The matched product of shelves

Ilaria Colazzo

ilaria.colazzo@unisalento.it

Università del Salento

Advances in Group Theory and Applications 2019
June 25, 2019

The main results of this talk are contained in
F. Catino, I. Colazzo, P. Stefanelli, The matched product of self-distributive systems, in preparation.

Solutions of the Yang-Baxter equation

The Yang-Baxter equation is a fundamental tool in many fields such as:

- statistical mechanics,
- quantum group theory,
- low-dimensional topology.
[V. Drinfel'd, 1992] set-theoretical solutions or braided sets. Given X a set, a map $r: X \times X \rightarrow X \times X$ is a set-theoretical solution if

Solutions of the Yang-Baxter equation

The Yang-Baxter equation is a fundamental tool in many fields such as:

- statistical mechanics,
- quantum group theory,
- low-dimensional topology.
[V. Drinfel'd, 1992] set-theoretical solutions or braided sets.
Given X a set, a map $r: X \times X \rightarrow X \times X$ is a set-theoretical solution if

Solutions of the Yang-Baxter equation

The Yang-Baxter equation is a fundamental tool in many fields such as:

- statistical mechanics,
- quantum group theory,
- low-dimensional topology.
[V. Drinfel'd, 1992] set-theoretical solutions or braided sets.
Given X a set, a map $r: X \times X \rightarrow X \times X$ is a set-theoretical solution if

$$
\left(r \times \mathrm{id}_{x}\right)\left(\mathrm{id}_{x} \times r\right)\left(r \times \mathrm{id}_{x}\right)=\left(\mathrm{id}_{x} \times r\right)\left(r \times \mathrm{id}_{x}\right)\left(\mathrm{id}_{x} \times r\right)
$$

Reidemeister move of type III

Solutions of the Yang-Baxter equation

If X is a set, $r: X \times X \rightarrow X \times X$ is a solution and $a, b \in X$, then we denote

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

where λ_{a}, ρ_{b} are maps from X into itself.
We say that r is

- left (resp. righ $)$ non-degenerate if λ_{a} (resp. p_{a}) is bijective, for every
- idempotent r^{2}
- involutive if $r^{2}(a, b)=(a, b)$, for all $\left.a, b \in\right)$

Solutions of the Yang-Baxter equation

If X is a set, $r: X \times X \rightarrow X \times X$ is a solution and $a, b \in X$, then we denote

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

where λ_{a}, ρ_{b} are maps from X into itself.
We say that r is
\checkmark left (resp. right) non-degenerate if λ_{a} (resp. Pa) is bijective, for every

Solutions of the Yang-Baxter equation

If X is a set, $r: X \times X \rightarrow X \times X$ is a solution and $a, b \in X$, then we denote

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

where λ_{a}, ρ_{b} are maps from X into itself.
We say that r is
$>$ left (resp. right) non-degenerate if λ_{a} (resp. ρ_{a}) is bijective) for every

- idempotent r^{2}
- involutive if $r^{2}(a, b)=(a, b)$, for all $\left.a, b \in\right)$

Solutions of the Yang-Baxter equation

If X is a set, $r: X \times X \rightarrow X \times X$ is a solution and $a, b \in X$, then we denote

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

where λ_{a}, ρ_{b} are maps from X into itself.

We say that r is

- left (resp. right) non-degenerate if λ_{a} (resp. ρ_{a}) is bijective, for every $a \in X$;
\rightarrow idempotent
- involutive if $r^{2}(a, b)=(a, b)$, for all $a, b \in$

Solutions of the Yang-Baxter equation

If X is a set, $r: X \times X \rightarrow X \times X$ is a solution and $a, b \in X$, then we denote

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

where λ_{a}, ρ_{b} are maps from X into itself.

We say that r is

- left (resp. right) non-degenerate if λ_{a} (resp. ρ_{a}) is bijective, for every $a \in X$;
- idempotent $r^{2}(a, b)=r(a, b)$, for all $a, b \in X$

Solutions of the Yang-Baxter equation

If X is a set, $r: X \times X \rightarrow X \times X$ is a solution and $a, b \in X$, then we denote

$$
r(a, b)=\left(\lambda_{a}(b), \rho_{b}(a)\right)
$$

where λ_{a}, ρ_{b} are maps from X into itself.

We say that r is

- left (resp. right) non-degenerate if λ_{a} (resp. ρ_{a}) is bijective, for every $a \in X$;
- idempotent $r^{2}(a, b)=r(a, b)$, for all $a, b \in X$
- involutive if $r^{2}(a, b)=(a, b)$, for all $a, b \in X$.

Briefly, the state-of-the-art (I)

- 1999. involutive non-degenerate solutions

Etingof, Schedler and Soloviev; Gateva-Ivanova and Van den Bergh

- 2000. bijective not necessarily involutive solutions

Iu Yan and Zhu: Soloviev

- 2017. idempotent solutions
free and free commutative monoids, factorizable monoids, distributive lattices, and plactic monoids.

Briefly, the state-of-the-art (I)

- 1999. involutive non-degenerate solutions

Etingof, Schedler and Soloviev; Gateva-Ivanova and Van den Bergh

- 2000. bijective not necessarily involutive solutions

Lu, Yan and Zhu; Soloviev

- 2017. idempotent solutions
free and free commutative monoids, factorizable monoids, distributive lattices, and plactic monoids.

Briefly, the state-of-the-art (I)

- 1999. involutive non-degenerate solutions

Etingof, Schedler and Soloviev; Gateva-Ivanova and Van den Bergh

- 2000. bijective not necessarily involutive solutions

Lu, Yan and Zhu; Soloviev

- 2017. idempotent solutions
\downarrow
Lebed
free and free commutative monoids, factorizable monoids, distributive lattices, and plactic monoids.

Briefly, the state-of-the-art (II)

- 1980s. self distributive systems, also known as shelves \downarrow invariants of braids and knots.
- 1991. Connection between braid groups and shelves
left invariant linear order on the braid groups
- 2017. connection between shelves and solutions fo the Yang-Baxter equation
captures many of the solution properties, such as invertibility and
involutivity

Briefly, the state-of-the-art (II)

- 1980s. self distributive systems, also known as shelves \downarrow
invariants of braids and knots.
- 1991. Connection between braid groups and shelves
\square
left invariant linear order on the braid groups

2017. connection between shelves and solutions fo the Yang-Baxter equation
captures many of the solution properties, such as invertibility and involutivity

Briefly, the state-of-the-art (II)

- 1980s. self distributive systems, also known as shelves \downarrow
invariants of braids and knots.
- 1991. Connection between braid groups and shelves
\downarrow
left invariant linear order on the braid groups
- 2017. connection between shelves and solutions fo the Yang-Baxter equation

Lebed and Vendramin
captures many of the solution properties, such as invertibility and involutivity

The shelves

A set X with an operation \triangleright is a left shelf if \triangleright is a left self-distributive operation, i.e.,

$$
x \triangleright(y \triangleright z)=(x \triangleright y) \triangleright(x \triangleright z)
$$

for all $x, y, z \in X$. Moreover, if the maps $L_{x}: X \rightarrow X$ defined by
$L_{x}(y):=x \triangleright y$, for all $x, y \in X$, are bijections, (X, \triangleright) is said to be a left rack
A set X with an operation \triangleleft is a right shelf if \triangleleft is a right self-distributive operation, i.e.,
for all $x, y, z \in X$. Moreover $x, y \in X$, are bijections, (X, \triangleleft) s said to be a right rack

The shelves

A set X with an operation \triangleright is a left shelf if \triangleright is a left self-distributive operation, i.e.,

$$
x \triangleright(y \triangleright z)=(x \triangleright y) \triangleright(x \triangleright z)
$$

for all $x, y, z \in X$. Moreover, if the maps $L_{x}: X \rightarrow X$ defined by $L_{x}(y):=x \triangleright y$, for all $x, y \in X$, are bijections, (X, \triangleright) is said to be a left rack.

A set X with an operation \triangleleft is a right shelf if \triangleleft is a right self-distributive. operation, i.e.,
 $x, y \in X$, are bijections, (X, \triangleleft) is said to be a right rack.

The shelves

A set X with an operation \triangleright is a left shelf if \triangleright is a left self-distributive operation, i.e.,

$$
x \triangleright(y \triangleright z)=(x \triangleright y) \triangleright(x \triangleright z)
$$

for all $x, y, z \in X$. Moreover, if the maps $L_{x}: X \rightarrow X$ defined by $L_{x}(y):=x \triangleright y$, for all $x, y \in X$, are bijections, (X, \triangleright) is said to be a left rack.

A set X with an operation \triangleleft is a right shelf if \triangleleft is a right self-distributive operation, i.e.,

$$
(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)
$$

for all $x, y, z \in X$.

The shelves

A set X with an operation \triangleright is a left shelf if \triangleright is a left self-distributive operation, i.e.,

$$
x \triangleright(y \triangleright z)=(x \triangleright y) \triangleright(x \triangleright z)
$$

for all $x, y, z \in X$. Moreover, if the maps $L_{x}: X \rightarrow X$ defined by $L_{x}(y):=x \triangleright y$, for all $x, y \in X$, are bijections, (X, \triangleright) is said to be a left rack.

A set X with an operation \triangleleft is a right shelf if \triangleleft is a right self-distributive operation, i.e.,

$$
(x \triangleleft y) \triangleleft z=(x \triangleleft z) \triangleleft(y \triangleleft z)
$$

for all $x, y, z \in X$. Moreover, if $R_{x}: X \rightarrow X$ defined by $R_{y}(x):=x \triangleleft y$, for all $x, y \in X$, are bijections, (X, \triangleleft) is said to be a right rack.

Shelves and solutions

From a shelf to a solution of the Yang-Baxter equation...

$\Longleftrightarrow \quad r_{\triangleright}$ non-degenerate solution $\Longleftrightarrow \quad r_{\triangleleft}$ non-degenerate solution ... from asolution of the $\mathbf{V a n g}$-Baxter equation to a shelf If r is a left non-degenerate solution on X, then the binary operation ∇_{r} defined gives to X a structure of a shelf called the structure shelf.

Shelves and solutions

From a shelf to a solution of the Yang-Baxter equation...

(X, \triangleright) left rack
(X, \triangleleft) right rack
$\Longleftrightarrow \quad r_{\triangleright}$ non-degenerate solution $\Longleftrightarrow \quad r_{\triangleleft}$ non-degenerate solution
... from a solution of the Yang-Baxter equation to a shelf

If r is a left non-degenerate solution on X, then the binary operation ∇_{r} defined
gives to X a structure of a shelf called the structure shelf.

Shelves and solutions

From a shelf to a solution of the Yang-Baxter equation...

Moreover

Shelves and solutions

From a shelf to a solution of the Yang-Baxter equation...
(X, \triangleright) left shelf $\quad \Longleftrightarrow \quad r_{\triangleright}: X \times X \rightarrow X \times X,(x, y) \mapsto(y, y \triangleright x)$ solution (X, \triangleleft) right shelf $\Longleftrightarrow r_{\triangleleft}: X \times X \rightarrow X \times X,(x, y) \mapsto(y \triangleleft x, x)$ solution

Moreover

$$
\begin{array}{ccc}
(X, \triangleright) \text { left rack } & \Longleftrightarrow r_{\triangleright} \text { non-degenerate solution } \\
(X, \triangleleft) \text { right rack } & \Longleftrightarrow & r_{\triangleleft} \text { non-degenerate solution }
\end{array}
$$

... from a solution of the Yang-Baxter equation to a shelf
 If r is a left non-degenerate solution on X, then the binary operation ∇_{r} defined

gives to X a structure of a shelf called the structure shelf.

Shelves and solutions

From a shelf to a solution of the Yang-Baxter equation...
(X, \triangleright) left shelf $\quad \Longleftrightarrow \quad r_{\triangleright}: X \times X \rightarrow X \times X,(x, y) \mapsto(y, y \triangleright x)$ solution
(X, \triangleleft) right shelf $\Longleftrightarrow r_{\triangleleft}: X \times X \rightarrow X \times X,(x, y) \mapsto(y \triangleleft x, x)$ solution
Moreover

$$
\begin{array}{ccc}
(X, \triangleright) \text { left rack } & \Longleftrightarrow r_{\triangleright} \text { non-degenerate solution } \\
(X, \triangleleft) \text { right rack } & \Longleftrightarrow & r_{\triangleleft} \text { non-degenerate solution }
\end{array}
$$

... from a solution of the Yang-Baxter equation to a shelf

If r is a left non-degenerate solution on X, then the binary operation ∇_{r} defined
gives to X a structure of a shelf called the structure shelf.

Shelves and solutions

From a shelf to a solution of the Yang-Baxter equation...
(X, \triangleright) left shelf $\quad \Longleftrightarrow \quad r_{\triangleright}: X \times X \rightarrow X \times X,(x, y) \mapsto(y, y \triangleright x)$ solution
(X, \triangleleft) right shelf $\quad \Longleftrightarrow \quad r_{\triangleleft}: X \times X \rightarrow X \times X,(x, y) \mapsto(y \triangleleft x, x)$ solution
Moreover

$$
\begin{array}{rll}
(X, \triangleright) \text { left rack } & \Longleftrightarrow & r_{\triangleright} \text { non-degenerate solution } \\
(X, \triangleleft) \text { right } \text { rack } & \Longleftrightarrow & r_{\triangleleft} \text { non-degenerate solution }
\end{array}
$$

... from a solution of the Yang-Baxter equation to a shelf
If r is a left non-degenerate solution on X, then the binary operation \triangleright_{r} defined by

$$
a \triangleright_{r} b=\lambda_{a} \rho_{\lambda_{b}^{-1}(a)}(b)
$$

gives to X a structure of a shelf called the structure shelf.

The matched product of solutions

F. Catino, I.C., P. Stefanelli, The matched product of solutions, in press on J. Pure Appl. Algebra

The matched product of solutions

F. Catino, I.C., P. Stefanelli, The matched product of solutions, in press on J. Pure Appl. Algebra

- r_{S} a solution on a set S
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- r_{T} a solution on a set T
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map

The matched product of solutions

F. Catino, I.C., P. Stefanelli, The matched product of solutions, in press on J. Pure Appl. Algebra

- r_{S} a solution on a set S
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- r_{T} a solution on a set T
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map
($r_{S}, r_{T}, \alpha, \beta$) is a matched product system of solutions if and only if

$$
\begin{array}{ccc}
\alpha_{u} \alpha_{v}=\alpha_{\lambda_{u}(v)} \alpha_{\rho_{v}(u)} & (\mathrm{s} 1) & \beta_{a} \beta_{b}=\beta_{\lambda_{a}(b)} \beta_{\rho_{b}(a)} \\
\rho_{\alpha_{u}^{-1}(b)} \alpha_{\beta_{a}(u)}^{-\mathbf{1}}(a)=\alpha_{\beta_{\rho_{b}(a)}^{-\mathbf{1}}} \beta_{b}^{-\mathbf{1}(u)} \rho_{b}(a) & (\mathrm{s} 3) & \rho_{\beta_{a}^{-1}(v)} \beta_{\alpha_{u}(a)}^{-\mathbf{1}}(u)=\beta_{\alpha_{\rho_{v}(u)}^{-\alpha_{v}^{-1}(a)}} \rho_{v}(u) \\
\lambda_{a} \alpha_{\beta_{a}^{-1}(u)}=\alpha_{u} \lambda_{\alpha_{u}^{-1}(a)} & (\mathrm{s} 5) & \lambda_{u} \beta_{\alpha_{u}^{-1}(a)}=\beta_{a} \lambda_{\beta_{a}^{-1}(u)}
\end{array}
$$

and the map $r: S \times T \times S \times T \rightarrow S \times T \times S \times T$ defined by
\square $\underbrace{\beta_{a} \lambda_{u}(v)})$
\qquad

is a solution, where we denote $\alpha_{u}^{-1}(a)$ with \bar{a} and $\beta_{a}^{-1}(u)$ with \bar{u}, for any (a, u)

The matched product of solutions

F. Catino, I.C., P. Stefanelli, The matched product of solutions, in press on J. Pure Appl. Algebra

- r_{S} a solution on a set S
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- r_{T} a solution on a set T
$-\beta: S \rightarrow \operatorname{Sym}(T)$ a map
($r_{S}, r_{T}, \alpha, \beta$) is a matched product system of solutions if and only if

$$
\begin{array}{ccc}
\alpha_{u} \alpha_{v}=\alpha_{\lambda_{u}(v)} \alpha_{\rho_{v}(u)} & \text { (s1) } & \beta_{a} \beta_{b}=\beta_{\lambda_{a}(b)} \beta_{\rho_{b}(a)} \\
\rho_{\alpha_{u}^{-1}(b)} \alpha_{\beta_{a}(u)}^{-\mathbf{1}}(a)=\alpha_{\beta_{\rho_{b}(a)}^{-\mathbf{1}}} \beta_{b}^{-\mathbf{1}(u)} \\
\rho_{b}(a) & (\mathrm{s} 3) & \rho_{\beta_{a}^{-\mathbf{1}}(v)} \beta_{\alpha_{u}(a)}^{-\mathbf{1}}(u)=\beta_{\alpha_{\rho_{v}(u)}^{-\mathbf{1}}}^{\alpha_{v}^{-1}(a)} \rho_{v}(u) \\
\lambda_{a} \alpha_{\beta_{a}^{-1}(u)}=\alpha_{u} \lambda_{\alpha_{u}^{-1}(a)} & \text { (s5) } & \lambda_{u} \beta_{\alpha_{u}^{-1}(a)}=\beta_{a} \lambda_{\beta_{a}^{-1}(u)}
\end{array}
$$

and the map $r: S \times T \times S \times T \rightarrow S \times T \times S \times T$ defined by
\square
:=

The matched product of solutions

F. Catino, I.C., P. Stefanelli, The matched product of solutions, in press on J. Pure Appl. Algebra

- r_{S} a solution on a set S
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- r_{T} a solution on a set T
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map
($r_{S}, r_{T}, \alpha, \beta$) is a matched product system of solutions if and only if

$$
\begin{array}{ccc}
\alpha_{u} \alpha_{v}=\alpha_{\lambda_{u}(v)} \alpha_{\rho_{v}(u)} & \text { (s1) } & \beta_{a} \beta_{b}=\beta_{\lambda_{a}(b)} \beta_{\rho_{b}(a)} \\
\rho_{\alpha_{u}^{-1}(b)} \alpha_{\beta_{a}(u)}^{-\mathbf{1}}(a)=\alpha_{\beta_{\rho_{b}(a)}^{-\mathbf{1}} \beta_{b}^{-\mathbf{1}}(u)} \rho_{b}(a) & (\mathrm{s} 3) & \rho_{\beta_{a}^{-1}(v)} \beta_{\alpha_{u}(a)}^{-\mathbf{1}}(u)=\beta_{\alpha_{\rho_{v}(u)}^{-\mathbf{1}}}^{\alpha_{v}^{-1}(a)} \rho_{v}(u) \\
\lambda_{a} \alpha_{\beta_{a}^{-\mathbf{1}}(u)}=\alpha_{u} \lambda_{\alpha_{u}^{-1}(a)} & \text { (s5) } & \lambda_{u} \beta_{\alpha_{u}^{-1}(a)}=\beta_{a} \lambda_{\beta_{a}^{-1}(u)}
\end{array}
$$

and the map $r: S \times T \times S \times T \rightarrow S \times T \times S \times T$ defined by

The matched product of solutions

F. Catino, I.C., P. Stefanelli, The matched product of solutions, in press on J. Pure Appl. Algebra

- r_{S} a solution on a set S
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- r_{T} a solution on a set T
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map
($r_{S}, r_{T}, \alpha, \beta$) is a matched product system of solutions if and only if

$$
\begin{array}{ccc}
\alpha_{u} \alpha_{v}=\alpha_{\lambda_{u}(v)} \alpha_{\rho_{v}(u)} & \text { (s1) } & \beta_{a} \beta_{b}=\beta_{\lambda_{a}(b)} \beta_{\rho_{b}(a)} \\
\rho_{\alpha_{u}^{-} \mathbf{1}_{(b)}} \alpha_{\beta_{a}(u)}^{-\mathbf{1}}(a)=\alpha_{\beta_{\rho_{b}(a)}^{-\mathbf{1}} \beta_{b}^{-\mathbf{1}}(u)} \rho_{b}(a) & \text { (s3) } & \rho_{\beta_{a}^{-1}(v)} \beta_{\alpha_{u}(a)}^{-\mathbf{1}}(u)=\beta_{\alpha_{\rho_{v}(u)}^{-\alpha_{v}^{-1}(a)}} \rho_{v}(u) \\
\lambda_{a} \alpha_{\beta_{a}^{-1}(u)}=\alpha_{u} \lambda_{\alpha_{u}^{-1}(a)} & \text { (s5) } & \lambda_{u} \beta_{\alpha_{u}^{-1}(a)}=\beta_{a} \lambda_{\beta_{a}^{-1}(u)}
\end{array}
$$

and the map $r: S \times T \times S \times T \rightarrow S \times T \times S \times T$ defined by
is a solution,

The matched product of solutions

F. Catino, I.C., P. Stefanelli, The matched product of solutions, in press on J. Pure Appl. Algebra
$\downarrow r_{S}$ a solution on a set $S \quad r_{T}$ a solution on a set T
$\downarrow \alpha: T \rightarrow \operatorname{Sym}(S)$ a map $\downarrow \beta: S \rightarrow \operatorname{Sym}(T)$ a map
($r_{S}, r_{T}, \alpha, \beta$) is a matched product system of solutions if and only if

$$
\begin{array}{ccc}
\alpha_{u} \alpha_{v}=\alpha_{\lambda_{u}(v)} \alpha_{\rho_{v}(u)} & \text { (s1) } & \beta_{a} \beta_{b}=\beta_{\lambda_{a}(b)} \beta_{\rho_{b}(a)} \\
\rho_{\alpha_{u}^{-1}(b)} \alpha_{\beta_{a}(u)}^{-\mathbf{1}}(a)=\alpha_{\beta_{\rho_{b}(a)}^{-\mathbf{1}} \beta_{b}^{-\mathbf{1}}(u)} \rho_{b}(a) & (\mathrm{s} 3) & \rho_{\beta_{a}^{-1}(v)} \beta_{\alpha_{u}(a)}^{-\mathbf{1}}(u)=\beta_{\alpha_{\rho_{v}(u)}^{-\mathbf{1}}}^{\alpha_{v}^{-1}(a)} \rho_{v}(u) \\
\lambda_{a} \alpha_{\beta_{a}^{-1}(u)}=\alpha_{u} \lambda_{\alpha_{u}^{-1}(a)} & \text { (s5) } & \lambda_{u} \beta_{\alpha_{u}^{-1}(a)}=\beta_{a} \lambda_{\beta_{a}^{-1}(u)}
\end{array}
$$

and the map $r: S \times T \times S \times T \rightarrow S \times T \times S \times T$ defined by

$$
r((a, u),(b, v)):=((\underbrace{\alpha_{u} \lambda_{\bar{a}}(b)}_{\|}, \underbrace{\beta_{a} \lambda_{\bar{u}}(v)}_{\begin{array}{|l}
U
\end{array}}),\left(\alpha_{\bar{U}}^{-1} \rho_{\alpha_{\bar{u}}(b)}(a), \beta_{\bar{A}}^{-1} \rho_{\beta_{\bar{a}}(v)}(u)\right))
$$

is a solution, where we denote $\alpha_{u}^{-1}(a)$ with \bar{a} and $\beta_{a}^{-1}(u)$ with \bar{u}, for any (a, u).

The matched product of two left shelves

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleright) is a left shelf
- r_{T} solution associated with (T, \triangleright)
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map
$\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions if and only if α_{u} and β_{a} are homomorphisms of left shelves

The matched product of two left shelves

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleright) is a left shelf
- r_{T} solution associated with (T, \triangleright)
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map
$\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions if and only if α_{u} and β_{a} are homomorphisms of left shelves

$$
\begin{align*}
\alpha_{v \triangleright u} & =\alpha_{v}^{-1} \alpha_{u} \alpha_{v} \tag{I1}\\
\alpha_{u} & =\alpha_{\beta_{a}^{-1}(u)} \tag{I2}
\end{align*}
$$

$$
\begin{align*}
\beta_{b \triangleright a} & =\beta_{b}^{-1} \beta_{a} \beta_{b} \\
\beta_{a} & =\beta_{\alpha_{u}^{-1}(a)} \tag{14}
\end{align*}
$$

hold for all $a, b \in S, u, v \in T$.

The matched product solution $r_{S} \bowtie r_{T}$ is given by
and $r_{S} \bowtie r_{T}$ is left non-degenerate.

The matched product of two left shelves

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleright) is a left shelf
- r_{T} solution associated with (T, \triangleright)
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map
$\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions if and only if α_{u} and β_{a} are homomorphisms of left shelves

$$
\begin{align*}
\alpha_{v \triangleright u} & =\alpha_{v}^{-1} \alpha_{u} \alpha_{v} \tag{I1}\\
\alpha_{u} & =\alpha_{\beta_{a}^{-1}(u)} \tag{I2}
\end{align*}
$$

$$
\begin{align*}
\beta_{b \triangleright a} & =\beta_{b}^{-1} \beta_{a} \beta_{b} \\
\beta_{a} & =\beta_{\alpha_{u}^{-1}(a)} \tag{14}
\end{align*}
$$

hold for all $a, b \in S, u, v \in T$.
The matched product solution $r_{S} \bowtie r_{T}$ is given by
and $r_{S} \bowtie r_{T}$ is left non-degenerate.

The matched product of two left shelves

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleright) is a left shelf
- r_{T} solution associated with (T, \triangleright)
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map
$\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions if and only if α_{u} and β_{a} are homomorphisms of left shelves

$$
\begin{align*}
\alpha_{v \triangleright u} & =\alpha_{v}^{-1} \alpha_{u} \alpha_{v} \tag{I1}\\
\alpha_{u} & =\alpha_{\beta_{a}^{-1}(u)} \tag{I2}
\end{align*}
$$

$$
\begin{align*}
\beta_{b \triangleright a} & =\beta_{b}^{-1} \beta_{a} \beta_{b} \\
\beta_{a} & =\beta_{\alpha_{u}^{-1}(a)} \tag{14}
\end{align*}
$$

hold for all $a, b \in S, u, v \in T$.

The matched product solution $r_{S} \bowtie r_{T}$ is given by

$$
r_{S} \bowtie r_{T}((a, u),(b, v))=\left(\left(\alpha_{u}(b), \beta_{a}(v)\right),\left(\alpha_{v}^{-1}\left(\alpha_{u}(b) \triangleright a\right), \beta_{b}^{-1}\left(\beta_{a}(v) \triangleright u\right)\right)\right)
$$

and \qquad

The matched product of two left shelves

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleright) is a left shelf
- r_{T} solution associated with (T, \triangleright)
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map
$\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions if and only if α_{u} and β_{a} are homomorphisms of left shelves

$$
\begin{align*}
\alpha_{v \triangleright u} & =\alpha_{v}^{-1} \alpha_{u} \alpha_{v} \tag{I1}\\
\alpha_{u} & =\alpha_{\beta_{a}^{-1}(u)} \tag{I2}
\end{align*}
$$

$$
\begin{align*}
\beta_{b \triangleright a} & =\beta_{b}^{-1} \beta_{a} \beta_{b} \\
\beta_{a} & =\beta_{\alpha_{u}^{-1}(a)} \tag{14}
\end{align*}
$$

hold for all $a, b \in S, u, v \in T$.

The matched product solution $r_{S} \bowtie r_{T}$ is given by

$$
r_{S} \bowtie r_{T}((a, u),(b, v))=\left(\left(\alpha_{u}(b), \beta_{a}(v)\right),\left(\alpha_{v}^{-1}\left(\alpha_{u}(b) \triangleright a\right), \beta_{b}^{-1}\left(\beta_{a}(v) \triangleright u\right)\right)\right)
$$

and $r_{S} \bowtie r_{T}$ is left non-degenerate.

The matched product of two right shelves

- (S, \triangleleft) is a right shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleleft) is a right shelf
- r_{T} solution associated with (T, \triangleright)
$-\beta: S \rightarrow \operatorname{Sym}(T)$ a map

The matched product of solutions

The matched product of two right shelves

- (S, \triangleleft) is a right shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleleft) is a right shelf
- r_{T} solution associated with (T, \triangleright)
$-\beta: S \rightarrow \operatorname{Sym}(T)$ a map
$\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions if and only if α_{u} and β_{a} are homomorphisms of right shelves

$$
\begin{align*}
\alpha_{u \triangleleft v} & =\alpha_{u} \alpha_{v} \alpha_{u}^{-1} \tag{r1}\\
\alpha_{u} & =\alpha_{\beta_{a}^{-1}(u)} \tag{r2}
\end{align*}
$$

$$
\beta_{a \triangleleft b}=\beta_{a} \beta_{b} \beta_{a}^{-1}
$$

$$
\begin{equation*}
\beta_{a}=\beta_{\alpha_{u}^{-1}(a)} \tag{r4}
\end{equation*}
$$

hold for all $a, b \in S, u, v \in T$.

The matched product solution $r_{S} \bowtie r_{T}$ is given by

$$
r_{S} \bowtie r_{T}((a, u),(b, v))=\left(\left(\alpha_{u}(b) \triangleleft a, \beta_{a}(v) \triangleleft u\right),\left(\alpha_{v \triangleright u}^{-1}(a), \beta_{b \triangleleft a}^{-1}(u)\right)\right),
$$

and
racks.

The matched product of two right shelves

- (S, \triangleleft) is a right shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleleft) is a right shelf
- r_{T} solution associated with (T, \triangleright)
$-\beta: S \rightarrow \operatorname{Sym}(T)$ a map
$\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions if and only if α_{u} and β_{a} are homomorphisms of right shelves

$$
\begin{align*}
\alpha_{u \triangleleft v} & =\alpha_{u} \alpha_{v} \alpha_{u}^{-1} \tag{r1}\\
\alpha_{u} & =\alpha_{\beta_{a}^{-1}(u)} \tag{r2}
\end{align*}
$$

$$
\beta_{a \triangleleft b}=\beta_{a} \beta_{b} \beta_{a}^{-1}
$$

$$
\begin{equation*}
\beta_{a}=\beta_{\alpha_{u}^{-1}(a)} \tag{r4}
\end{equation*}
$$

hold for all $a, b \in S, u, v \in T$.
The matched product solution $r_{S} \bowtie r_{T}$ is given by

$$
r_{S} \bowtie r_{T}((a, u),(b, v))=\left(\left(\alpha_{u}(b) \triangleleft a, \beta_{a}(v) \triangleleft u\right),\left(\alpha_{v \triangleright u}^{-1}(a), \beta_{b \triangleleft a}^{-1}(u)\right)\right),
$$

and $r_{S} \bowtie r_{T}$ iis left non-degenerate if and only if (S, \triangleleft) and (T, \triangleleft) are right racks.

The matched product of left and right shelves

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleleft) is a right shelf
- r_{T} solution associated with (T, \triangleright)
$-\beta: S \rightarrow \operatorname{Sym}(T)$ a map

The matched product of left and right shelves

- (S, \triangleright) is a left shelf
$-r_{S}$ solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleleft) is a right shelf
$-r_{T}$ solution associated with (T, \triangleright)
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map
$\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions if and only if α_{u} are homomorphisms of left shelves and β_{a} are homomorphisms of right shelves

$$
\begin{align*}
\alpha_{u \triangleleft v} & =\alpha_{u} \alpha_{v} \alpha_{u}^{-1} & (\operatorname{lr} 1) & \beta_{a \triangleright b} \tag{Ir1}
\end{align*}=\beta_{b}^{-1} \beta_{a} \beta_{b}
$$

hold for all $a, b \in S, u, v \in T$.
The matched product solution $r_{S} \bowtie r_{T}$ is given by

$$
r_{S} \bowtie r_{T}((a, u),(b, v))=\left(\left(\alpha_{u}(b), \beta_{a}(v) \triangleleft u\right),\left(\alpha_{v \triangleleft u}^{-1} \alpha_{u}(b) \triangleleft a, \beta_{b}^{-1}(u)\right)\right),
$$

and

The matched product of left and right shelves

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleleft) is a right shelf
- r_{T} solution associated with (T, \triangleright)
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map
$\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions if and only if α_{u} are homomorphisms of left shelves and β_{a} are homomorphisms of right shelves

$$
\left.\begin{array}{rlrl}
\alpha_{u \triangleleft v} & =\alpha_{u} \alpha_{v} \alpha_{u}^{-1} & (\operatorname{lr} 1) & \beta_{a \triangleright b}
\end{array}=\beta_{b}^{-1} \beta_{\mathrm{a}} \beta_{b}\right) \text { (lr3) } \quad \beta_{a}=\beta_{\alpha_{u}^{-1}(\mathrm{a})}
$$

hold for all $a, b \in S, u, v \in T$.

The matched product solution $r_{S} \bowtie r_{T}$ is given by

$$
r_{S} \bowtie r_{T}((a, u),(b, v))=\left(\left(\alpha_{u}(b), \beta_{a}(v) \triangleleft u\right),\left(\alpha_{v \triangleleft u}^{-1} \alpha_{u}(b) \triangleleft a, \beta_{b}^{-1}(u)\right)\right),
$$

and $r_{S} \bowtie r_{T}$ is left non-degenerate if and only if (T, \triangleleft) is right rack.

The matched product of left shelves

An example

- (S, \triangleright) the left shelf defined by $a \triangleright b:=a$, for all $a, b \in S$.

The solution associated with (S, \triangleright) is defined by $r_{s}(a, b)=(b, b)$, for all $a, b \in S$.

The matched product of left shelves

An example

- (S, \triangleright) the left shelf defined by $a \triangleright b:=a$, for all $a, b \in S$.

The solution associated with (S, \triangleright) is defined by $r_{S}(a, b)=(b, b)$, for all $a, b \in S$.
θ and η be a bijective maps from S into itself.
$\rightarrow \alpha \beta \cdot S \rightarrow$ Sym (S) the constant mans with value θ and η respectively.
\square

The matched product of left shelves

An example

- (S, \triangleright) the left shelf defined by $a \triangleright b:=a$, for all $a, b \in S$.

The solution associated with (S, \triangleright) is defined by $r_{S}(a, b)=(b, b)$, for all $a, b \in S$.

- $(T, \triangleright)=(S, \triangleright)$.
$\rightarrow \theta$ and η be a bijective maps from S into itself.
$-\alpha, \beta: S \rightarrow \operatorname{Sym}(S)$ the constant maps with value θ and η respectively.
\square

The matched product of left shelves

An example

- (S, \triangleright) the left shelf defined by $a \triangleright b:=a$, for all $a, b \in S$.

The solution associated with (S, \triangleright) is defined by $r_{S}(a, b)=(b, b)$, for all $a, b \in S$.

- $(T, \triangleright)=(S, \triangleright)$.
- θ and η be a bijective maps from S into itself.

The matched product of left shelves

An example

- (S, \triangleright) the left shelf defined by $a \triangleright b:=a$, for all $a, b \in S$.

The solution associated with (S, \triangleright) is defined by $r_{S}(a, b)=(b, b)$, for all $a, b \in S$.

- $(T, \triangleright)=(S, \triangleright)$.
- θ and η be a bijective maps from S into itself.
- $\alpha, \beta: S \rightarrow \operatorname{Sym}(S)$ the constant maps with value θ and η respectively. Then, $\left(r_{S}, r_{S}, \alpha, \beta\right)$ is a matched product system of solutions. The solution $r_{S} \bowtie r_{S}$ is the map given by
\qquad

The matched product of left shelves

An example

- (S, \triangleright) the left shelf defined by $a \triangleright b:=a$, for all $a, b \in S$.

The solution associated with (S, \triangleright) is defined by $r_{S}(a, b)=(b, b)$, for all $a, b \in S$.

- $(T, \triangleright)=(S, \triangleright)$.
- θ and η be a bijective maps from S into itself.
- $\alpha, \beta: S \rightarrow \operatorname{Sym}(S)$ the constant maps with value θ and η respectively.

Then, $\left(r_{S}, r_{S}, \alpha, \beta\right)$ is a matched product system of solutions.
The solution $r_{s} \bowtie r_{s}$ is the map given by
$r_{S} \bowtie r_{S}$ is associated with a left shelf if and only $(a, u),(b, v) \in S \times T$ and, in other words, if and on ly

The matched product of left shelves

An example

- (S, \triangleright) the left shelf defined by $a \triangleright b:=a$, for all $a, b \in S$.

The solution associated with (S, \triangleright) is defined by $r_{S}(a, b)=(b, b)$, for all $a, b \in S$.

- $(T, \triangleright)=(S, \triangleright)$.
- θ and η be a bijective maps from S into itself.
- $\alpha, \beta: S \rightarrow \operatorname{Sym}(S)$ the constant maps with value θ and η respectively.

Then, $\left(r_{S}, r_{S}, \alpha, \beta\right)$ is a matched product system of solutions.
The solution $r_{S} \bowtie r_{S}$ is the map given by

$$
\begin{aligned}
r((a, u),(b, v)) & =\left((\theta(b), \eta(v)),\left(\theta^{-1}(\theta(b)), \eta^{-1}(\eta(v))\right)\right) \\
& =((\theta(b), \eta(v)),(b, v))
\end{aligned}
$$

for all $a, b, u, v \in S$.

The matched product of left shelves

An example

- (S, \triangleright) the left shelf defined by $a \triangleright b:=a$, for all $a, b \in S$.

The solution associated with (S, \triangleright) is defined by $r_{S}(a, b)=(b, b)$, for all $a, b \in S$.

- $(T, \triangleright)=(S, \triangleright)$.
- θ and η be a bijective maps from S into itself.
- $\alpha, \beta: S \rightarrow \operatorname{Sym}(S)$ the constant maps with value θ and η respectively.

Then, $\left(r_{S}, r_{S}, \alpha, \beta\right)$ is a matched product system of solutions.
The solution $r_{S} \bowtie r_{S}$ is the map given by

$$
\begin{aligned}
r((a, u),(b, v)) & =\left((\theta(b), \eta(v)),\left(\theta^{-1}(\theta(b)), \eta^{-1}(\eta(v))\right)\right) \\
& =((\theta(b), \eta(v)),(b, v))
\end{aligned}
$$

for all $a, b, u, v \in S$.
$r_{S} \bowtie r_{S}$ is associated with a left shelf if and only if $\lambda_{(a, u)}(b, v)=(b, v)$, for all $(a, u),(b, v) \in S \times T$

The matched product of left shelves

An example

- (S, \triangleright) the left shelf defined by $a \triangleright b:=a$, for all $a, b \in S$.

The solution associated with (S, \triangleright) is defined by $r_{S}(a, b)=(b, b)$, for all $a, b \in S$.

- $(T, \triangleright)=(S, \triangleright)$.
- θ and η be a bijective maps from S into itself.
- $\alpha, \beta: S \rightarrow \operatorname{Sym}(S)$ the constant maps with value θ and η respectively.

Then, $\left(r_{S}, r_{S}, \alpha, \beta\right)$ is a matched product system of solutions.
The solution $r_{S} \bowtie r_{S}$ is the map given by

$$
\begin{aligned}
r((a, u),(b, v)) & =\left((\theta(b), \eta(v)),\left(\theta^{-1}(\theta(b)), \eta^{-1}(\eta(v))\right)\right) \\
& =((\theta(b), \eta(v)),(b, v))
\end{aligned}
$$

for all $a, b, u, v \in S$.
$r_{S} \bowtie r_{S}$ is associated with a left shelf if and only if $\lambda_{(a, u)}(b, v)=(b, v)$, for all $(a, u),(b, v) \in S \times T$ and, in other words, if and only if $\theta=\eta=\mathrm{id}_{s}$.

The matched product of left shelves

When is the matched product solution a shelf?

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleright) is a left shelf
- r_{T} solution associated with (T, \triangleright)
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map

The matched product of left shelves

When is the matched product solution a shelf?

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleright) is a left shelf
- r_{T} solution associated with (T, \triangleright)
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map

If $\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of r_{S} and r_{T}, solution $r_{S} \bowtie r_{T}$ is associated with a lef

The matched product of left shelves

When is the matched product solution a shelf?

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleright) is a left shelf
- r_{T} solution associated with (T, \triangleright)
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map

If $\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of r_{S} and r_{T}, then the matched solution $r_{S} \bowtie r_{T}$ is associated with a left shelf on the cartesian product $S \times T$ if and only if $\alpha_{u}=$ ids, for every $u \in T$, and $\beta_{a}=\mathrm{id}$, for every $a \in S$.

The matched product of left shelves

The structure shelf

- (S, \triangleright) is a left shelf
- r_{S} solution associated with (S, \triangleright)
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleright) is a left shelf
- r_{T} solution associated with (T, \triangleright)
$-\beta: S \rightarrow \operatorname{Sym}(T)$ a map

The matched product of left shelves

The structure shelf

- (S, \triangleright) is a left shelf
$-r_{S}$ solution associated with (S, \triangleright)
$-\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- (T, \triangleright) is a left shelf
- r_{T} solution associated with (T, \triangleright)
$-\beta: S \rightarrow \operatorname{Sym}(T)$ a map

If $\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of r_{S} and r_{T}, then the structure shelf related to the matched solution $r:=r_{S} \bowtie r_{T}$ is defined by

$$
(a, u) \triangleright_{r}(b, v)=(a \triangleright b, u \triangleright v)
$$

The structure shelf of the matched product

- r_{S} left non-degenerate solution
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- r_{T} left non-degenerate solution
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map

If $\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions, then the matched product solution $r:=r_{S} \bowtie r_{T}$ is left non-degenerate and the structure shelf is

The structure shelf of the matched product

- r_{S} left non-degenerate solution
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- r_{T} left non-degenerate solution
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map

If $\left(r_{s}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions, product solution $r:=r_{S} \bowtie r_{T}$ is left non-degenerate and the structure shelfis

The structure shelf of the matched product

- r_{S} left non-degenerate solution
- $\alpha: T \rightarrow \operatorname{Sym}(S)$ a map
- r_{T} left non-degenerate solution
- $\beta: S \rightarrow \operatorname{Sym}(T)$ a map

If $\left(r_{S}, r_{T}, \alpha, \beta\right)$ is a matched product system of solutions, then the matched product solution $r:=r_{S} \bowtie r_{T}$ is left non-degenerate and the structure shelf is

$$
(a, u) \triangleright_{r}(b, v)=\left(a \triangleright_{r S} b, u \triangleright_{r_{T}} v\right)
$$

Thanks for your attention!

