VNIVERSITAT (D) VALĖNCIA

Garside Groups Factorizations

Advances in Group Theory, Lecce 2019

Presented by: Raúl Sastriques Guardiola
Directed by: Sergio Camp and Adolfo Ballester

Garside groups

1. Introduction to Garside groups
2. Properties
3. Factorizing Garside groups

Definitions

Cancellative Monoid

- A monoid M is said to be right cancellative if for every $a, b, c \in M$:

$$
a \cdot c=b \cdot c \Rightarrow a=b
$$

- A monoid M is said to be left cancellative if: for every
$a, b, c \in M$:

$$
c \cdot a=c \cdot b \Rightarrow a=b
$$

- A monoid M is said to be cancellative if it is left and right
cancellative.

Definitions

Cancellative Monoid

- A monoid M is said to be right cancellative if for every $a, b, c \in M$:

$$
a \cdot c=b \cdot c \Rightarrow a=b
$$

- A monoid M is said to be left cancellative if: for every $a, b, c \in M$:

$$
c \cdot a=c \cdot b \Rightarrow a=b
$$

- A monoid M is said to be cancellative if it is left and right cancellative.

Definitions

Cancellative Monoid

- A monoid M is said to be right cancellative if for every $a, b, c \in M$:

$$
a \cdot c=b \cdot c \Rightarrow a=b
$$

- A monoid M is said to be left cancellative if: for every $a, b, c \in M$:

$$
c \cdot a=c \cdot b \Rightarrow a=b
$$

- A monoid M is said to be cancellative if it is left and right cancellative.

Definitions

Definition (Atom)

An element a in a monoid M is an atom in M if:

$$
a=b \cdot c \Rightarrow b=1 \text { or } c=1
$$

For any element x in $M,|x| \mid$ is the supremum of the lengths of all expressions of x in terms of atoms of M.

Definition (Atomic monoid)

1. M is generated by its atoms.
2. $\|x\|<\infty$ for evary $x \in M$.

Definitions

Definition (Atom)

An element a in a monoid M is an atom in M if:

$$
a=b \cdot c \Rightarrow b=1 \text { or } c=1
$$

For any element x in $M,\|x\|$ is the supremum of the lengths of all expressions of x in terms of atoms of M.

Definition (Atomic monoid)

1. M is generated by its atoms.
2. II $\vee \mathrm{II}<m$ for every $x \in M$.

Definitions

Definition (Atom)

An element a in a monoid M is an atom in M if:

$$
a=b \cdot c \Rightarrow b=1 \text { or } c=1
$$

For any element x in $M,\|x\|$ is the supremum of the lengths of all expressions of x in terms of atoms of M.

Definition (Atomic monoid)

1. M is generated by its atoms.
2. $\|x\|<\infty$, for every $x \in M$.

Definitions

Divisibility

If M is a monoid, and $a, b \in M$, we say that a left divides b if there is some element $c \in M$ such that $a \cdot c=b$.
Right divisibility is defined in a similar way.

> We may consider two associated orders in the monoid: $a \leq_{L} h$ if a left divides h, $a \leq_{R} b$ if a right divides b.

> When these two order are lattices, then, for each pair of elements $a, h \in M$ there exist a least common multinle and a greatest common divisor ($a \vee b$ and $a \wedge b$, respectively).

Definitions

Divisibility

If M is a monoid, and $a, b \in M$, we say that a left divides b if there is some element $c \in M$ such that $a \cdot c=b$.
Right divisibility is defined in a similar way.
We may consider two associated orders in the monoid:
$a \leq_{L} b$ if a left divides b, $a \leq_{R} b$ if a right divides b.
When these two order are lattices, then, for each pair of elements $a, b \in M$, there exist a least common multiple and a greatest common divisor ($a \vee b$ and $a \wedge b$, respectively).

Garside Monoid

Garside monoid

A monoid M is a Garside monoid when:

1. M is cancellative.
2. M is atomic.
3. \leq_{R} and \leq_{L} are both lattices in M.
4. There exists an element $\triangle \in M$, called a Garside element of M, such that:

Garside Monoid

Garside monoid

A monoid M is a Garside monoid when:

1. M is cancellative.
2. M is atomic.
3. \leq_{R} and \leq_{L} are both lattices in M.
4. There exists an element $\Delta \in M$, called a Garside element of M, such that:
4.1 For each $a \in M, a \leq_{R} \Delta$ iff $a \leq_{L} \Delta$.
4.2 The set of divisors of Δ is finite and generates M.

Properties

If M is a Garside monoid, then:

- M is conical, that is, if $a, b \in M$ are so that $a \cdot b=1$, then $a=1$ or $b=1$.
- M is torsion-free.
- All the atoms of M divide its Garside element \triangle.
- \wedge^{n} is a Garside element for every $n \geq 1$
- M satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

Properties

If M is a Garside monoid, then:

- M is conical, that is, if $a, b \in M$ are so that $a \cdot b=1$, then $a=1$ or $b=1$.
- M is torsion-free.
- All the atoms of M divide its Garside element \triangle.
- Δ^{n} is a Garside element, for every $n \geq 1$.
- M satisfies Ore's conditions. Then it is nossible the following definition:

Garside Group

Properties

If M is a Garside monoid, then:

- M is conical, that is, if $a, b \in M$ are so that $a \cdot b=1$, then $a=1$ or $b=1$.
- M is torsion-free.
- All the atoms of M divide its Garside element Δ.
- Δ^{n} is a Garside element, for every $n \geq 1$.
- M satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

Properties

If M is a Garside monoid, then:

- M is conical, that is, if $a, b \in M$ are so that $a \cdot b=1$, then $a=1$ or $b=1$.
- M is torsion-free.
- All the atoms of M divide its Garside element Δ.
- Δ^{n} is a Garside element, for every $n \geq 1$.
- M satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

Properties

If M is a Garside monoid, then:

- M is conical, that is, if $a, b \in M$ are so that $a \cdot b=1$, then $a=1$ or $b=1$.
- M is torsion-free.
- All the atoms of M divide its Garside element Δ.
- Δ^{n} is a Garside element, for every $n \geq 1$.
- M satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

Properties

If M is a Garside monoid, then:

- M is conical, that is, if $a, b \in M$ are so that $a \cdot b=1$, then $a=1$ or $b=1$.
- M is torsion-free.
- All the atoms of M divide its Garside element Δ.
- Δ^{n} is a Garside element, for every $n \geq 1$.
- M satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

A Garside group is the group of fractions of some Garside monoid M. If G is a Garside group, G^{+}denotes its associated monoid.

Quasi-centre

"Groupes de Garside", 2002

If G is a Garside group with Garside element Δ, and $a \in \mathrm{G}^{+}$, then $a^{\Delta} \in \mathrm{G}^{+}$.

Then, Δ permutes the atoms of G^{+}by conjugation. Since these are finite in number, there exists $n \geq 1$ with:

$$
\Delta^{n} \in Z(G) .
$$

"The Centre of Thin Gaussian Groups", J. Algebra, 2001

The quasi-centre of a Garside group G is the subgroup:

$$
Q Z(G)=\left\{g \in G \mid a^{g} \in G^{+}, \text {for every } a \in G^{+}\right\}
$$

Quasi-centre

"Groupes de Garside", 2002

If G is a Garside group with Garside element Δ, and $a \in G^{+}$, then $a^{\Delta} \in G^{+}$.

Then, Δ permutes the atoms of G^{+}by conjugation. Since these are finite in number, there exists $n \geq 1$ with:

$$
\Delta^{n} \in Z(G) .
$$

"The Centre of Thin Gaussian Groups", J. Algebra, 2001

The quasi-centre of a Garside group G is the subgroup:

Quasi-centre

"Groupes de Garside", 2002

If G is a Garside group with Garside element Δ, and $a \in \mathrm{G}^{+}$, then $a^{\Delta} \in G^{+}$.

Then, Δ permutes the atoms of G^{+}by conjugation. Since these are finite in number, there exists $n \geq 1$ with:

$$
\Delta^{n} \in Z(G)
$$

"The Centre of Thin Gaussian Groups", J. Algebra, 2001

The quasi-centre of a Garside group G is the subgroup:

$$
\mathrm{QZ}(\mathrm{G})=\left\{g \in \mathrm{G} \mid a^{g} \in \mathrm{G}^{+}, \text {for every } a \in \mathrm{G}^{+}\right\}
$$

The Centre of Thin Gaussian Groups [3]

Theorem (Picantin)

 If G is a Garside group, $\mathrm{QZ}(\mathrm{G})$ is a finitely generated free abelian group.A basis for the submonoid generating this subgroup is given.

Definition

A Garside group G is said pure Garside if $Q Z(G)$ is cyclic.
In can be shown that G is pure Garside if and only if $Z(G)$ is cyclic.

Theorem (Picantin)

Every Garside monoid is the crossed product of some pure Garside submonoids.

The Centre of Thin Gaussian Groups [3]

Theorem (Picantin)

If G is a Garside group, $\mathrm{QZ}(\mathrm{G})$ is a finitely generated free abelian group.

A basis for the submonoid generating this subgroup is given.

Definition

A Garside group G is said pure Garside if $Q Z(G)$ is cyclic.
In can be shown that G is pure Garside if and only if $Z(G)$ is cyclic.
Theorem (Picantin)
Ever. Garside monoid is the crossed product of some pure Garside

The Centre of Thin Gaussian Groups [3]

Theorem (Picantin)

If G is a Garside group, $\mathrm{QZ}(\mathrm{G})$ is a finitely generated free abelian group.

A basis for the submonoid generating this subgroup is given.

Definition

A Garside group G is said pure Garside if $Q Z(G)$ is cyclic.
In can be shown that G is pure Garside if and only if $Z(G)$ is cyclic.
Theorem (Picantin)
Every Garside monoid is the crossed product of some pure Garside submonoids.

The Centre of Thin Gaussian Groups [3]

Theorem (Picantin)

If G is a Garside group, $\mathrm{QZ}(\mathrm{G})$ is a finitely generated free abelian group.

A basis for the submonoid generating this subgroup is given.

Definition

A Garside group G is said pure Garside if $Q Z(G)$ is cyclic.
In can be shown that G is pure Garside if and only if $Z(G)$ is cyclic.
Theorem (Picantin)
Every Garside monoid is the crossed product of some pure Garside submonoids.

The Centre of Thin Gaussian Groups [3]

Theorem (Picantin)

If G is a Garside group, $\mathrm{QZ}(\mathrm{G})$ is a finitely generated free abelian group.

A basis for the submonoid generating this subgroup is given.

Definition

A Garside group G is said pure Garside if $Q Z(G)$ is cyclic.
In can be shown that G is pure Garside if and only if $Z(G)$ is cyclic.

Theorem (Picantin)

Every Garside monoid is the crossed product of some pure Garside submonoids.

Zappa-Szép products

Zappa, in 1942, and Szép, in 1950, studied factorizations of a group G as product of a pair of subgroups. In the case of monoids, this product is called 'Zappa-Szép product'.

Definition (Zappa-Szép product)

A monoid M is the (internal) Zappa-Szép product of two submonoids A and $B, M=A \bowtie B$, if every element $x \in M$ can be uniquely written as $x=a \cdot b=b^{\prime} \cdot a^{\prime}$, with $a, a^{\prime} \in A, b, b^{\prime} \in B$.

Like the product of subgroups, the Zappa-Szép product of monoids is commutative, but it is not associative.

Zappa-Szép products

Zappa, in 1942, and Szép, in 1950, studied factorizations of a group G as product of a pair of subgroups. In the case of monoids, this product is called 'Zappa-Szép product'.

Definition (Zappa-Szép product)

A monoid M is the (internal) Zappa-Szép product of two submonoids A and $B, M=A \bowtie B$, if every element $x \in M$ can be uniquely written as $x=a \cdot b=b^{\prime} \cdot a^{\prime}$, with $a, a^{\prime} \in A, b, b^{\prime} \in B$.

Like the product of subgroups, the Zappa-Szép product of monoids is commutative, but it is not associative.

Volker Gebhardt and Stephen Tawn 2015 [2]

Theorem

If M is a Garside monoid, and $M=A \bowtie B$, then A and B are Garside monoids.

Additionally, if Δ is a Garside monoid of $M, \Delta=a \cdot b$ with $a \in A$ and $b \in B$, then a, b are Garside elements of A and B, respectively.

Theorem

Suppose $M=A \bowtie B$ and A, B are Garside monoids. Then M is a
Garside monoid.

Volker Gebhardt and Stephen Tawn 2015 [2]

Theorem

If M is a Garside monoid, and $M=A \bowtie B$, then A and B are Garside monoids.

Additionally, if Δ is a Garside monoid of $M, \Delta=a \cdot b$ with $a \in A$ and $b \in B$, then a, b are Garside elements of A and B, respectively.

Theorem

Suppose $M=A \bowtie B$ and A, B are Garside monoids. Then M is a Garside monoid.

Indecomposable monoids

Definition (Indecomposable)

A Garside monoid M is indecomposable if it cannot be written as a Zappa-Szép product of two non-trivial submonoids.

Theorem

A Garside monoid is pure Garside if and only if it is indecomposable.
Since the are a finitely many atoms, the number of pure Garside submonoids when recursively factorizing a Garside monoid as the Zappa-Szép product of two submonoids is also finite.

Indecomposable monoids

Definition (Indecomposable)

A Garside monoid M is indecomposable if it cannot be written as a Zappa-Szép product of two non-trivial submonoids.

Theorem

A Garside monoid is pure Garside if and only if it is indecomposable.
Since the are a finitely many atoms, the number of pure Garside submonoids when recursively factorizing a Garside monoid as the Zappa-Szép product of two submonoids is also finite.

Pure factors

Any Garside monoid G^{+}can be factorized as a recursive Zappa-Szép product of pure factors.

Uniqueness

Pure factors

Any Garside monoid G^{+}can be factorized as a recursive Zappa-Szép product of pure factors.

Uniqueness

If G is a Garside group and there are two factorizations
$\mathrm{G}^{+}=H_{1}^{+} \bowtie \ldots \bowtie H_{n}^{+}=K_{1}^{+} \bowtie \ldots \bowtie K_{m}^{+}$, (parentheses omitted) where the products of the submonoids are Zappa-Szép, and H_{i}^{+}, K_{j}^{+} are pure Garside groups, then $n=m$ and, for each $i=1, \ldots n$, there is $j \in\{1, \ldots, n\}$ such that $H_{i}^{+}=K_{j}^{+}$.

Minimal Garside element

In [1], P. Dehornoy proved the existence of a (unique) minimal
Garside element. Regarding to the factorization of G, we have the following result.

Minimal Garside element

Let G be a Garside group and let δ_{i} be the generators of the quasi-centre of the pure factors of $\mathrm{G}^{+}=H_{1}^{+} \bowtie \mathrm{H}_{2}^{+} \bowtie \ldots \bowtie H_{n}^{+}$. Then $\Delta=\delta_{1} \cdot \delta_{2} \cdot \ldots \cdot \delta_{n}$ is the minimal Garside element of G (with respect to \leq_{R} and \leq_{L}).

For every $t>0$,

Minimal Garside element

In [1], P. Dehornoy proved the existence of a (unique) minimal
Garside element. Regarding to the factorization of G, we have the following result.

Minimal Garside element

Let G be a Garside group and let δ_{i} be the generators of the quasi-centre of the pure factors of $\mathrm{G}^{+}=H_{1}^{+} \bowtie \mathrm{H}_{2}^{+} \bowtie \ldots \bowtie \mathrm{H}_{n}^{+}$. Then $\Delta=\delta_{1} \cdot \delta_{2} \cdot \ldots \cdot \delta_{n}$ is the minimal Garside element of G (with respect to \leq_{R} and \leq_{L}).

For every $t>0$,

$$
\Delta^{t}=\delta_{1}^{t} \cdot \delta_{2}^{t} \cdot \ldots \cdot \delta_{n}^{t}
$$

Principal factors

Definition

If x_{1}, \ldots, x_{r} is a basis of the submonoid $\mathrm{QZ}(\mathrm{G})^{+}$, then we may define N_{j} as the subgroup generated by the atoms dividing the element x_{j}.

Principal factorization

If G^{+}is a Garside montoid, then

In particular, the product of the N_{j} is pairwise permutable.

Principal factors

Definition

If x_{1}, \ldots, x_{r} is a basis of the submonoid $Q Z(G)^{+}$, then we may define N_{j} as the subgroup generated by the atoms dividing the element x_{j}.

Principal factorization

If G^{+}is a Garside monoid, then

$$
\mathrm{G}^{+}=\mathrm{N}_{1}^{+} \bowtie \mathrm{N}_{2}^{+} \bowtie \cdots \bowtie \mathrm{N}_{r}^{+} .
$$

In particular, the product of the N_{j} is pairwise permutable.

Garside elements

Characterization

If Δ_{j} be the minimal Garside element of the principal factor N_{j}. Then Δ is a Garside element of G if and only if $\Delta=\Delta_{1}^{t_{1}} \cdot \ldots \cdot \Delta_{r}^{t_{r}}$, for some $t_{1} \ldots t_{r}>0$.

Isomorphic pure factors

If N is a principal factor of C , then the pure factors of N_{j} are all
isomorphic.

Proposition

A Garside suroup is abelian if and only if its principal factors are all cyclic.

Garside elements

Characterization

If Δ_{j} be the minimal Garside element of the principal factor N_{j}. Then Δ is a Garside element of G if and only if $\Delta=\Delta_{1}^{t_{1}} \cdot \ldots \cdot \Delta_{r}^{t_{r}}$, for some $t_{1} \ldots t_{r}>0$.

Isomorphic pure factors

If N_{j} is a principal factor of G, then the pure factors of N_{j} are all isomorphic.

Proposition

A Garside group is abelian if and only if its principal factors are all cyclic.

Garside elements

Characterization

If Δ_{j} be the minimal Garside element of the principal factor N_{j}. Then Δ is a Garside element of G if and only if $\Delta=\Delta_{1}^{t_{1}} \cdot \ldots \cdot \Delta_{r}^{t_{r}}$, for some $t_{1} \ldots t_{r}>0$.

Isomorphic pure factors

If N_{j} is a principal factor of G, then the pure factors of N_{j} are all isomorphic.

Proposition
A Garside group is abelian if and only if its principal factors are all cyclic.

Example

The Garside monoid
$\mathrm{G}^{+}=\left\{a, b, c, d \mid a b=b a, a c=c a, b c=c b, a^{d}=a, b^{d}=c, c^{d}=b\right\}$, admits two different factorizations

$$
\begin{equation*}
\mathrm{G}^{+}=\left(\left(\mathrm{A}^{+} \times \mathrm{B}^{+}\right) \times \mathrm{C}^{+}\right) \rtimes \mathrm{D}^{+}, \tag{1}
\end{equation*}
$$

where the action is given by $a^{d}=a, b^{d}=c, c^{d}=b$, and

$$
\begin{equation*}
G^{+}=\left(B^{+} \times C^{+}\right) \rtimes\left(A^{+} \times D^{+}\right) \tag{2}
\end{equation*}
$$

with action $b^{a}=b, c^{a}=c, b^{d}=c, c^{d}=b$.
In particular, we see that the pure factors $\mathrm{A}^{+}, \mathrm{B}^{+}, \mathrm{C}^{+}, \mathrm{D}^{+}$are the
same for both factorizations, and also their length.

Example

Figure: Decomposition (2)
$\Delta=b \cdot c \cdot a \cdot d$ is the minimal Garside element of G^{+}, and ($b c$), (ad) are quasi-central in G^{+}. Moreover, conditions $b d=d c, c d=d b$ imply that b, c cannot be quasi-central while $d \in Q Z(G)^{+}$since $a d=d a$. In particular

$$
G^{+}=\langle b, c\rangle \bowtie\langle a\rangle \bowtie\langle d\rangle, \quad Q Z(G)^{+}=\langle b c, a, d\rangle,
$$

and the set of all the Garside elements of G is:

$$
\left\{(b c)^{e_{1}} a^{e_{2}} d^{e_{3}} \mid e_{i} \in \mathbb{N}, \text { and } e_{i} \geq 1 \text { for all } i\right\}
$$

VNIVERSITAT (D) VALĖNCIA

Garside Groups Factorizations

Grazie Mille !

Presented by: Raúl Sastriques Guardiola
Directed by: Sergio Camp and Adolfo Ballester

Bibliography

[1] Patrick Dehornoy. "Groupes de Garside". In: Annales scientifiques de l'Ecole normale supérieure. Vol. 35. No longer published by Elsevier, 2002, pp. 267-306.
[2] Volker Gebhardt and Stephen Tawn. "Zappa-Szép products of Garside monoids". In: Mathematische Zeitschrift 282.1 (Feb. 2016), pp. 341-369. ISSN: 1432-1823.
[3] Matthieu Picantin. "The Center of Thin Gaussian Groups". In: Journal of Algebra 245.1 (2001), pp. 92-122. ISSN: 0021-8693.

