LEFT 3-ENGEL ELEMENTS IN GROUPS

Marialaura Noce

University of the Basque Country - University of Salerno

(joint work with G. Tracey and G. Traustason)

Advances in Group Theory and Applications

June 2019 Lecce

Engel elements and groups

- 2 Known results
- 3 The "Gunnar" Lie algebra E
- Our counterexample
- 5 Last, but not least

 Let G be a group. We say that g ∈ G is a right Engel element if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [g, nx] = 1, where

$$[g, x] = g^{-1}g^x$$
 and $[g, {}_{n}x] = [[g, x, \stackrel{n-1}{\dots}, x], x]$ if $n > 1$.

 Let G be a group. We say that g ∈ G is a right Engel element if for any x ∈ G, ∃n = n(g, x) ≥ 1 such that [g, nx] = 1, where

$$[g,x] = g^{-1}g^x$$
 and $[g, {}_nx] = [[g, x, \stackrel{n-1}{\dots}, x], x]$ if $n > 1$.

• If *n* can be chosen independently of *x*, we say that *g* is right *n*-Engel or bounded right Engel element.

• Let G be a group. We say that $g \in G$ is a right Engel element if for any $x \in G$, $\exists n = n(g, x) \ge 1$ such that [g, nx] = 1, where

$$[g,x] = g^{-1}g^x$$
 and $[g, {}_nx] = [[g, x, \stackrel{n-1}{\dots}, x], x]$ if $n > 1$.

- If *n* can be chosen independently of *x*, we say that *g* is right *n*-Engel or bounded right Engel element.
- Similarly g is (bounded) left Engel if for any $x \in G$, $\exists n = n(g, x) \ge 1$ such that [x, ng] = 1 ($\exists n = n(g) \ge 1$ such that [x, ng] = 1).

• $L(G) = \{ \text{left Engel elements of } G \}$

- $L(G) = \{ \text{left Engel elements of } G \}$
- $R(G) = \{ \text{right Engel elements of } G \}$

- $L(G) = \{ \text{left Engel elements of } G \}$
- $R(G) = \{ right Engel elements of G \}$
- $L_n(G) = \{ \text{bounded left Engel elements of } G \}$

- $L(G) = \{ \text{left Engel elements of } G \}$
- $R(G) = \{ right Engel elements of G \}$
- $L_n(G) = \{ \text{bounded left Engel elements of } G \}$
- $R_n(G) = \{$ bounded right Engel elements of $G \}$

- $L(G) = \{ \text{left Engel elements of } G \}$
- $R(G) = \{ right Engel elements of G \}$
- $L_n(G) = \{ \text{bounded left Engel elements of } G \}$
- $R_n(G) = \{$ bounded right Engel elements of $G\}$

Relation between these sets: Heineken's results

- $R_n(G)^{-1} \subseteq L_{n+1}(G)$
- $R(G)^{-1} \subseteq L(G)$

$$[x, _{n}y] = 1.$$

$$[x, _{n}y] = 1.$$

(Some) Facts:

$$[x, _n y] = 1.$$

(Some) Facts:

• If G is locally nilpotent, then G is Engel.

$$[x, _n y] = 1.$$

(Some) Facts:

- If G is locally nilpotent, then G is Engel.
- If G is of exponent 3, then G is 2-Engel. (Burnside)

2 Known results

3 The "Gunnar" Lie algebra *E*

4 Our counterexample

5 Last, but not least

n-Engel groups

- G is 1-Engel \iff G is abelian.
- G is 2-Engel \implies G is nilpotent of class \leq 3 (Burnside, Hopkins, Levi)
- G is 3-Engel \implies G is locally nilpotent (Heineken)
- G is 4-Engel \implies G is locally nilpotent (Havas and Vaughan-Lee)

n-Engel groups

- G is 1-Engel \iff G is abelian.
- G is 2-Engel \implies G is nilpotent of class \leq 3 (Burnside, Hopkins, Levi)
- G is 3-Engel \implies G is locally nilpotent (Heineken)
- G is 4-Engel \implies G is locally nilpotent (Havas and Vaughan-Lee)

Right *n*-Engel elements

- x right 1-Engel $\iff x \in Z(G)$.
- x right 2-Engel ⇒ x left 2-Engel. Right 2-Engel elements form a characteristic subgroup. (Kappe)
- x right 3-Engel $\implies \langle x \rangle^G$ nilpotent of class \leq 3. (Newell)

If $g \in HP(G)$, then g is left Engel.

- Take $g \in HP(G)$ and $x \in G$
- Then $[g, x] \in HP(G)$

If $g \in HP(G)$, then g is left Engel.

- Take $g \in HP(G)$ and $x \in G$
- Then $[g, x] \in HP(G)$
- Denote $K = \langle g, [g, x] \rangle$

If $g \in HP(G)$, then g is left Engel.

- Take $g \in HP(G)$ and $x \in G$
- Then $[g, x] \in HP(G)$
- Denote $K = \langle g, [g, x] \rangle$
- $K \leq \operatorname{HP}(G)$

If $g \in HP(G)$, then g is left Engel.

- Take $g \in HP(G)$ and $x \in G$
- Then $[g, x] \in HP(G)$
- Denote $K = \langle g, [g, x] \rangle$
- $K \leq \operatorname{HP}(G)$
- K is nilpotent and so [x, g] = 1 for some n > 0.

If $g \in HP(G)$, then g is left Engel.

Proof.

- Take $g \in HP(G)$ and $x \in G$
- Then $[g, x] \in HP(G)$
- Denote $K = \langle g, [g, x] \rangle$
- *K* ≤ HP(*G*)
- K is nilpotent and so [x, g] = 1 for some n > 0.

 \implies g is left Engel.

Recall: $a \in HP(G) \Longrightarrow a \in L(G)$.

Recall: $a \in HP(G) \Longrightarrow a \in L(G)$. Is the converse true? YES

- Groups satisfying max (Baer)
- Solvable groups (Gruenberg)

Recall: $a \in HP(G) \Longrightarrow a \in L(G)$.

Is the converse true? YES .. sometimes!

- Groups satisfying max (Baer)
- Solvable groups (Gruenberg)

In general NO: Golod's examples.

Recall: $a \in HP(G) \Longrightarrow a \in L(G)$.

Is the converse true? YES .. sometimes!

- Groups satisfying max (Baer)
- Solvable groups (Gruenberg)

In general NO: Golod's examples.

Case of bounded Engel elements:

Recall: $a \in HP(G) \Longrightarrow a \in L(G)$.

Is the converse true? YES .. sometimes!

- Groups satisfying max (Baer)
- Solvable groups (Gruenberg)

In general NO: Golod's examples.

Case of bounded Engel elements:

•
$$a \in L_2(G) \Longrightarrow a \in HP(G)$$

Recall: $a \in HP(G) \Longrightarrow a \in L(G)$.

Is the converse true? YES .. sometimes!

- Groups satisfying max (Baer)
- Solvable groups (Gruenberg)

In general NO: Golod's examples.

Case of bounded Engel elements:

- $a \in L_2(G) \Longrightarrow a \in HP(G)$
- Open in general for other values of *n*.

Recall: $a \in HP(G) \Longrightarrow a \in L(G)$.

Is the converse true? YES .. sometimes!

- Groups satisfying max (Baer)
- Solvable groups (Gruenberg)

In general NO: Golod's examples.

Case of bounded Engel elements:

• $a \in L_2(G) \Longrightarrow a \in HP(G)$

- Open in general for other values of *n*.
- For *n* large enough there are left *n*-Engel elements that are not in HP(G). (Lysenok, Ivanov)

Recall: $a \in HP(G) \Longrightarrow a \in L(G)$.

Is the converse true? YES .. sometimes!

- Groups satisfying max (Baer)
- Solvable groups (Gruenberg)

In general NO: Golod's examples.

Case of bounded Engel elements:

• $a \in L_2(G) \Longrightarrow a \in HP(G)$

- Open in general for other values of *n*.
- For *n* large enough there are left *n*-Engel elements that are not in HP(G). (Lysenok, Ivanov)

Question (Abdollahi, 2010)

What is the least positive integer n for which there is a group G with $L_n(G) \not\subseteq HP(G)$?

Marialaura Noce (UPV/EHU - UNISA)

Left 3-Engel elements

Recall that

x right 3-Engel $\implies \langle x \rangle^{\mathsf{G}}$ nilpotent of class ≤ 3
Recall that

x right 3-Engel
$$\implies \langle x \rangle^{G}$$
 nilpotent of class ≤ 3

Does the same hold for left 3-Engel elements?

Recall that

x right 3-Engel $\implies \langle x \rangle^{G}$ nilpotent of class ≤ 3

Does the same hold for left 3-Engel elements?

Some recent results: take $a \in L_3(G)$

Recall that

x right 3-Engel $\implies \langle x \rangle^{\mathsf{G}}$ nilpotent of class ≤ 3

Does the same hold for left 3-Engel elements?

Some recent results: take $a \in L_3(G)$

• If a has odd order, then $a \in HP(G)$ (Jabara, Traustason)

Recall that

x right 3-Engel $\implies \langle x \rangle^{\mathsf{G}}$ nilpotent of class ≤ 3

Does the same hold for left 3-Engel elements?

Some recent results: take $a \in L_3(G)$

- If a has odd order, then $a \in HP(G)$ (Jabara, Traustason)
- If G has exponent 5, then $a \in HP(G)$ (Tracey, Traustason)

Recall that

x right 3-Engel $\implies \langle x \rangle^{\mathsf{G}}$ nilpotent of class ≤ 3

Does the same hold for left 3-Engel elements?

Some recent results: take $a \in L_3(G)$

- If a has odd order, then $a \in HP(G)$ (Jabara, Traustason)
- If G has exponent 5, then $a \in HP(G)$ (Tracey, Traustason)
- (reduction) It suffices to deal with elements of order 2 (Tracey, Traustason)

Recall that

x right 3-Engel $\implies \langle x \rangle^{\mathsf{G}}$ nilpotent of class ≤ 3

Does the same hold for left 3-Engel elements?

Some recent results: take $a \in L_3(G)$

- If a has odd order, then $a \in HP(G)$ (Jabara, Traustason)
- If G has exponent 5, then $a \in HP(G)$ (Tracey, Traustason)
- (reduction) It suffices to deal with elements of order 2 (Tracey, Traustason)

Theorem (-, Traustason, Tracey)

Does the same hold for left 3-Engel elements? No!

Engel elements and groups

2 Known results

3 The "Gunnar" Lie algebra E

- 4 Our counterexample
- 5 Last, but not least

• Let ${\mathbb F}$ be a field of characteristic 2.

- Let ${\mathbb F}$ be a field of characteristic 2.
- Let $F(\mathbb{N})$ denote the set of all finite, non-empty subsets of \mathbb{N} .

- Let \mathbb{F} be a field of characteristic 2.
- Let $F(\mathbb{N})$ denote the set of all finite, non-empty subsets of \mathbb{N} .
- For each $A \in F(\mathbb{N})$, let u_A , v_A , and w_A be distinct (formal) elements.

- Let \mathbb{F} be a field of characteristic 2.
- Let $F(\mathbb{N})$ denote the set of all finite, non-empty subsets of \mathbb{N} .
- For each $A \in F(\mathbb{N})$, let u_A , v_A , and w_A be distinct (formal) elements.
- We also add another distinct (formal) element, which is called x.

- Let \mathbb{F} be a field of characteristic 2.
- Let $F(\mathbb{N})$ denote the set of all finite, non-empty subsets of \mathbb{N} .
- For each $A \in F(\mathbb{N})$, let u_A , v_A , and w_A be distinct (formal) elements.
- We also add another distinct (formal) element, which is called x.
- The space *L* is then defined to be the infinite dimensional vector space over \mathbb{F} spanned by the set

 $B = \{x\} \cup \{u_A : A \in F(\mathbb{N})\} \cup \{v_A : A \in F(\mathbb{N})\} \cup \{w_A : A \in F(\mathbb{N})\}.$

Consider E the universal enveloping algebra for L:

$$E = \{ \mathsf{ad}(\ell) : \ell \in L \}.$$

Consider E the universal enveloping algebra for L:

$$E = \{ \mathsf{ad}(\ell) : \ell \in L \}.$$

Recall: for $\ell \in L$, the adjoint map

 $\operatorname{ad}(\ell): L \to L$

is defined by $m \operatorname{ad}(\ell) = (m, \ell)$, for $m \in L$.

Consider E the universal enveloping algebra for L:

$$E = \{ \mathsf{ad}(\ell) : \ell \in L \}.$$

Recall: for $\ell \in L$, the adjoint map

 $\mathsf{ad}(\ell): L \to L$

is defined by $m \operatorname{ad}(\ell) = (m, \ell)$, for $m \in L$.

Lemma (–, Traustason, Tracey)

The associative enveloping algebra E is 12-dimensional.

- Engel elements and groups
- 2 Known results
- 3 The "Gunnar" Lie algebra E
- Our counterexample
 - 5 Last, but not least

• Consider the algebra A = 1 + E, where A is a Lie algebra via the standard bracket operation $(a, b)_A = ab - ba = ab + ba$.

- Consider the algebra A = 1 + E, where A is a Lie algebra via the standard bracket operation $(a, b)_A = ab ba = ab + ba$.
- Recall that

 $B = \{x\} \cup \{u_A : A \in F(\mathbb{N})\} \cup \{v_A : A \in F(\mathbb{N})\} \cup \{w_A : A \in F(\mathbb{N})\}.$

• Consider the algebra A = 1 + E, where A is a Lie algebra via the standard bracket operation $(a, b)_A = ab - ba = ab + ba$.

Recall that

$$B = \{x\} \cup \{u_A : A \in F(\mathbb{N})\} \cup \{v_A : A \in F(\mathbb{N})\} \cup \{w_A : A \in F(\mathbb{N})\}.$$

• We define G to be the set of elements of A which are finite length products in the alphabet 1 + B.

• Consider the algebra A = 1 + E, where A is a Lie algebra via the standard bracket operation $(a, b)_A = ab - ba = ab + ba$.

Recall that

$$B = \{x\} \cup \{u_A : A \in F(\mathbb{N})\} \cup \{v_A : A \in F(\mathbb{N})\} \cup \{w_A : A \in F(\mathbb{N})\}.$$

- We define G to be the set of elements of A which are finite length products in the alphabet 1 + B.
- Since $a^2 = 1$ for all $a \in 1 + B$, the set G forms a group with identity element 1.

We set

- $\mathcal{U} = \langle 1 + \mathsf{ad}(u_A) : A \subseteq \mathbb{N} \rangle$
- $\mathcal{V} = \langle 1 + \mathsf{ad}(v_A) : A \subseteq \mathbb{N} \rangle$
- $\mathcal{W} = \langle 1 + \mathsf{ad}(w_A) : A \subseteq \mathbb{N} \rangle.$
- Note that $\mathcal{U}, \mathcal{V}, \mathcal{W}$ are elementary abelian of countably infinite rank.
- We will be working with

 $G = \langle 1 + \operatorname{ad}(x), \mathcal{U}, \mathcal{V}, \mathcal{W} \rangle.$

Proposition (-, Traustason, Tracey)

We have $G = \langle 1 + ad(x) \rangle \mathcal{UVW}$.

Proposition (-, Traustason, Tracey)

We have $G = \langle 1 + ad(x) \rangle \mathcal{UVW}$.

Furthermore every element $g \in G$ has a unique expression

 $g = (1 + ad(x))^{\epsilon}$ rst with $\epsilon \in \{0, 1\}$, $r \in \mathcal{U}$, $s \in \mathcal{V}$ and $t \in \mathcal{W}$.

Proposition (-, Traustason, Tracey)

We have $G = \langle 1 + ad(x) \rangle UVW$. Furthermore every element $g \in G$ has a unique expression $g = (1 + ad(x))^{\epsilon}$ rst with $\epsilon \in \{0, 1\}$, $r \in U$, $s \in V$ and $t \in W$.

Theorem (-, Traustason, Tracey)

The element 1 + ad(x) is a left 3-Engel element in *G*. However $\langle 1 + ad(x) \rangle^G$ is not nilpotent. • We now define some algebra E^* "from E".

Proposition (-, Traustason, Tracey)

We have $(1 + E^*)^{32} = 1$.

Proposition (-, Traustason, Tracey)

Any r-generator subgroup of $1 + E^*$ is nilpotent of r-bounded class.

If we take any r conjugates (1 + ad(x))^{g1},...,(1 + ad(x))^{gr} of (1 + ad(x)) in G, they generate a nilpotent subgroup of r-bounded class that grows linearly with r. In particular:

Proposition (-, Traustason, Tracey)

Let $(1 + ad(x))^{g_1}, \ldots, (1 + ad(x))^{g_r}$ be any r conjugates of 1 + ad(x) in G. Then the group generated by these conjugates is nilpotent of class at most 4r + 2.

• Recall that for n = 2, $a \in L_2(G) \Longrightarrow a \in HP(G)$.

• Recall that for n = 2, $a \in L_2(G) \Longrightarrow a \in HP(G)$.

Do you remember this question?

• Recall that for n = 2, $a \in L_2(G) \Longrightarrow a \in HP(G)$.

Do you remember this question?

```
Question (Abdollahi, 2010)
```

What is the least positive integer n for which there is a group G with $L_n(G) \not\subseteq HP(G)$?

• Recall that for n = 2, $a \in L_2(G) \Longrightarrow a \in HP(G)$.

Do you remember this question?

```
Question (Abdollahi, 2010)
```

What is the least positive integer n for which there is a group G with $L_n(G) \not\subseteq HP(G)$?

What we proved suggests:

• Recall that for n = 2, $a \in L_2(G) \Longrightarrow a \in HP(G)$.

Do you remember this question?

Question (Abdollahi, 2010)

What is the least positive integer n for which there is a group G with $L_n(G) \not\subseteq HP(G)$?

What we proved suggests:

- Engel elements and groups
- 2 Known results
- 3 The "Gunnar" Lie algebra E
- Our counterexample
- 5 Last, but not least

Cetara is a cozy fishermen's village nested along the Amalfi Coast among verdant citrus groves.

GTG 2019 in Cetara

Groups and Topological Groups 2019

GTG 2019 in Cetara

Groups and Topological Groups 2019

• Organizers:

Carmine Monetta, Marialaura Noce, Maria Tota
GTG 2019 in Cetara

Groups and Topological Groups 2019

• Organizers:

Carmine Monetta, Marialaura Noce, Maria Tota

• When:

October 25th-26th

GTG 2019 in Cetara

Groups and Topological Groups 2019

• Organizers:

Carmine Monetta, Marialaura Noce, Maria Tota

• When:

October 25th-26th

• Where:

You can guess it ;)

https://sites.google.com/unisa.it/gtg2019cetara

GTG 2019 in Cetara

Groups and Topological Groups 2019

• Organizers:

Carmine Monetta, Marialaura Noce, Maria Tota

• When:

October 25th-26th

• Where:

You can guess it ;)

https://sites.google.com/unisa.it/gtg2019cetara

VI ASPETTIAMO!

Marialaura Noce (UPV/EHU - UNISA)

Left 3-Engel elements

Eskerrik asko! Grazie :)