Vniversitat d València

Garside Groups Factorizations

Advances in Group Theory, Lecce 2019

Presented by: Raúl Sastriques Guardiola Directed by: Sergio Camp and Adolfo Ballester

Garside groups

- 1. Introduction to Garside groups
- 2. Properties
- 3. Factorizing Garside groups

Cancellative Monoid

A monoid M is said to be right cancellative if for every
a, b, c ∈ M:

$$a \cdot c = b \cdot c \Rightarrow a = b$$

 A monoid M is said to be left cancellative if: for every a, b, c ∈ M:

$$c \cdot a = c \cdot b \Rightarrow a = b$$

 A monoid M is said to be cancellative if it is left and right cancellative.

Cancellative Monoid

 A monoid M is said to be right cancellative if for every a, b, c ∈ M:

$$a \cdot c = b \cdot c \Rightarrow a = b$$

A monoid M is said to be left cancellative if: for every
a, b, c ∈ M:

$$c \cdot a = c \cdot b \Rightarrow a = b$$

• A monoid M is said to be cancellative if it is left and right cancellative.

Cancellative Monoid

A monoid M is said to be right cancellative if for every
a, b, c ∈ M:

$$a \cdot c = b \cdot c \Rightarrow a = b$$

A monoid M is said to be left cancellative if: for every
a, b, c ∈ M:

$$c \cdot a = c \cdot b \Rightarrow a = b$$

• A monoid M is said to be cancellative if it is left and right cancellative.

Definition (Atom)

An element *a* in a monoid *M* is an atom in *M* if: $a = b \cdot c \Rightarrow b = 1 \text{ or } c = 1$

For any element x in M, || x || is the supremum of the lengths of all expressions of x in terms of atoms of M.

Definition (Atomic monoid)

1. *M* is generated by its atoms.

2. $||x|| < \infty$, for every $x \in M$.

Definition (Atom)

An element *a* in a monoid *M* is an atom in *M* if: $a = b \cdot c \Rightarrow b = 1 \text{ or } c = 1$

For any element x in M, || x || is the supremum of the lengths of all expressions of x in terms of atoms of M.

Definition (Atomic monoid)

1. M is generated by its atoms.

2. $||x|| < \infty$, for every $x \in M$.

Definition (Atom)

An element *a* in a monoid *M* is an atom in *M* if: $a = b \cdot c \Rightarrow b = 1 \text{ or } c = 1$

For any element x in M, || x || is the supremum of the lengths of all expressions of x in terms of atoms of M.

Definition (Atomic monoid)

1. *M* is generated by its atoms.

2. $|| x || < \infty$, for every $x \in M$.

Divisibility

If *M* is a monoid, and $a, b \in M$, we say that *a* left divides *b* if there is some element $c \in M$ such that $a \cdot c = b$. Right divisibility is defined in a similar way.

We may consider two associated orders in the monoid: $a \leq_L b$ if a left divides b, $a \leq_R b$ if a right divides b. When these two order are lattices, then, for each pair of el $a, b \in M$, there exist a least common multiple and a greate common divisor (a) (b and a b b respectively)

Divisibility

If *M* is a monoid, and $a, b \in M$, we say that *a* left divides *b* if there is some element $c \in M$ such that $a \cdot c = b$. Right divisibility is defined in a similar way.

We may consider two associated orders in the monoid: $a \leq_L b$ if a left divides b, $a \leq_R b$ if a right divides b.

When these two order are lattices, then, for each pair of elements $a, b \in M$, there exist a least common multiple and a greatest common divisor ($a \lor b$ and $a \land b$, respectively).

Garside Monoid

Garside monoid

A monoid M is a Garside monoid when:

- 1. *M* is cancellative.
- 2. M is atomic.
- 3. \leq_R and \leq_L are both lattices in *M*.
- 4. There exists an element $\Delta \in M$, called a Garside element of M, such that:
 - 4.1 For each $a \in M$, $a \leq_R \Delta$ iff $a \leq_L \Delta$.
 - -4.2 The set of divisors of Δ is finite and generates M

Garside Monoid

Garside monoid

A monoid M is a Garside monoid when:

- 1. *M* is cancellative.
- 2. M is atomic.
- 3. \leq_R and \leq_L are both lattices in *M*.
- 4. There exists an element $\Delta \in M$, called a Garside element of M, such that:

4.1 For each $a \in M$, $a \leq_R \Delta$ iff $a \leq_L \Delta$.

4.2 The set of divisors of Δ is finite and generates *M*.

If *M* is a Garside monoid, then:

- M is conical, that is, if a, b ∈ M are so that a ⋅ b = 1, then a = 1 or b = 1.
- M is torsion-free.
- All the atoms of M divide its Garside element Δ.
- Δ^n is a Garside element, for every $n \ge 1$.
- M satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

If M is a Garside monoid, then:

- M is conical, that is, if a, b ∈ M are so that a ⋅ b = 1, then a = 1 or b = 1.
- M is torsion-free.
- All the atoms of M divide its Garside element Δ.
- Δ^n is a Garside element, for every $n \ge 1$.
- M satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

If *M* is a Garside monoid, then:

- M is conical, that is, if a, b ∈ M are so that a ⋅ b = 1, then a = 1 or b = 1.
- M is torsion-free.
- All the atoms of *M* divide its Garside element Δ .
- Δ^n is a Garside element, for every $n \ge 1$.
- M satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

If *M* is a Garside monoid, then:

- M is conical, that is, if a, b ∈ M are so that a ⋅ b = 1, then a = 1 or b = 1.
- M is torsion-free.
- All the atoms of *M* divide its Garside element Δ .
- Δ^n is a Garside element, for every $n \ge 1$.
- M satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

If *M* is a Garside monoid, then:

- M is conical, that is, if a, b ∈ M are so that a ⋅ b = 1, then a = 1 or b = 1.
- M is torsion-free.
- All the atoms of *M* divide its Garside element Δ .
- Δ^n is a Garside element, for every $n \ge 1$.
- *M* satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

If *M* is a Garside monoid, then:

- M is conical, that is, if a, b ∈ M are so that a ⋅ b = 1, then a = 1 or b = 1.
- M is torsion-free.
- All the atoms of *M* divide its Garside element Δ .
- Δ^n is a Garside element, for every $n \ge 1$.
- M satisfies Ore's conditions. Then it is possible the following definition:

Garside Group

Quasi-centre

"Groupes de Garside", 2002

If G is a Garside group with Garside element Δ , and $a \in G^+$, then $a^{\Delta} \in G^+$.

Then, Δ permutes the atoms of G^+ by conjugation. Since these are finite in number, there exists $n \ge 1$ with: $\Lambda^n \in \mathcal{I}(G)$

"The Centre of Thin Gaussian Groups", J. Algebra, 2001

The quasi-centre of a Garside group G is the subgroup: $QZ(G) = \{g \in G \mid a^g \in G^+, \text{ for every } a \in G^+ \}$

Quasi-centre

"Groupes de Garside", 2002

If G is a Garside group with Garside element Δ , and $a \in G^+$, then $a^{\Delta} \in G^+$.

Then, Δ permutes the atoms of G^+ by conjugation. Since these are finite in number, there exists $n \ge 1$ with: $\Delta^n \in Z(G)$.

"The Centre of Thin Gaussian Groups", J. Algebra, 2001

The quasi-centre of a Garside group G is the subgroup: $QZ(G) = \{g \in G \mid a^g \in G^+, \text{ for every } a \in G^+\}$

Quasi-centre

"Groupes de Garside", 2002

If G is a Garside group with Garside element Δ , and $a \in G^+$, then $a^{\Delta} \in G^+$.

Then, Δ permutes the atoms of G^+ by conjugation. Since these are finite in number, there exists $n \ge 1$ with: $\Delta^n \in Z(G)$.

"The Centre of Thin Gaussian Groups", J. Algebra, 2001

The quasi-centre of a Garside group G is the subgroup: $QZ(G) = \{g \in G \mid a^g \in G^+, \text{ for every } a \in G^+\}$

Theorem (Picantin)

If G is a Garside group, QZ(G) is a finitely generated free abelian group.

A basis for the submonoid generating this subgroup is given.

Definition

A Garside group G is said pure Garside if QZ(G) is cyclic.

In can be shown that G is pure Garside if and only if Z(G) is cyclic.

Theorem (Picantin)

Theorem (Picantin)

If G is a Garside group, QZ(G) is a finitely generated free abelian group.

A basis for the submonoid generating this subgroup is given.

Definition

A Garside group G is said pure Garside if QZ(G) is cyclic.

In can be shown that G is pure Garside if and only if Z(G) is cyclic.

Theorem (Picantin)

Theorem (Picantin)

If G is a Garside group, QZ(G) is a finitely generated free abelian group.

A basis for the submonoid generating this subgroup is given.

Definition

A Garside group G is said pure Garside if QZ(G) is cyclic.

In can be shown that G is pure Garside if and only if Z(G) is cyclic.

Theorem (Picantin)

Theorem (Picantin)

If G is a Garside group, QZ(G) is a finitely generated free abelian group.

A basis for the submonoid generating this subgroup is given.

Definition

A Garside group G is said pure Garside if QZ(G) is cyclic.

In can be shown that G is pure Garside if and only if Z(G) is cyclic.

Theorem (Picantin)

Theorem (Picantin)

If G is a Garside group, QZ(G) is a finitely generated free abelian group.

A basis for the submonoid generating this subgroup is given.

Definition

A Garside group G is said pure Garside if QZ(G) is cyclic.

In can be shown that G is pure Garside if and only if Z(G) is cyclic.

Theorem (Picantin)

Zappa-Szép products

Zappa, in 1942, and Szép, in 1950, studied factorizations of a group *G* as product of a pair of subgroups. In the case of monoids, this product is called 'Zappa-Szép product'.

Definition (Zappa-Szép product)

A monoid *M* is the (internal) Zappa-Szép product of two submonoids A and *B*, $M = A \bowtie B$, if every element $x \in M$ can be uniquely written as $x = a \cdot b = b' \cdot a'$, with $a, a' \in A, b, b' \in B$.

Like the product of subgroups, the Zappa-Szép product of monoids is commutative, but it is not associative.

Zappa-Szép products

Zappa, in 1942, and Szép, in 1950, studied factorizations of a group *G* as product of a pair of subgroups. In the case of monoids, this product is called 'Zappa-Szép product'.

Definition (Zappa-Szép product)

A monoid *M* is the (internal) Zappa-Szép product of two submonoids A and *B*, $M = A \bowtie B$, if every element $x \in M$ can be uniquely written as $x = a \cdot b = b' \cdot a'$, with $a, a' \in A, b, b' \in B$.

Like the product of subgroups, the Zappa-Szép product of monoids is commutative, but it is not associative.

Volker Gebhardt and Stephen Tawn 2015 [2]

Theorem

If M is a Garside monoid, and $M = A \bowtie B$, then A and B are Garside monoids. Additionally, if Δ is a Garside monoid of M, $\Delta = a \cdot b$ with $a \in A$ and

 $b \in B$, then a, b are Garside elements of A and B, respectively.

Theorem

Suppose M = A ⋈ B and A, B are Garside monoids. Then M is a Garside monoid.

Volker Gebhardt and Stephen Tawn 2015 [2]

Theorem

If M is a Garside monoid, and $M = A \bowtie B$, then A and B are Garside monoids. Additionally, if Δ is a Garside monoid of M, $\Delta = a \cdot b$ with $a \in A$ and $b \in B$, then a b are Carrido elements of A and B respectively.

 $b \in B$, then a, b are Garside elements of A and B, respectively.

Theorem

Suppose $M = A \bowtie B$ and A, B are Garside monoids. Then M is a Garside monoid.

Indecomposable monoids

Definition (Indecomposable)

A Garside monoid *M* is indecomposable if it cannot be written as a Zappa-Szép product of two non-trivial submonoids.

Theorem

A Garside monoid is pure Garside if and only if it is indecomposable.

Since the are a finitely many atoms, the number of pure Garside submonoids when recursively factorizing a Garside monoid as the Zappa-Szép product of two submonoids is also finite.

Indecomposable monoids

Definition (Indecomposable)

A Garside monoid *M* is indecomposable if it cannot be written as a Zappa-Szép product of two non-trivial submonoids.

Theorem

A Garside monoid is pure Garside if and only if it is indecomposable.

Since the are a finitely many atoms, the number of pure Garside submonoids when recursively factorizing a Garside monoid as the Zappa-Szép product of two submonoids is also finite.

Pure factors

Any Garside monoid G^+ can be factorized as a recursive Zappa-Szép product of pure factors.

Uniqueness

If G is a Garside group and there are two factorizations $G^+ = H_1^+ \bowtie \ldots \bowtie H_n^+ = K_1^+ \bowtie \ldots \bowtie K_m^+$, (parentheses omitted) where the products of the submonoids are Zappa-Szép, and H_i^+, K_j^+ are pure Garside groups, then n = m and, for each $i = 1, \ldots n$, there is $j \in \{1, \ldots, n\}$ such that $H_i^+ = K_i^+$.

Pure factors

Any Garside monoid G^+ can be factorized as a recursive Zappa-Szép product of pure factors.

Uniqueness

If G is a Garside group and there are two factorizations $G^+ = H_1^+ \bowtie \ldots \bowtie H_n^+ = K_1^+ \bowtie \ldots \bowtie K_m^+$, (parentheses omitted) where the products of the submonoids are Zappa-Szép, and H_i^+, K_j^+ are pure Garside groups, then n = m and, for each i = 1, ..., n, there is $j \in \{1, ..., n\}$ such that $H_i^+ = K_i^+$.

Minimal Garside element

In [1], P. Dehornoy proved the existence of a (unique) minimal Garside element. Regarding to the factorization of *G*, we have the following result.

Minimal Garside element

Let *G* be a Garside group and let δ_i be the generators of the quasi-centre of the pure factors of $G^+ = H_1^+ \bowtie H_2^+ \bowtie \ldots \bowtie H_n^+$. Then $\Delta = \delta_1 \cdot \delta_2 \cdot \ldots \cdot \delta_n$ is the minimal Garside element of *G* (with respect to \leq_R and \leq_L).

For every t > 0,

$$\Delta^t = \delta_1^t \cdot \delta_2^t \cdot \ldots \cdot \delta_n^t$$

Minimal Garside element

In [1], P. Dehornoy proved the existence of a (unique) minimal Garside element. Regarding to the factorization of G, we have the following result.

Minimal Garside element

Let *G* be a Garside group and let δ_i be the generators of the quasi-centre of the pure factors of $G^+ = H_1^+ \bowtie H_2^+ \bowtie \ldots \bowtie H_n^+$. Then $\Delta = \delta_1 \cdot \delta_2 \cdot \ldots \cdot \delta_n$ is the minimal Garside element of *G* (with respect to \leq_R and \leq_L).

For every t > 0,

$$\Delta^t = \delta_1^t \cdot \delta_2^t \cdot \ldots \cdot \delta_n^t$$

Principal factors

Definition

If x_1, \ldots, x_r is a basis of the submonoid $QZ(G)^+$, then we may define N_i as the subgroup generated by the atoms dividing the element x_i .

Principal factorization

If G^+ is a Garside monoid, then $G^+ = N_1^+ \bowtie N_2^+ \bowtie \dots \bowtie N_r^+.$ In particular, the product of the N_i is pairwise permutable

Principal factors

Definition

If x_1, \ldots, x_r is a basis of the submonoid $QZ(G)^+$, then we may define N_i as the subgroup generated by the atoms dividing the element x_i .

Principal factorization

If G^+ is a Garside monoid, then $G^+ = N_1^+ \bowtie N_2^+ \bowtie \cdots \bowtie N_r^+$. In particular, the product of the N_j is pairwise permutable.

Garside elements

Characterization

If Δ_j be the minimal Garside element of the principal factor N_j . Then Δ is a Garside element of G if and only if $\Delta = \Delta_1^{t_1} \cdot \ldots \cdot \Delta_r^{t_r}$, for some $t_1 \ldots t_r > 0$.

Isomorphic pure factors

If N_j is a principal factor of G, then the pure factors of N_j are all isomorphic.

Proposition

A Garside group is abelian if and only if its principal factors are all cyclic.

Garside elements

Characterization

If Δ_j be the minimal Garside element of the principal factor N_j . Then Δ is a Garside element of G if and only if $\Delta = \Delta_1^{t_1} \cdot \ldots \cdot \Delta_r^{t_r}$, for some $t_1 \ldots t_r > 0$.

Isomorphic pure factors

If N_j is a principal factor of G, then the pure factors of N_j are all isomorphic.

Proposition

A Garside group is abelian if and only if its principal factors are all cyclic.

Garside elements

Characterization

If Δ_j be the minimal Garside element of the principal factor N_j . Then Δ is a Garside element of G if and only if $\Delta = \Delta_1^{t_1} \cdot \ldots \cdot \Delta_r^{t_r}$, for some $t_1 \ldots t_r > 0$.

Isomorphic pure factors

If N_j is a principal factor of G, then the pure factors of N_j are all isomorphic.

Proposition

A Garside group is abelian if and only if its principal factors are all cyclic.

Example

The Garside monoid

 $G^+ = \{a, b, c, d \mid ab = ba, ac = ca, bc = cb, a^d = a, b^d = c, c^d = b\},$ admits two different factorizations

$$G^{+} = \left(\left(A^{+} \times B^{+} \right) \times C^{+} \right) \rtimes D^{+}, \tag{1}$$

where the action is given by $a^d = a$, $b^d = c$, $c^d = b$, and

$$G^{+} = (B^{+} \times C^{+}) \rtimes (A^{+} \times D^{+}), \qquad (2)$$

with action $b^a = b$, $c^a = c$, $b^d = c$, $c^d = b$.

In particular, we see that the pure factors A^+ , B^+ , C^+ , D^+ are the same for both factorizations, and also their length.

Example

Figure: Decomposition (2)

 $\overline{\Delta} = b \cdot c \cdot a \cdot d$ is the minimal Garside element of \overline{G}^+ , and (bc), (ad) are quasi-central in \overline{G}^+ . Moreover, conditions bd = dc, cd = db imply that b, c cannot be quasi-central while $d \in QZ(\overline{G})^+$ since ad = da. In particular

 $G^{+} = \langle b, c \rangle \bowtie \langle a \rangle \bowtie \langle d \rangle, \qquad QZ(G)^{+} = \langle bc, a, d \rangle,$ and the set of all the Garside elements of G is: $\{(bc)^{e_1} a^{e_2} d^{e_3} \mid e_i \in \mathbb{N}, \text{ and } e_i \geq 1 \text{ for all } i\}.$

Vniversitat d València

Garside Groups Factorizations

Grazie Mille !

Presented by: Raúl Sastriques Guardiola Directed by: Sergio Camp and Adolfo Ballester

Bibliography

- Patrick Dehornoy. "Groupes de Garside". In: Annales scientifiques de l'Ecole normale supérieure. Vol. 35. No longer published by Elsevier, 2002, pp. 267–306.
- [2] Volker Gebhardt and Stephen Tawn. "Zappa-Szép products of Garside monoids". In: Mathematische Zeitschrift 282.1 (Feb. 2016), pp. 341–369. ISSN: 1432-1823.
- [3] Matthieu Picantin. "The Center of Thin Gaussian Groups". In: Journal of Algebra 245.1 (2001), pp. 92–122. ISSN: 0021-8693.