Wide simple groups and Lie algebras

Boris Kunyavskiĭ
(Bar-Ilan University, Ramat Gan, Israel)

> AGTA
> Lecce (Italy)
> June 25, 2019

Wide groups

Let G be a group, let $[x, y]:=x y x^{-1} y^{-1}$, and let $[G, G]$ be the derived group. It is generated by all commutators $[x, y]$.

Wide groups

Let G be a group, let $[x, y]:=x y x^{-1} y^{-1}$, and let $[G, G]$ be the derived group. It is generated by all commutators $[x, y]$. We say that G is wide if $[G, G]$ contains elements which are not representable as a single commutator.

Wide groups

Let G be a group, let $[x, y]:=x y x^{-1} y^{-1}$, and let $[G, G]$ be the derived group. It is generated by all commutators $[x, y]$.
We say that G is wide if $[G, G]$ contains elements which are not representable as a single commutator.
Do there exist wide groups?

Wide groups

Let G be a group, let $[x, y]:=x y x^{-1} y^{-1}$, and let $[G, G]$ be the derived group. It is generated by all commutators $[x, y]$.
We say that G is wide if $[G, G]$ contains elements which are not representable as a single commutator.
Do there exist wide groups?
The first example of a wide group (of order 1024) is attributed to George Abram Miller (W.B.Fite, TAMS, 1902).

Wide groups

Let G be a group, let $[x, y]:=x y x^{-1} y^{-1}$, and let $[G, G]$ be the derived group. It is generated by all commutators $[x, y]$.
We say that G is wide if $[G, G]$ contains elements which are not representable as a single commutator.
Do there exist wide groups?
The first example of a wide group (of order 1024) is attributed to George Abram Miller (W.B.Fite, TAMS, 1902).
The smallest wide group is of order 96.

Wide groups

Let G be a group, let $[x, y]:=x y x^{-1} y^{-1}$, and let $[G, G]$ be the derived group. It is generated by all commutators $[x, y]$.
We say that G is wide if $[G, G]$ contains elements which are not representable as a single commutator.
Do there exist wide groups?
The first example of a wide group (of order 1024) is attributed to George Abram Miller (W.B.Fite, TAMS, 1902).
The smallest wide group is of order 96.
The smallest wide perfect group (i.e., such that $G=[G, G]$) is of order 960.

Wide groups

Let G be a group, let $[x, y]:=x y x^{-1} y^{-1}$, and let $[G, G]$ be the derived group. It is generated by all commutators $[x, y]$. We say that G is wide if $[G, G]$ contains elements which are not representable as a single commutator.
Do there exist wide groups?
The first example of a wide group (of order 1024) is attributed to George Abram Miller (W.B.Fite, TAMS, 1902).
The smallest wide group is of order 96.
The smallest wide perfect group (i.e., such that $G=[G, G]$) is of order 960.
Further examples and results can be found in a survey paper of Kappe and Morse (2007).

Wide simple groups

Are there wide simple groups?

Wide simple groups

Are there wide simple groups? This question is far more tricky.

Wide simple groups

Are there wide simple groups?
This question is far more tricky.
The cases of finite and infinite groups should be considered separately.

Wide simple groups

Are there wide simple groups?
This question is far more tricky.
The cases of finite and infinite groups should be considered separately.
In the case where G is finite, each element is a single commutator.
This was conjectured by Ore in the 1950's. The proof required lots of various techniques. Most groups of Lie type were treated by Ellers and Gordeev in the 1990's. The proof was finished by Liebeck, O'Brien, Shalev and Tiep in 2010. See Malle's Bourbaki talk (2013) for details.

Infinite simple groups

If G is infinite, the situation is entirely different.

Infinite simple groups

If G is infinite, the situation is entirely different.
There are several cases where each element of G is a single commutator:

■ $G=S_{\infty}$, infinite symmetric group (Ore, 1951);

Infinite simple groups

If G is infinite, the situation is entirely different.
There are several cases where each element of G is a single commutator:

■ $G=S_{\infty}$, infinite symmetric group (Ore, 1951);
■ $G=\mathcal{G}(k)$, the group of k-points of a semisimple adjoint linear algebraic group \mathcal{G} over an algebraically closed field k (Ree, 1964);

Infinite simple groups

If G is infinite, the situation is entirely different.
There are several cases where each element of G is a single commutator:

■ $G=S_{\infty}$, infinite symmetric group (Ore, 1951);
■ $G=\mathcal{G}(k)$, the group of k-points of a semisimple adjoint linear algebraic group \mathcal{G} over an algebraically closed field k (Ree, 1964);
■ G is the automorphism group of some nice topological or combinatorial object (e.g., the Cantor set).

Infinite wide simple groups

The first example of opposite kind was discovered by Barge and Ghys in 1992.

Infinite wide simple groups

The first example of opposite kind was discovered by Barge and Ghys in 1992. The title of their paper is "Cocycles d'Euler et de Maslov", and the group they constructed is of differential-geometric origin. It is simple and wide (contains elements not representable as a single commutator).

Infinite wide simple groups

The first example of opposite kind was discovered by Barge and Ghys in 1992. The title of their paper is "Cocycles d'Euler et de Maslov", and the group they constructed is of differential-geometric origin. It is simple and wide (contains elements not representable as a single commutator).
Later on more examples of such a kind were constructed (Muranov, Caprace-Fujiwara, Fink-Thom).

Infinite wide simple groups

The first example of opposite kind was discovered by Barge and Ghys in 1992. The title of their paper is "Cocycles d'Euler et de Maslov", and the group they constructed is of differential-geometric origin. It is simple and wide (contains elements not representable as a single commutator).
Later on more examples of such a kind were constructed (Muranov, Caprace-Fujiwara, Fink-Thom).
These groups are indeed very different from "nice" groups discussed above in the following sense.

Commutator width

For any group G one can introduce the following notions.
For any $a \in[G, G]$ define its length $\ell(a)$ as the smallest number k of commutators needed to represent it as a product

$$
a=\left[x_{1}, y_{1}\right] \ldots\left[x_{k}, y_{k}\right] .
$$

Commutator width

For any group G one can introduce the following notions.
For any $a \in[G, G]$ define its length $\ell(a)$ as the smallest number k of commutators needed to represent it as a product

$$
a=\left[x_{1}, y_{1}\right] \ldots\left[x_{k}, y_{k}\right] .
$$

Define the commutator width of G as

$$
\operatorname{wd}(G):=\sup _{a \in[G, G]} \ell(a) .
$$

Commutator width

For any group G one can introduce the following notions.
For any $a \in[G, G]$ define its length $\ell(a)$ as the smallest number k of commutators needed to represent it as a product

$$
a=\left[x_{1}, y_{1}\right] \ldots\left[x_{k}, y_{k}\right] .
$$

Define the commutator width of G as

$$
\operatorname{wd}(G):=\sup _{a \in[G, G]} \ell(a) .
$$

It turns out that for a simple group G the commutator width $\operatorname{wd}(G)$ may be as large as we wish, or even infinite (such examples appear in the papers of Barge-Ghys and Muranov).

Wide Lie algebras

Let now L be a Lie algebra defined over a field k. As above, we say that L is wide if the derived algebra $[L, L]$ contains elements which are not representable as a single Lie bracket.

Wide Lie algebras

Let now L be a Lie algebra defined over a field k. As above, we say that L is wide if the derived algebra $[L, L]$ contains elements which are not representable as a single Lie bracket.
As in the case of groups, wide Lie algebras naturally appear among finite-dimensional nilpotent Lie algebras and also perfect Lie algebras (Cornulier).

Main questions
(i) Does there exist a wide simple Lie algebra?

Main questions

(i) Does there exist a wide simple Lie algebra?

More generally, as in the case of groups, one can define for every $a \in[L, L]$ its bracket length $\ell(a)$ as the smallest k such that a is representable as a sum

$$
a=\left[x_{1}, y_{1}\right]+\cdots+\left[x_{k}, y_{k}\right]
$$

then define the bracket width of L as

$$
\operatorname{wd}(L):=\sup _{a \in[L, L]} \ell(a) .
$$

Main questions

(i) Does there exist a wide simple Lie algebra?

More generally, as in the case of groups, one can define for every $a \in[L, L]$ its bracket length $\ell(a)$ as the smallest k such that a is representable as a sum

$$
a=\left[x_{1}, y_{1}\right]+\cdots+\left[x_{k}, y_{k}\right]
$$

then define the bracket width of L as

$$
\operatorname{wd}(L):=\sup _{a \in[L, L]} \ell(a)
$$

If Question (i) is answered in the affirmative, one can ask the next question:
(ii) Does there exist a simple Lie algebra L of infinite bracket width?

Where to look for counter-examples?

Throughout below L is a simple Lie algebra over a field k. First suppose that L is finite-dimensional.
In the following cases it is known that every element is a single bracket (i.e., $\operatorname{wd}(L)=1$):

Where to look for counter-examples?

Throughout below L is a simple Lie algebra over a field k. First suppose that L is finite-dimensional.
In the following cases it is known that every element is a single bracket (i.e., $\operatorname{wd}(L)=1$):

- L is split and k is sufficiently large (Gordon Brown (1963); Hirschbühl (1990) improved estimates on the size of k);

Where to look for counter-examples?

Throughout below L is a simple Lie algebra over a field k. First suppose that L is finite-dimensional.
In the following cases it is known that every element is a single bracket (i.e., $\operatorname{wd}(L)=1$):

■ L is split and k is sufficiently large (Gordon Brown (1963); Hirschbühl (1990) improved estimates on the size of k);
■ $k=\mathbb{R}, L$ is compact (Djokovic-Tam (2003), Neeb (2007), Akhiezer (2015), D'Andrea-Maffei (2016), Malkoun-Nahlus (2017));

Where to look for counter-examples?

Throughout below L is a simple Lie algebra over a field k. First suppose that L is finite-dimensional.
In the following cases it is known that every element is a single bracket (i.e., $\operatorname{wd}(L)=1$):

■ L is split and k is sufficiently large (Gordon Brown (1963); Hirschbühl (1990) improved estimates on the size of k);
■ $k=\mathbb{R}, L$ is compact (Djokovic-Tam (2003), Neeb (2007), Akhiezer (2015), D’Andrea-Maffei (2016), Malkoun-Nahlus (2017));

■ some non-compact algebras L over \mathbb{R} (Akhiezer).

Where to look for counter-examples?

The most interesting unexplored class in finite-dimensional case is the family of algebras of Cartan type over a field of positive characteristic.

Where to look for counter-examples?

The most interesting unexplored class in finite-dimensional case is the family of algebras of Cartan type over a field of positive characteristic.
Working hypothesis. None of these algebras are wide.

Where to look for counter-examples?

Suppose now that L is infinite-dimensional.

Where to look for counter-examples?

Suppose now that L is infinite-dimensional.
There are several natural families of simple infinite-dimensional Lie algebras. Here are some of them:

■ four families $W_{n}, H_{n}, S_{n}, K_{n}$ of algebras of Cartan type;
■ (subquotients of) Kac-Moody algebras;

- algebras of vector fields on smooth affine varieties.

Where to look for counter-examples?

Observation (due to Zhihua Chang):
A theorem of Rudakov (1969) shows that none of the algebras L of Cartan type are wide.

Back to the origins

Back to the origins

Back to the origins

Sophus Lie
(1842-1899)

Back to the origins

Back to the origins

Back to the origins

Élie Cartan
(1869-1951)

Main result

Among Lie algebras of vector fields on smooth affine varieties there are wide algebras
(B.K. and Andriy Regeta, work in progress).

Some preliminaries

Let k be an algebraically closed field of characteristic zero. Let $X \subset \mathbb{A}_{k}^{n}$ be an irreducible affine k-variety.

Some preliminaries

Let k be an algebraically closed field of characteristic zero. Let $X \subset \mathbb{A}_{k}^{n}$ be an irreducible affine k-variety. Let $\operatorname{Vec}(X)$ denote the collection of (polynomial) vector fields on X, i.e., $\operatorname{Vec}(X)=\operatorname{Der}(\mathcal{O}(X))$, the set of derivations of the ring of regular functions on X.

Some preliminaries

Let k be an algebraically closed field of characteristic zero. Let $X \subset \mathbb{A}_{k}^{n}$ be an irreducible affine k-variety. Let $\operatorname{Vec}(X)$ denote the collection of (polynomial) vector fields on X, i.e., $\operatorname{Vec}(X)=\operatorname{Der}(\mathcal{O}(X))$, the set of derivations of the ring of regular functions on X. It carries a natural structure of Lie algebra, as a Lie subalgebra of $\operatorname{End}_{k}(\mathcal{O}(X))$:

$$
[\xi, \eta]:=\xi \circ \eta-\eta \circ \xi
$$

Some preliminaries

There are strong relations between properties of X and $\operatorname{Vec}(X)$. We only mention a couple of most important facts.

Some preliminaries

There are strong relations between properties of X and $\operatorname{Vec}(X)$. We only mention a couple of most important facts.

- two normal affine varieties are isomorphic if and only if $\operatorname{Vec}(X)$ and $\operatorname{Vec}(Y)$ are isomorphic as Lie algebras (Janusz Grabowski (1978) for smooth varieties, Thomas Siebert (1996) in general);

Some preliminaries

There are strong relations between properties of X and $\operatorname{Vec}(X)$. We only mention a couple of most important facts.

- two normal affine varieties are isomorphic if and only if $\operatorname{Vec}(X)$ and $\operatorname{Vec}(Y)$ are isomorphic as Lie algebras (Janusz Grabowski (1978) for smooth varieties, Thomas Siebert (1996) in general);
- X is smooth if and only if $\operatorname{Vec}(X)$ is simple (David Alan Jordan (1986), Siebert (1996); see also Kraft's notes (2017) and a new proof due to Billig and Futorny (2017)).

Example

$X=\mathbb{A}^{n}$.
$\operatorname{Vec}\left(\mathbb{A}^{n}\right)$ is a free $\mathcal{O}\left(\mathbb{A}^{n}\right)=k\left[x_{1}, \ldots, x_{n}\right]$-module of rank n generated by $\partial_{x_{i}}=\frac{\partial}{\partial x_{i}}, i=1, \ldots, n$.

Main example (Billig-Futorny, 2017)

Let $H=\left\{y^{2}=2 h(x)\right\}$ where $h(x)$ is a separable monic polynomial of odd degree $2 m+1 \geq 3$,
$A=\mathcal{O}(H)=k[x, y] /\left\langle y^{2}-2 h(x)\right\rangle$. As a vector space, $A \cong k[x] \oplus y k[x]$.
$\operatorname{Vec}(H)=\operatorname{Der}_{k}(A)$.
Lemma (Billig-Futorny). $\operatorname{Vec}(H)$ is a free A-module of rank 1 generated by

$$
\tau=y \partial_{x}+h^{\prime}(x) \partial_{y}
$$

Some properties of D

Theorem. (Billig-Futorny).
$1 D$ has no semisimple elements.
$2 D$ has no nilpotent elements.

Some properties of D

Theorem. (Billig-Futorny).
$1 D$ has no semisimple elements.
$2 D$ has no nilpotent elements.
(We say that η is semisimple if $\operatorname{ad}(\eta)$ has an eigenvector.)

Additional property

Theorem. The Lie algebra D is wide.

Additional property

Theorem. The Lie algebra D is wide. Idea of proof. One can introduce a filtration on D so that the smallest nonzero degree is $2 m-1$. Then any $\eta \in D$ with deg $\eta=2 m-1$ is not representable as a single Lie bracket.

Another example

Let $S=\{x y=p(z)\} \subset \mathbb{A}_{k}^{3}$, where $p(z)$ is a separable polynomial, $\operatorname{deg} p \geq 3$ (Danielewski surface).

Another example

Let $S=\{x y=p(z)\} \subset \mathbb{A}_{k}^{3}$, where $p(z)$ is a separable polynomial, $\operatorname{deg} p \geq 3$ (Danielewski surface).
Let $L=L N D(S)$ be the subalgebra of $\operatorname{Vec}(S)$ generated by all locally nilpotent vector fields.

Another example

Let $S=\{x y=p(z)\} \subset \mathbb{A}_{k}^{3}$, where $p(z)$ is a separable polynomial, $\operatorname{deg} p \geq 3$ (Danielewski surface).
Let $L=L N D(S)$ be the subalgebra of $\operatorname{Vec}(S)$ generated by all locally nilpotent vector fields.
Lemma. (Leuenberger-Regeta, 2017). L is a simple Lie algebra.

Another example

Let $S=\{x y=p(z)\} \subset \mathbb{A}_{k}^{3}$, where $p(z)$ is a separable polynomial, $\operatorname{deg} p \geq 3$ (Danielewski surface).
Let $L=L N D(S)$ be the subalgebra of $\operatorname{Vec}(S)$ generated by all locally nilpotent vector fields.
Lemma. (Leuenberger-Regeta, 2017). L is a simple Lie algebra. Theorem. Let $\eta=p^{\prime}(z) \partial_{y}+x \partial_{z}$. Then $\eta \in L$ and there are no $\xi, \nu \in L$ such that $[\xi, \nu]=\eta$.

Another example

Let $S=\{x y=p(z)\} \subset \mathbb{A}_{k}^{3}$, where $p(z)$ is a separable polynomial, $\operatorname{deg} p \geq 3$ (Danielewski surface).
Let $L=L N D(S)$ be the subalgebra of $\operatorname{Vec}(S)$ generated by all locally nilpotent vector fields.
Lemma. (Leuenberger-Regeta, 2017). L is a simple Lie algebra. Theorem. Let $\eta=p^{\prime}(z) \partial_{y}+x \partial_{z}$. Then $\eta \in L$ and there are no $\xi, \nu \in L$ such that $[\xi, \nu]=\eta$.
The proof is based on the same paper by Leuenberger and Regeta and uses degree arguments.

Bracket width

Question. What is the bracket width of the algebras $\operatorname{Vec}(H)$ and LND (S)?

Bracket width

Question. What is the bracket width of the algebras $\operatorname{Vec}(H)$ and LND (S)?
Remark. If L is finite-dimensional over any infinite field of characteristic different from 2 and 3 , its bracket width is at most two (Bergman-Nahlus, 2011).

Further questions

- What geometric properties of X are responsible for the fact that the Lie algebra $\operatorname{Vec}(X)$ is wide?

Further questions

- What geometric properties of X are responsible for the fact that the Lie algebra $\operatorname{Vec}(X)$ is wide?
■ Does there exist a Lie-algebraic counterpart of the Barge-Ghys example? This requires to go over to the category of smooth vector fields on smooth manifolds.

Further questions

- What geometric properties of X are responsible for the fact that the Lie algebra $\operatorname{Vec}(X)$ is wide?
■ Does there exist a Lie-algebraic counterpart of the Barge-Ghys example? This requires to go over to the category of smooth vector fields on smooth manifolds.
- Where should one look for further examples of wide simple Lie algebras?

Further questions

- What geometric properties of X are responsible for the fact that the Lie algebra $\operatorname{Vec}(X)$ is wide?
■ Does there exist a Lie-algebraic counterpart of the Barge-Ghys example? This requires to go over to the category of smooth vector fields on smooth manifolds.
- Where should one look for further examples of wide simple Lie algebras? There are two candidates, both suggested by Yu. Billig. a) 'Kac-Moody' algebras arising from the 'Cartan' matrix $\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right)$; b) algebras of Krichever-Novikov type.

Metamathematical question

Let L be a 'generic' ('random', 'typical') simple Lie algebra. Is L wide?

Metamathematical question

Let L be a 'generic' ('random', 'typical') simple Lie algebra. Is L wide?
(Metamathematical) working hypothesis:
Less structured ('amorphous') Lie algebras tend to be wide.

Metamathematical question

Let L be a 'generic' ('random', 'typical') simple Lie algebra. Is L wide?
(Metamathematical) working hypothesis:
Less structured ('amorphous') Lie algebras tend to be wide.

Metamathematical question
Let L be a 'generic' ('random', 'typical') simple Lie algebra. Is L wide?
(Metamathematical) working hypothesis:
Less structured ('amorphous') Lie algebras tend to be wide.

stlltror

THANKS FOR YOUR ATTENTION!

