L = K. Clearly, L is properly contained in G so that it is soluble,
and also G is a soluble group. 2

Let G be a group. We say that G has �nite abelian subgroup rank if
it does not contain abelian subgroups of in�nite rank which are either free
abelian or of prime exponent, and that G has �nite abelian section rank if it
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has no in�nite abelian sections of prime exponent. It is well known that any
hyperabelian group with �nite abelian subgroup rank also has �nite abelian
section rank (see [6, Part 2, p. 128]).

Corollary 2.5. Let G be an in�nite locally graded group whose proper

subgroups are soluble with �nite abelian section rank. Then G is a soluble

group with �nite abelian section rank.

Proof. The group G is hyperabelian by Lemma 2.4. Moreover, we can
assume G is not abelian so that it has �nite abelian subgroup rank, and
hence, also has �nite abelian section rank. If G contains a proper subgroup
of �nite index, we obviously have that G is soluble. Finally, if G has no
proper subgroups of �nite index, it is well known that it is nilpotent (see
[6, Part 2, Theorem 9.31]). 2

Corollary 2.6. Let G be an in�nite locally graded group whose proper

subgroups are polycyclic. Then G is either polycyclic or a group of type p1

for some prime p.

Proof. The group G is hyperabelian by Lemma 2.4. First, suppose G has no
proper subgroups of �nite index, and let N be any proper normal subgroup
of G. As N is polycyclic, the factor group G=CG(N) is also polycyclic (see
[6, Part 1, Theorem 3.27]) so that CG(N) = G and N is contained in Z(G).
Therefore, G=Z(G) is simple and G is abelian. Moreover, G is obviously
divisible and cannot be generated by two proper subgroups so that it is
a group of type p1 for some prime p. Now suppose G contains a proper
subgroup of �nite index. Then G is polycyclic-by-�nite, and hence even
polycyclic. 2

Now we can characterize locally graded groups whose non-normal sub-
groups are soluble and have �nite abelian section rank.

Theorem 2.7. Let G be a locally graded group. Then every non-normal

subgroup of G is a soluble group with �nite abelian section rank if and only

if G satis�es one of the following conditions :
(i) G is a Dedekind group.

(ii) G is a soluble group with �nite abelian section rank.

(iii) G has �nite abelian section rank and contains a �nite normal mini-

mal non-soluble subgroup N such that G=N is a Dedekind group. In

particular, the commutator subgroup G0 of G is �nite.

Proof. Suppose G is a non-Dedekind group whose non-normal subgroups
are soluble with �nite abelian section rank, and assume by contradiction
that G contains an abelian subgroup A which is a direct product of in�nitely
many isomorphic cyclic groups, which are either in�nite or have prime order.
Then A = A1�A2, where both A1 and A2 have in�nite rank so that A1 and
A2 are normal in G and the factor groups G=A1 and G=A2 are Dedekind
groups. Since G is not abelian, at least one of the groups G=A1 and G=A2
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is hamiltonian so that G is periodic and A has prime exponent. Moreover,
G is nilpotent and its commutator subgroup has exponent 2 so that G =
G2 �G20 , where G2 is a 2-group and G20 is an abelian 20-group. Then G2

is a non-Dedekind group whose non-normal subgroups are �Cernikov groups,
and hence, G2 is a �Cernikov group by Theorem 2.3. Since G=G20 is not a
Dedekind group, the subgroupG20 has �nite abelian section rank, and hence,
G itself has �nite abelian section rank. This contradiction shows that G has
�nite abelian subgroup rank. If G is soluble, it is well known that G also has
�nite abelian section rank (see [6, Part 2, p. 128]). Now suppose G is not
soluble so that N = (G0)2 is a non-soluble group whose proper subgroups
are soluble with �nite abelian section rank. Then it follows from Corollary
2.5 that N is �nite. Moreover, G=N is a Dedekind group. Clearly, N is
not contained in its centralizer CG(N) so that G=CG(N) is not a Dedekind
group, and CG(N) must have �nite abelian section rank. Since G=CG(N)
is �nite, the group G itself has �nite abelian section rank.

Conversely, suppose the group G satis�es condition (iii) and let H be a
non-normal subgroup of G. Then N is not contained in H so that H \ N
is soluble, and H is a soluble group with �nite abelian section rank. 2

The direct product of the alternating group A5 with any hamiltonian
group with �nite abelian section rank is a group satisfying condition (iii) of
Theorem 2.7 in which the commutator subgroup is not minimal non-soluble.

Corollary 2.8. Let G be a locally graded group. Then every non-normal

subgroup of G is a soluble group with �nite Pr�ufer rank if and only if G
satis�es one of the following conditions :

(i) G is a Dedekind group.

(ii) G is a soluble group with �nite Pr�ufer rank.

(iii) G has �nite Pr�ufer rank and contains a �nite normal minimal non-

soluble subgroup N such that G=N is a Dedekind group. In particular,

the commutator subgroup G0 of G is �nite.

Proof. Clearly, we only need to show that, if G is a non-Dedekind group
whose non-normal subgroups are soluble with �nite Pr�ufer rank, then G is
either a soluble group with �nite Pr�ufer rank or satis�es condition (iii) of
the statement. It follows from Theorem 2.7 that G has �nite abelian section
rank, and G is either soluble or contains a �nite normal minimal non-soluble
subgroup N such that G=N is a Dedekind group. Assume by contradiction
that G has in�nite Pr�ufer rank. Then G contains an abelian subgroup
A with in�nite Pr�ufer rank (see [6, Part 2, p. 89]) so that the subgroup
consisting of all elements of �nite order of A also has in�nite Pr�ufer rank,
and hence, A can be chosen to be periodic. Thus, A = A1�A2, where both
A1 and A2 have in�nite Pr�ufer rank. Then A1 and A2 are normal in G,
and the factor groups G=A1 and G=A2 are Dedekind groups which cannot
be both abelian. Suppose G=A1 is hamiltonian. Clearly, there exists in A
a properly descending chain A1 = B1 > B2 > � � � > Bn > � � � of subgroups
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with in�nite Pr�ufer rank such that \n�1Bn = f1g. Each subgroup Bn is
normal in G and the group G=Bn is hamiltonian so that G0=(G0 \ Bn) has
order 2. It follows that

G0 \ B1 = G0 \ B2 = � � � = G0 \ Bn = � � � ;

and hence, G0 has order 2. Therefore, G is nilpotent and G = G2 � G20 ,
where G2 is a 2-group and G20 is an abelian 20-group. Then G2 is a �Cernikov
group which is not a Dedekind group so that G20 has �nite Pr�ufer rank, and
G itself has �nite Pr�ufer rank. This contradiction shows that G has �nite
Pr�ufer rank and completes the proof of the corollary. 2

A soluble group G is called an S1-group if it has �nite abelian section
rank and �(G) is �nite, where �(G) denotes the set of all prime numbers
that are orders of elements of G. Note that a periodic group G is an S1-
group if and only if it is a soluble �Cernikov group (see [6, Part 2, Theorem
10.33]).

Corollary 2.9. Let G be a locally graded group. Then every non-normal

subgroup of G is an S1-group if and only if G satis�es one of the following

conditions :

(i) G is a Dedekind group.

(ii) G is an S1-group.

(iii) G is a �nite extension of an S1-group and contains a �nite normal

minimal non-soluble subgroup N such that G=N is a Dedekind group.

In particular, the commutator subgroup G0 of G is �nite.

Proof. Suppose G is a non-Dedekind group whose non-normal subgroups are
S1-groups so that G is a soluble-by-�nite group with �nite abelian section
rank by Theorem 2.7. Moreover, if G is not soluble, then it contains a
�nite normal minimal non-soluble subgroupN such that G=N is a Dedekind
group. If T is the largest periodic normal subgroup of G, then the set of
primes �(G=T ) is �nite (see [6, Part 2, Lemma 9.34]). Assume the locally
�nite group T does not satisfy the minimal condition on subgroups. Then
T contains an abelian subgroup A with in�nitely many non-trivial primary
components. Write A = A1 � A2, where A1 and A2 are subgroups such
that the sets �(A1) and �(A2) are in�nite. Then A1 and A2 are normal in
G, and G=A1 and G=A2 are Dedekind groups. Since G is not abelian, it
follows that at least one of such groups is hamiltonian so that G is periodic,
and hence, it is a �Cernikov group by Theorem 2.3. This contradiction shows
that the set �(G) is �nite, and so G satis�es either (ii) or (iii). The converse
statement is obvious. 2

A group G is said to be minimax if it has a series of �nite length whose
factors satisfy either the minimal or maximal condition on subgroups. In
particular, if G is an extension of a group satisfying the minimal condition
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by a group satisfying the maximal condition on subgroups, we say that G is
a Min-by-Max group. Clearly, every soluble minimax group is an S1-group.

Corollary 2.10. Let G be a locally graded group. Then every non-normal

subgroup of G is a soluble minimax group if and only if G satis�es one of

the following conditions :

(i) G is a Dedekind group.

(ii) G is a soluble minimax group.

(iii) G is minimax and contains a �nite normal minimal non-soluble sub-

group N such that G=N is a Dedekind group. In particular, the com-

mutator subgroup G0 of G is �nite.

Proof. We only need to show that, if G is a non-Dedekind group whose
non-normal subgroups are soluble and minimax, then either G itself is a
soluble minimax group or it satis�es condition (iii) of the statement. It
follows from Corollary 2.9 that G is an S1-group, and it is either soluble or
contains a �nite normal minimal non-soluble subgroup N such that G=N
is a Dedekind group. In particular, we may suppose G is not periodic.
Assume by contradiction that G is not minimax so that it contains an
abelian subgroup A which is not minimax (see [6, Part 2, Theorem 10.35]).
Let T be the subgroup consisting of all elements of �nite order of A. Then
the set of primes �(T ) is �nite by Corollary 2.9 so that T is a �Cernikov group
and A = T � B, where B is a torsion-free subgroup which is not minimax.
Let E be a �nitely generated subgroup of B such that B=E is periodic.
Clearly, B=E is not a �Cernikov group so that, for each positive integer
n � 3, we have B=E2

n

= B1;n=E
2
n

�B2;n=E
2
n

, where both B1;n=E
2
n

and
B2;n=E

2
n

have in�nitely many primary components. Therefore, B1;n and
B2;n are not minimax so that they are normal in G and the factor groups
G=B1;n and G=B2;n are Dedekind groups. Thus, (G0)2 � B1;n\B2;n = E2

n

so that (G0)2 � \n�3E
2
n

= f1g and G0 is periodic. On the other hand, at
least one of the groups G=B1;n and G=B2;n contains an element of order 8,
and hence is abelian so that G0 is torsion-free. It follows that G0 = f1g and
G is abelian. This last contradiction completes the proof of the corollary. 2

Lemma 2.11. Let G be a locally graded group whose non-normal subgroups

are polycyclic. Then G is either polycyclic-by-�nite or metabelian.

Proof. Suppose G is neither polycyclic-by-�nite nor a Dedekind group so
that it is a soluble-by-�nite group with �nite Pr�ufer rank by Corollary 2.8.
Then G contains an abelian subgroup A which is not �nitely generated
(see [6, Part 1, Theorem 3.31]). Moreover, A is normal in G and G=A is
a Dedekind group so that G is soluble. Clearly, we can assume the group
G=A is hamiltonian. If A is periodic, it follows that G is a periodic group
whose in�nite subgroups are normal and then G is either a Dedekind group
or a �nite extension of a Pr�ufer group by a �nite Dedekind group (see [2,
Theorem 1.3]). In this case, it follows immediately that G is metabelian.
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This argument allows us to assume all periodic abelian subgroups of G
are �nite so that the Hall{Kulatilaka{Kargapolov theorem yields that every
periodic subgroup of G is �nite. In particular, the subgroup A can be chosen
to be torsion-free. Since A has �nite Pr�ufer rank, G=CG(A) is isomorphic
to a periodic linear group over the �eld of rational numbers, and hence
is �nite. Let B be a �nitely generated subgroup of A such that A=B is
periodic. Then the normal closure H = BG is also �nitely generated, and
for each prime number p, G=Hp is a periodic group whose in�nite subgroups
are normal so that G=Hp is metabelian. As \pH

p = f1g, it follows that G
is also metabelian. 2

Lemma 2.12. Let A be a torsion-free abelian group containing a �nitely

generated subgroup B such that A=B is a group of type 21. If A is 2-
divisible, then A is isomorphic to the additive group Q2 consisting of all

rational numbers whose denominators are powers of 2.

Proof. Assume B is not cyclic so that it contains a subgroup B1 such that
B=B1 is a Klein 4-group, and the periodic group A=B1 has an image of
order 2. This contradiction shows that B is cyclic so that A has rank 1,
and hence, it is isomorphic to a subgroup of the additive group of rational
numbers. It follows immediately that A is isomorphic to Q2 . 2

Now it is possible to prove the main result of this paper.

Theorem 2.13. Let G be a locally graded group. Then every non-normal

subgroup of G is polycyclic if and only if G satis�es one of the following

conditions :

(i) G is a Dedekind group.

(ii) G is polycyclic.

(iii) G is an extension of a Pr�ufer group by a �nite Dedekind group.

(iv) G is a soluble minimax group whose �nite residual J is a group of

type p1 for some prime p and contains G0. Moreover, every abelian

subgroup of G is Min-by-Max.

(v) G = M � E, where M is isomorphic to the additive group Q2 of all

rational numbers whose denominators are powers of 2 and E is a

�nite hamiltonian group.

(vi) G is polycyclic-by-�nite and contains a �nite normal minimal non-

soluble subgroup N such that G=N is a Dedekind group. In particular,

the commutator subgroup G0 of G is �nite.

Proof. Let G be a locally graded non-Dedekind group whose non-normal
subgroups are polycyclic. If G is periodic, then all its in�nite subgroups are
normal and so G satis�es condition (iii) (see [2, Theorem 1.3]). On the other
hand, if G is polycyclic-by-�nite, then Theorem 2.7 yields that G is either
polycyclic or contains a �nite normal minimal non-soluble subgroup N such
that G=N is a Dedekind group so that G satis�es either (ii) or (vi) of the
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statement. Suppose G is neither periodic nor polycyclic-by-�nite so that it
is metabelian by Lemma 2.11. Clearly, we can assume G is not a Dedekind
group so that G is minimax by Corollary 2.10, and in particular, all its
periodic subgroups are �Cernikov groups. First, suppose the commutator
subgroupG0 ofG is not �nitely generated and letH be any subgroup of �nite
index of G0. Then H is not �nitely generated so that it is normal in G and
G=H is a Dedekind group. It follows that G0=H has order at most 2. Thus,
the �nite residual R of G0 has index at most 2 in G0 so that R is divisible.
Moreover, every proper subgroup of R is �nitely generated so that R is a
group of type p1 for some prime p. If R 6= G0, the groupG=R is hamiltonian
so that G is periodic, a contradiction. Therefore, G0 = R is a group of type
p1. Let J be the �nite residual of G. Then J is a periodic divisible abelian
group (see [6, Part 2, Theorem 10.33]) and J = G0 � J1 for some divisible
subgroup J1. If J1 6= f1g, it is normal in G and G=J1 is a Dedekind group,
which is impossible as G0 is in�nite. It follows that J1 = f1g and G0 = J
is the �nite residual of G. Let A be any abelian subgroup of G. Then
A = A1 � A2, where A1 is a �Cernikov group and A2 is torsion-free. If A2

is not �nitely generated, it is normal in G and G=A2 is a Dedekind group.
This contradiction shows that A2 is �nitely generated so that A is Min-by-
Max and G satis�es condition (iv) of the statement. Now suppose G0 is
�nitely generated so that G=G0 is not �nitely generated and there exists in
G0 a collection fKigi2I of G-invariant subgroups of �nite index such that
\i2IKi = f1g. For each i 2 I , the minimax group �Gi = G=Ki has �nite
commutator subgroup so that �Gi=Z( �Gi) is also �nite. Then Z( �Gi) is not
�nitely generated, and hence, �Gi=Z( �Gi) is a Dedekind group. It follows
that �Gi is nilpotent with class at most 3 for every i 2 I so that G is also a
nilpotent group. Let T be the subgroup consisting of all elements of �nite
order of G. If G0 is in�nite, the factor group G=T has in�nite commutator
subgroup so that it is not a Dedekind group, and hence, T must be �nite.
Then G is residually �nite. Moreover, every �nite homomorphic image of G
is a Dedekind group and so G0 has exponent 2. This contradiction proves
that G0 is �nite so that G=Z(G) is also �nite. Since G is a minimax group,
we have Z(G) = U � V , where U is periodic and V is torsion-free. Suppose
V is not �nitely generated so that G=V is hamiltonian and G0 has order

2. If V 2 6= V , then V 2
n+1

6= V 2
n

for each n so that G=V 8 cannot be
hamiltonian, and hence, it is abelian, a contradiction. Thus, V 2 = V and
V contains a subgroup W such that V=W is isomorphic to Z(21). Clearly,
G=W is not a Dedekind group, and hence, W must be �nitely generated
so that V is isomorphic to Q2 by Lemma 2.12. Assume U is in�nite and
let U0 be the �nite residual of U . Since the group G=V is hamiltonian, U
cannot contain subgroups of type 21 so that U0 \ G

0 = f1g and the non-
periodic group G=U0 should be hamiltonian, a contradiction. Therefore,
U is �nite so that T is also �nite and G=G0 = L=G0 � T=G0, where L=G0

is torsion-free. Since G is a �nite extension of a 2-divisible subgroup, the
group L=G0 is also 2-divisible so that L is abelian and L =M �G0 for some
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torsion-free 2-divisible subgroup M . Therefore, G = LT = MG0T = MT
andM\T = f1g. Moreover,M is normal in G since it is not polycyclic, and
hence, G =M�T , where T is a �nite hamiltonian group. Furthermore, the
same argument used above proves that the abelian groupM is isomorphic to
Q2 so that G satis�es condition (v). Finally, suppose V is �nitely generated
so that T is an in�nite �Cernikov group and G is Min-by-Max. Let P be
any Pr�ufer subgroup of G. Then P is normal in G and the non-periodic
group G=P is abelian so that G0 is contained in P . It follows that the �nite
residual of G is a group of type p1 for some prime p and G satis�es (iv).

Conversely, it is clearly enough to show that, if G satis�es one of the
conditions (iv) and (v), then every non-normal subgroup of G is polycyclic.
Let X be any subgroup of G which is not polycyclic. First, suppose G
satis�es (iv). If G0 is not contained in X , the intersection X \G0 is �nite so
that X 0 is �nite, and so X=Z(X) is also �nite. Then Z(X) is a Min-by-Max
group which is not �nitely generated so that the �nite residual J of G lies
in Z(X), a contradiction since G0 is contained in J . Therefore, G0 � X and
X is normal in G. Now suppose G satis�es (v). Then X \M is not �nitely
generated, and hence, M=(X \M) is a �nite abelian group of odd order.
It follows that the group G=(X \M) is hamiltonian so that X is normal in
G. 2

Finally, observe that an example of a group, which is not Min-by-Max
and satis�es condition (iv) in Theorem 2.13, is given in Example 1 of [4].
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