
Wide simple groups and Lie algebras

Boris Kunyavskĭı
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Wide groups

Let G be a group, let [x , y ] := xyx−1y−1, and let [G ,G ] be the
derived group. It is generated by all commutators [x , y ].

We say that G is wide if [G ,G ] contains elements which are not
representable as a single commutator.
Do there exist wide groups?
The first example of a wide group (of order 1024) is attributed to
George Abram Miller (W.B.Fite, TAMS, 1902).
The smallest wide group is of order 96.
The smallest wide perfect group (i.e., such that G = [G ,G ]) is of
order 960.
Further examples and results can be found in a survey paper of
Kappe and Morse (2007).
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Wide simple groups

Are there wide simple groups?

This question is far more tricky.
The cases of finite and infinite groups should be considered
separately.
In the case where G is finite, each element is a single commutator.
This was conjectured by Ore in the 1950’s. The proof required lots
of various techniques. Most groups of Lie type were treated by
Ellers and Gordeev in the 1990’s. The proof was finished by
Liebeck, O’Brien, Shalev and Tiep in 2010. See Malle’s Bourbaki
talk (2013) for details.
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Infinite simple groups

If G is infinite, the situation is entirely different.

There are several cases where each element of G is a single
commutator:

G = S∞, infinite symmetric group (Ore, 1951);

G = G(k), the group of k-points of a semisimple adjoint
linear algebraic group G over an algebraically closed field k
(Ree, 1964);

G is the automorphism group of some nice topological or
combinatorial object (e.g., the Cantor set).
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Infinite wide simple groups

The first example of opposite kind was discovered by Barge and
Ghys in 1992.

The title of their paper is “Cocycles d’Euler et de
Maslov”, and the group they constructed is of
differential-geometric origin. It is simple and wide (contains
elements not representable as a single commutator).
Later on more examples of such a kind were constructed
(Muranov, Caprace–Fujiwara, Fink–Thom).
These groups are indeed very different from “nice” groups
discussed above in the following sense.
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Commutator width

For any group G one can introduce the following notions.
For any a ∈ [G ,G ] define its length `(a) as the smallest number k
of commutators needed to represent it as a product

a = [x1, y1] . . . [xk , yk ].

Define the commutator width of G as

wd(G ) := sup
a∈[G ,G ]

`(a).

It turns out that for a simple group G the commutator width
wd(G ) may be as large as we wish, or even infinite (such examples
appear in the papers of Barge–Ghys and Muranov).
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Wide Lie algebras

Let now L be a Lie algebra defined over a field k . As above, we say
that L is wide if the derived algebra [L, L] contains elements which
are not representable as a single Lie bracket.

As in the case of groups, wide Lie algebras naturally appear among
finite-dimensional nilpotent Lie algebras and also perfect Lie
algebras (Cornulier).
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Main questions

(i) Does there exist a wide simple Lie algebra?

More generally, as in the case of groups, one can define for every
a ∈ [L, L] its bracket length `(a) as the smallest k such that a is
representable as a sum

a = [x1, y1] + · · ·+ [xk , yk ],

then define the bracket width of L as

wd(L) := sup
a∈[L,L]

`(a).

If Question (i) is answered in the affirmative, one can ask the next
question:
(ii) Does there exist a simple Lie algebra L of infinite bracket
width?
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Where to look for counter-examples?

Throughout below L is a simple Lie algebra over a field k .
First suppose that L is finite-dimensional.
In the following cases it is known that every element is a single
bracket (i.e., wd(L) = 1):

L is split and k is sufficiently large (Gordon Brown (1963);
Hirschbühl (1990) improved estimates on the size of k);

k = R, L is compact (Djokovic–Tam (2003), Neeb (2007),
Akhiezer (2015), D’Andrea–Maffei (2016), Malkoun–Nahlus
(2017));

some non-compact algebras L over R (Akhiezer).
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There are several natural families of simple infinite-dimensional Lie
algebras. Here are some of them:

four families Wn, Hn, Sn, Kn of algebras of Cartan type;

(subquotients of) Kac–Moody algebras;

algebras of vector fields on smooth affine varieties.
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Where to look for counter-examples?

Observation (due to Zhihua Chang):
A theorem of Rudakov (1969) shows that none of the algebras L of
Cartan type are wide.
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Main result

Among Lie algebras of vector fields on smooth affine varieties there
are wide algebras
(B.K. and Andriy Regeta, work in progress).



Some preliminaries

Let k be an algebraically closed field of characteristic zero. Let
X ⊂ An

k be an irreducible affine k-variety.

Let Vec(X ) denote the
collection of (polynomial) vector fields on X , i.e.,
Vec(X ) = Der(O(X )), the set of derivations of the ring of regular
functions on X . It carries a natural structure of Lie algebra, as a
Lie subalgebra of Endk(O(X )):

[ξ, η] := ξ ◦ η − η ◦ ξ.
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Some preliminaries

There are strong relations between properties of X and Vec(X ).
We only mention a couple of most important facts.

two normal affine varieties are isomorphic if and only if
Vec(X ) and Vec(Y ) are isomorphic as Lie algebras (Janusz
Grabowski (1978) for smooth varieties, Thomas Siebert
(1996) in general);

X is smooth if and only if Vec(X ) is simple (David Alan
Jordan (1986), Siebert (1996); see also Kraft’s notes (2017)
and a new proof due to Billig and Futorny (2017)).
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Example

X = An.
Vec(An) is a free O(An) = k[x1, . . . , xn]-module of rank n
generated by ∂xi = ∂

∂xi
, i = 1, . . . , n.



Main example (Billig–Futorny, 2017)

Let H = {y2 = 2h(x)} where h(x) is a separable monic polynomial
of odd degree 2m + 1 ≥ 3,
A = O(H) = k[x , y ]/

〈
y2 − 2h(x)

〉
. As a vector space,

A ∼= k[x ]⊕ yk[x ].
Vec(H) = Derk(A).
Lemma (Billig–Futorny). Vec(H) is a free A-module of rank 1
generated by

τ = y∂x + h′(x)∂y .



Some properties of D

Theorem. (Billig–Futorny).

1 D has no semisimple elements.

2 D has no nilpotent elements.

(We say that η is semisimple if ad(η) has an eigenvector.)
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Additional property

Theorem. The Lie algebra D is wide.

Idea of proof. One can introduce a filtration on D so that the
smallest nonzero degree is 2m − 1. Then any η ∈ D with
deg η = 2m − 1 is not representable as a single Lie bracket.
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Another example

Let S = {xy = p(z)} ⊂ A3
k , where p(z) is a separable polynomial,

deg p ≥ 3 (Danielewski surface).

Let L = LND(S) be the subalgebra of Vec(S) generated by all
locally nilpotent vector fields.
Lemma. (Leuenberger–Regeta, 2017). L is a simple Lie algebra.
Theorem. Let η = p′(z)∂y + x∂z . Then η ∈ L and there are no
ξ, ν ∈ L such that [ξ, ν] = η.
The proof is based on the same paper by Leuenberger and Regeta
and uses degree arguments.
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Bracket width

Question. What is the bracket width of the algebras Vec(H) and
LND(S)?

Remark. If L is finite-dimensional over any infinite field of
characteristic different from 2 and 3, its bracket width is at most
two (Bergman–Nahlus, 2011).
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Further questions

What geometric properties of X are responsible for the fact
that the Lie algebra Vec(X ) is wide?

Does there exist a Lie-algebraic counterpart of the
Barge–Ghys example? This requires to go over to the
category of smooth vector fields on smooth manifolds.

Where should one look for further examples of wide simple Lie
algebras? There are two candidates, both suggested by
Yu. Billig. a) ‘Kac–Moody’ algebras arising from the ‘Cartan’

matrix

(
2 2
2 2

)
; b) algebras of Krichever–Novikov type.
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THANKS FOR YOUR ATTENTION!


