Quasi-linear cycle sets 00000000

UniSalento

Metahomomorphisms on groups and the Yang-Baxter equation

> Giuseppina Pinto giuseppina.pinto@unisalento.it University of Salento

Advances in Group Theory and Applications

June 28, Lecce

イロト イポト イヨト イヨト

Giuseppina Pinto

Definition

A set-theoretic solution to the Yang-Baxter equation (YBE) is a pair (X, r), where X is a non-empty set and $r : X \times X \to X \times X$, $(x, y) \mapsto (\lambda_x(y), \rho_y(x))$ is a map such that

$$(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r).$$

If λ_x [resp. ρ_x] is bijective, for every $x \in X$, the solution (X, r) is said to be *left* [resp. *right*] *non-degenerate*.

イロト イヨト イヨト イヨト

3

UniSalento

< ロ > < 部 > < き > < き > ...

Examples

- The flip map r(x, y) = (y, x);
- (Lyubaschenko) If f, g are maps $X \to X$, then

$$r(x,y) = (f(y),g(x)),$$

for all $x, y \in X$, is a solution iff fg = gf;

Giuseppina Pinto

Quasi-linear cycle sets 00000000

Examples

• (Venkov) Let X be a set , \circ be an operation on X. Then

$$r(x,y)=(x\circ y,x),$$

for all $x, y \in X$, is a solution iff

$$x \circ (y \circ z) = (x \circ y) \circ (x \circ z);$$

• (Gu) Let G be a group , au be a map from G to itself. Then

$$r(x,y) = (xy\tau(x)^{-1},\tau(x))$$

for all $x, y \in G$, is a solution iff

$$\tau(xy\tau(x)^{-1}) = \tau(x)\tau(y)\tau^2(x)^{-1}.$$

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … のへで

UniSalento

Giuseppina Pinto

Quasi-linear cycle sets 00000000

UniSalento

Examples

• (Venkov) Let X be a set , \circ be an operation on X. Then

$$r(x,y)=(x\circ y,x),$$

for all $x, y \in X$, is a solution iff

$$x \circ (y \circ z) = (x \circ y) \circ (x \circ z);$$

• (Gu) Let G be a group , au be a map from G to itself. Then

$$r(x,y) = (xy\tau(x)^{-1},\tau(x))$$

for all $x, y \in G$, is a solution iff

$$\tau(xy\tau(x)^{-1}) = \tau(x)\tau(y)\tau^2(x)^{-1}.$$

イロト イヨト イヨト

Giuseppina Pinto

UniSalento

Examples

• (Venkov) Let X be a set , \circ be an operation on X. Then

$$r(x,y)=(x\circ y,x),$$

for all $x, y \in X$, is a solution iff

$$x \circ (y \circ z) = (x \circ y) \circ (x \circ z);$$

• (Gu) Let G be a group , τ be a map from G to itself. Then

$$r(x,y) = (xy\tau(x)^{-1},\tau(x))$$

for all $x, y \in G$, is a solution iff

$$\tau(xy\tau(x)^{-1}) = \tau(x)\tau(y)\tau^2(x)^{-1}.$$

イロト イヨト イヨト

Giuseppina Pinto

Quasi-linear cycle sets 00000000

Examples

• (Venkov) Let X be a set , \circ be an operation on X. Then

$$r(x,y)=(x\circ y,x),$$

for all $x, y \in X$, is a solution iff

$$x \circ (y \circ z) = (x \circ y) \circ (x \circ z);$$

• (Gu) Let G be a group , au be a map from G to itself. Then

$$r(x,y) = (xy\tau(x)^{-1},\tau(x))$$

for all $x, y \in G$, is a solution iff

$$\tau(xy\tau(x)^{-1}) = \tau(x)\tau(y)\tau^2(x)^{-1}.$$

イロト イヨト イヨト

Quasi-linear cycle sets 00000000

UniSalento

Examples

• (Venkov) Let X be a set , \circ be an operation on X. Then

$$r(x,y)=(x\circ y,\mathbf{x}),$$

for all $x, y \in X$, is a solution iff

$$x \circ (y \circ z) = (x \circ y) \circ (x \circ z);$$

• (Gu) Let G be a group , au be a map from G to itself. Then

$$r(x,y) = (xy\tau(x)^{-1}, \tau(x))$$

for all $x, y \in G$, is a solution iff

$$\tau(xy\tau(x)^{-1}) = \tau(x)\tau(y)\tau^2(x)^{-1}.$$

イロト イヨト イヨト

Giuseppina Pinto

Quasi-linear cycle sets 00000000

UniSalento

Examples

• (Venkov) Let X be a set , \circ be an operation on X. Then

$$r(x,y)=(x\circ y,x),$$

for all $x, y \in X$, is a solution iff

$$x \circ (y \circ z) = (x \circ y) \circ (x \circ z);$$

• (Gu) Let G be a group , au be a map from G to itself. Then

$$r(x,y) = (xy\tau(x)^{-1},\tau(x))$$

for all $x, y \in G$, is a solution iff

$$\tau(xy\tau(x)^{-1}) = \tau(x)\tau(y)\tau^{2}(x)^{-1}.$$

イロト イヨト イヨト

Giuseppina Pinto

э

UniSalento

イロト イヨト イヨト イヨト

Definition (Gu, '97)

Let G be a group and τ be a map from G to itself. If τ satisfies

$$\tau(xy\tau(x)^{-1}) = \tau(x)\tau(y)\tau^{2}(x)^{-1},$$

for all $x, y \in G$, then τ is called *metahomomorphism* on group G

Some examples:

- All the endomorphisms of *G*;
- The map $\tau(x) = x^{-1}$;
- The map $k_g(x) = g$.

э

UniSalento

イロト イヨト イヨト イヨト

Definition (Gu, '97)

Let G be a group and τ be a map from G to itself. If τ satisfies

$$\tau(xy\tau(x)^{-1}) = \tau(x)\tau(y)\tau^{2}(x)^{-1},$$

for all $x, y \in G$, then τ is called *metahomomorphism* on group G

Some examples:

- All the endomorphisms of G;
- The map $\tau(x) = x^{-1}$;
- The map $k_g(x) = g$.

Giuseppina Pinto

Definition (Gu, '97)

Let G be a group and τ be a map from G to itself. If τ satisfies

$$\tau(xy\tau(x)^{-1}) = \tau(x)\tau(y)\tau^{2}(x)^{-1},$$

for all $x, y \in G$, then τ is called *metahomomorphism* on group G

Some examples:

- All the endomorphisms of G;
- The map $\tau(x) = x^{-1}$;
- The map $k_g(x) = g$.

Giuseppina Pinto

Metahomomorphisms on groups and the Yang-Baxter equation

э

イロト イヨト イヨト イヨト

э

UniSalento

イロト イヨト イヨト イヨト

Definition (Gu, '97)

Let G be a group and τ be a map from G to itself. If τ satisfies

$$\tau(xy\tau(x)^{-1}) = \tau(x)\tau(y)\tau^{2}(x)^{-1},$$

for all $x, y \in G$, then τ is called *metahomomorphism* on group G

Some examples:

- All the endomorphisms of G;
- The map $\tau(x) = x^{-1}$;
- The map $k_g(x) = g$.

If G is a group, 1 its neutral element and au a metahomomorphism, in general $au(1) \neq 1$.

For example: $k_g(1) = g$.

Definition

If $\tau(1) = 1$, τ is called *unitary* methomomorphism.

UniSalento

Giuseppina Pinto

If G is a group, 1 its neutral element and τ a metahomomorphism, in general $\tau(1) \neq 1$. For example: $k_g(1) = g$.

Definition

If $\tau(1) = 1$, τ is called *unitary* methomomorphism.

UniSalento

Giuseppina Pinto Metahomomorphisms on groups and the Yang-Baxter equation If G is a group, 1 its neutral element and τ a metahomomorphism, in general $\tau(1) \neq 1$. For example: $k_g(1) = g$.

Definition

If $\tau(1) = 1$, τ is called *unitary* methomomorphism.

UniSalento

Giuseppina Pinto

Proposition (Gu, '98)

If τ is a metahomomorphism on a group G, then

 $\phi(x) := \tau(x)\tau(1)^{-1}$

is a unitary metahomomorphism on G.

For example: $\phi(x) := k_g(x)k_g(1)^{-1}$ is a unitary metahomomorphism

 $\phi(1) = k_g(1)k_g(1)^{-1} = gg^{-1} = 1.$

▲日 ▶ ▲ 聞 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 回 ▶ ▲ 回 ▶

UniSalento

Giuseppina Pinto

3

UniSalento

・ロト ・四ト ・ヨト ・ヨト

Proposition (Gu, '98)

If τ is a metahomomorphism on a group G, then

$$\phi(x) := \tau(x)\tau(1)^{-1}$$

is a unitary metahomomorphism on G.

For example: $\phi(x) := k_g(x)k_g(1)^{-1}$ is a unitary metahomomorphism

$$\phi(1) = k_g(1)k_g(1)^{-1} = gg^{-1} = 1.$$

Giuseppina Pinto

Theorem (Gu, '97)

Let G be a finite simple group, τ be a unitary metahomomorphism on G. Then, τ must be a homomorphism or τ satisfies $\tau(x) = x^{-1}$, for every $x \in G$.

What can we say about abelian groups? Let G be an abelian group. Just for convenience, we denote the operation on G by + and the unit in G by 0. Therefore a map τ on G is a metahomomorphism iff

$$\tau(x+y-\tau(x))=\tau(x)+\tau(y)-\tau^2(x),$$

for all $x, y \in X$.

イロト イポト イヨト イヨト

UniSalento

イロト イポト イヨト イヨト

Theorem (Gu, '97)

Let G be a finite simple group, τ be a unitary metahomomorphism on G. Then, τ must be a homomorphism or τ satisfies $\tau(x) = x^{-1}$, for every $x \in G$.

What can we say about abelian groups?

Let G be an abelian group. Just for convenience, we denote the operation on G by + and the unit in G by 0. Therefore a map τ on G is a metahomomorphism iff

$$\tau(x+y-\tau(x))=\tau(x)+\tau(y)-\tau^2(x),$$

for all $x, y \in X$.

UniSalento

イロト イヨト イヨト

Theorem (Gu, '97)

Let G be a finite simple group, τ be a unitary metahomomorphism on G. Then, τ must be a homomorphism or τ satisfies $\tau(x) = x^{-1}$, for every $x \in G$.

What can we say about abelian groups? Let G be an abelian group. Just for convenience, we denote the operation on G by + and the unit in G by 0. Therefore a map τ on G is a metahomomorphism iff

$$\tau(x+y-\tau(x))=\tau(x)+\tau(y)-\tau^2(x),$$

for all $x, y \in X$.

Giuseppina Pinto

Proposition (Ding, GU, 2006)

Let G be an abelian group and $\tau : G \rightarrow G$. Then, the following statements are equivalent:

- i) au is a unitary metahomomorphism;
- (ii) there exist a subgroup H of G, a representative coset X of G/H containing 0, a function $f : X \to H$ such that f(0) = 0 and $\alpha \in End(H)$ such that $\tau(x + h) = x + f(x) + \alpha(h)$, for all $x \in X$, $h \in H$.

・ロト・日本・日本・日本・日本・日本

UniSalento

Giuseppina Pinto

Proposition (Ding, GU, 2006)

Let G be an abelian group and $\tau : G \rightarrow G$. Then, the following statements are equivalent:

- (i) τ is a unitary metahomomorphism;
- (ii) there exist a subgroup H of G, a representative coset X of G/H containing 0, a function $f : X \to H$ such that f(0) = 0 and $\alpha \in End(H)$ such that $\tau(x + h) = x + f(x) + \alpha(h)$, for all $x \in X$, $h \in H$.

Giuseppina Pinto

イロト イポト イヨト イヨト

Let G be an abelian group and τ a unitary metahomomorphism on G, then (X, r), where $r : G \times G \to G \times G$, is a set-theoretic solution to the YBE if

$$r(x,y) = (x+y-\tau(x),\tau(x)).$$

Definition

A set-theoretic solution (X, r) is said to be *involutive* if if

 $r^2 = id_{X \times X}.$

▲日▼▲□▼▲回▼▲回▼ 回 ろくの

UniSalento

Giuseppina Pinto

Let G be an abelian group and τ a unitary metahomomorphism on G, then (X, r), where $r : G \times G \rightarrow G \times G$, is a set-theoretic solution to the YBE if

$$r(x,y) = (x+y-\tau(x),\tau(x)).$$

Definition

A set-theoretic solution (X, r) is said to be *involutive* if if

 $r^2 = id_{X \times X}.$

▲ロト▲母ト▲臣ト▲臣ト 臣 のへで

UniSalento

Giuseppina Pinto

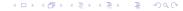
If G is an abelian group and τ a unitary metahomomorphism on G, then

$$r(x,y) = (x+y-\tau(x),\tau(x)),$$

is an involutive non-degenerate set-theoretic solution iff

$$x+y-\tau(x)=\tau^{-1}(y).$$

This is an already known solution (Lyubaschenko's solution).



UniSalento

Giuseppina Pinto

If G is an abelian group and τ a unitary metahomomorphism on G, then

$$r(x,y) = (x+y-\tau(x),\tau(x)),$$

is an involutive non-degenerate set-theoretic solution iff

$$x+y-\tau(x)=\tau^{-1}(y).$$

This is an already known solution (Lyubaschenko's solution).

UniSalento

If G is an abelian group and τ a unitary metahomomorphism on G, then

$$r(x,y) = (x + y - \tau(x), \tau(x)),$$

is an involutive non-degenerate set-theoretic solution iff

$$x+y-\tau(x)=\tau^{-1}(y).$$

This is an already known solution (Lyubaschenko's solution).

UniSalento

In the involutive non-degenerate case Gu's solutions on abelian groups do not provide new examples of solution.

Using unitary metahomomorphism on abelian groups is it possible to define, in a different way, other involutive set-theoretic solutions?

UniSalento

Giuseppina Pinto Metahomomorphisms on groups and the Yang-Baxter equation In the involutive non-degenerate case Gu's solutions on abelian groups do not provide new examples of solution.

Using unitary metahomomorphism on abelian groups is it possible to define, in a different way, other involutive set-theoretic solutions?

Giuseppina Pinto Metahomomorphisms on groups and the Yang-Baxter equation

UniSalento

UniSalento

イロト イヨト イヨト イヨト

Definition (Rump, 2005)

Let X be a non-empty set and \cdot a binary operation on X. The pair (X, \cdot) is said to be a *cycle set* if each left multiplication $\sigma_x(y) := x \cdot y$ is bijective, for all $x, y \in X$ and the following

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z),$$

for all $x, y, z \in X$.

(Rump) There exists a bijective correspondence between cycle set and left non-degenerate involutive set-theoretic solutions.

Giuseppina Pinto

Definition (Rump, 2005)

Let X be a non-empty set and \cdot a binary operation on X. The pair (X, \cdot) is said to be a *cycle set* if each left multiplication $\sigma_x(y) := x \cdot y$ is bijective, for all $x, y \in X$ and the following

$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z),$$

for all $x, y, z \in X$.

(Rump) There exists a bijective correspondence between cycle set and left non-degenerate involutive set-theoretic solutions.

イロト イヨト イヨト イヨト

UniSalento

イロト イヨト イヨト イヨト

Definition (Rump, 2016)

A triple $(G, +, \cdot)$ is said to be a *quasi-linear cycle set* if (G, \cdot) is a cycle sets, (G, +) is an abelian group and

$$x \cdot (y+z) = x \cdot y + (x-y) \cdot z$$

holds for all $x, y, z \in G$. The permutation τ given by $\tau(x) := 0 \cdot x$ for every $x \in G$ is called the *associated permutation* to G.

For example:

Let G be an abelian group, then any automorphism τ of G makes G into a quasi-linear left cycle set with $x \cdot y = \tau(y)$, for all $x, y \in G$.

Definition (Rump, 2016)

A triple $(G, +, \cdot)$ is said to be a *quasi-linear cycle set* if (G, \cdot) is a cycle sets, (G, +) is an abelian group and

$$x \cdot (y+z) = x \cdot y + (x-y) \cdot z$$

holds for all $x, y, z \in G$. The permutation τ given by $\tau(x) := 0 \cdot x$ for every $x \in G$ is called the *associated permutation* to G.

For example:

Let G be an abelian group, then any automorphism τ of G makes G into a quasi-linear left cycle set with $x \cdot y = \tau(y)$, for all $x, y \in G$.

イロト イヨト イヨト イヨト

Definition (Rump, 2016)

A triple $(G, +, \cdot)$ is said to be a *quasi-linear cycle set* if (G, \cdot) is a cycle sets, (G, +) is an abelian group and

$$x \cdot (y+z) = x \cdot y + (x-y) \cdot z$$

holds for all $x, y, z \in G$. The permutation τ given by $\tau(x) := 0 \cdot x$ for every $x \in G$ is called the *associated permutation* to G.

For example:

Let G be an abelian group, then any automorphism τ of G makes G into a quasi-linear left cycle set with $x \cdot y = \tau(y)$, for all $x, y \in G$.

< ロ > < 部 > < き > < き > ...

Proposition (Rump, 2016)

Let $(G, +, \cdot)$ be a quasi-linear cycle set and τ its associated permutation. Then $\tau(0) = 0$ and

$$\sigma_x(y) = \tau(y-x) - \tau(-y)$$

for all $x, y \in X$.

Conversely

Proposition (Rump, 2016)

Let G be an abelian group and let τ be a permutation of G with $\tau(0) = 0$. Define

$$\sigma_x(y) := \tau(y-x) - \tau(-y),$$

for all $x, y \in G$. Then, $(G, +, \cdot)$ is a quasi-linear cycle set iff $\tau(x \cdot y) = \tau(x) \cdot \tau(y)$.

UniSalento

Proposition (Rump, 2016)

Let $(G, +, \cdot)$ be a quasi-linear cycle set and τ its associated permutation. Then $\tau(0) = 0$ and

$$\sigma_x(y) = \tau(y-x) - \tau(-y)$$

for all $x, y \in X$.

Conversely

Proposition (Rump, 2016)

Let G be an abelian group and let τ be a permutation of G with $\tau(0) = 0$. Define

$$\sigma_x(y) := \tau(y-x) - \tau(-y),$$

for all $x, y \in G$. Then, $(G, +, \cdot)$ is a quasi-linear cycle set iff $\tau(x \cdot y) = \tau(x) \cdot \tau(y)$.

イロト イポト イヨト イヨト

UniSalento

イロト イポト イヨト イヨト

Definition (Rump, 2016)

If $(G, \cdot, +)$ is a quasi-linear cycle sets we can define two standard subgroups:

- the Socle of G is the set

$$Soc(G) := \{x | x \in G \ \forall y \in G \ x \cdot y = 0 \cdot y\};$$

- the Radical of G is the subgroup generated by the elements

$$0 \cdot x - x$$

and it is indicated by Rad(G)

Giuseppina Pinto

UniSalento

イロト イポト イヨト イヨト

Definition (Rump, 2016)

If $(G, \cdot, +)$ is a quasi-linear cycle sets we can define two standard subgroups:

- the Socle of G is the set

$$Soc(G) := \{x | x \in G \ \forall y \in G \ x \cdot y = 0 \cdot y\};$$

- the Radical of G is the subgroup generated by the elements

$$0 \cdot x - x$$

and it is indicated by Rad(G)

Giuseppina Pinto

Theorem (Castelli, Catino, Miccoli, P., 2018)

Let $(G, +, \cdot)$ be a quasi-linear cycle set and τ be its associated permutation. Then, the following statements are equivalent:

(i) $Rad(G) \subseteq Soc(G)$;

(ii) τ is a unitary metahomomorphism.

A unitary metahomomorphism of an abelian group is not necessarily the associated permutation of a quasi-linear cycle set.

Proposition (Castelli, Catino, Miccoli, P., 2018)

If τ is a unitary metahomomorphism of an abelian group G such that $Rad(\tau) \subseteq Fix(\tau)$, then τ is the associated permutation to a quasi-linear cycle set with G as underlying additive group and such that $Rad(G) \subseteq Fix(G)$.

Where $Rad(\tau)$ is the subgroup generated by the elements $\tau(x) - x$ and the $Fix(G) := Soc(G) \cap Fix(\tau)$.

イロト イヨト イヨト イヨト

A unitary metahomomorphism of an abelian group is not necessarily the associated permutation of a quasi-linear cycle set.

Proposition (Castelli, Catino, Miccoli, P., 2018)

If τ is a unitary metahomomorphism of an abelian group G such that $Rad(\tau) \subseteq Fix(\tau)$, then τ is the associated permutation to a quasi-linear cycle set with G as underlying additive group and such that $Rad(G) \subseteq Fix(G)$.

Where $Rad(\tau)$ is the subgroup generated by the elements $\tau(x) - x$ and the $Fix(G) := Soc(G) \cap Fix(\tau)$.

・ロト ・四ト ・ヨト ・ヨト

If a unitary metahomomorphism τ is the associated permutation of a quasi-linear cycle set, we know that

$$\sigma_x(y) = \tau(y-x) - \tau(-y).$$

(Rump) Let $r: G \times G \rightarrow G \times G$ be the map given by

$$r(x, y) = (\sigma_x^{-1}(y), \sigma_{\sigma_x^{-1}(y)}(x)),$$

for all $x, y \in G$. Then (X, r) is an involutive non-degenerate set-theoretic solution to the Yang-Baxter equation.

UniSalento

Giuseppina Pinto

If a unitary metahomomorphism τ is the associated permutation of a quasi-linear cycle set, we know that

$$\sigma_{\mathsf{x}}(\mathsf{y}) = \tau(\mathsf{y}-\mathsf{x}) - \tau(-\mathsf{y}).$$

(Rump) Let $r: G \times G \rightarrow G \times G$ be the map given by

$$r(x, y) = (\sigma_x^{-1}(y), \sigma_{\sigma_x^{-1}(y)}(x)),$$

for all $x, y \in G$. Then (X, r) is an involutive non-degenerate set-theoretic solution to the Yang-Baxter equation.

イロト イポト イヨト イヨト

Thanks for the attention!

UniSalento

Giuseppina Pinto Metahomomorphisms on groups and the Yang-Baxter equation