New solutions of the Yang-Baxter equation obtained through solutions of the pentagon equation

## Paola Stefanelli

$\checkmark$ paola.stefanelli@unisalento.it


Advances in Group Theory and Applications 2019
Lecce, 27th June 2019

## The pentagon equation

The study of the pentagon equation (PE) classically originates from the field of Mathematical Physics and it is widely investigated also in Analysis. The paper [Dimakis, Müller-Hoissen, 2015] can be useful for a brief introduction to this topic.

Recent developments have been provided in [Catino, Mazzotta, Miccoli, 2019], where this equation is dealt with from an algebraic point of view.

Show new applications of the PE to set-theoretical solutions of the well-known Yang-Baxter equation. [Catino, Mazzotta, S., work in progress]

## The pentagon equation

The study of the pentagon equation (PE) classically originates from the field of Mathematical Physics and it is widely investigated also in Analysis. The paper [Dimakis, Müller-Hoissen, 2015] can be useful for a brief introduction to this topic.

Recent developments have been provided in [Catino, Mazzotta, Miccoli, 2019], where this equation is dealt with from an algebraic point of view.

## Aim of this talk

Show new applications of the PE to set-theoretical solutions of the well-known Yang-Baxter equation. [Catino, Mazzotta, S., work in progress]

## Set-theoretical solutions of the PE

Given a set $S$, a map s:S $\times S \rightarrow S \times S$ is a set-theoretical solution of the $P E$ on $S$ if

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

where $s_{12}=s \times \mathrm{id}_{s}, s_{23}=\mathrm{id} \mathrm{s}_{s} \times s$, and $s_{13}=\left(\mathrm{id} \mathrm{s}_{\mathrm{s}} \times \tau\right) \mathrm{s}_{12}\left(\mathrm{id}_{s} \times \tau\right)$ with $\tau$ the twist map, i.e., $\tau(x, y)=(y, x)$, for all $x, y \in S$. We briefly call $s$ a solution of the $P E$.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$
s(a, b)=\left(a \cdot b, \theta_{a}(b)\right),
$$

for all $a, b \in S$, where $\theta_{a}$ is a map from $S$ into itself, for every $a \in S$.
Note that the structure $(S, \cdot)$ is a semigroup.

## Set-theoretical solutions of the PE

Given a set $S$, a map s: $S \times S \rightarrow S \times S$ is a set-theoretical solution of the $P E$ on $S$ if

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

where $s_{12}=s \times \mathrm{id}_{s}$,
We briefly call $s$ a solution of the PE.
In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$
s(a, b)=\left(a \cdot b, \theta_{a}(b)\right)
$$

for all $a, b \in S$, where $\theta_{a}$ is a map from $S$ into itself, for every $a \in S$.
Note that the structure $(S, \cdot)$ is a semigroup.

## Set-theoretical solutions of the PE

Given a set $S$, a map s: $S \times S \rightarrow S \times S$ is a set-theoretical solution of the $P E$ on $S$ if

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

where $s_{12}=s \times \mathrm{id}_{s}, s_{23}=\mathrm{id}_{s} \times s$,
We briefly call $s$ a solution of the $P E$.
In particular, as in raano Mazzotta, Miccoli, 2019] we write

$$
s(a, b)=\left(a \cdot b, \theta_{a}(b)\right),
$$

for all $a, b \in S$, where $\theta_{a}$ is a map from $S$ into itself, for every $a \in S$.
Note that the structure $(S, \cdot)$ is a semigroup.

## Set-theoretical solutions of the PE

Given a set $S$, a map s: $S \times S \rightarrow S \times S$ is a set-theoretical solution of the $P E$ on $S$ if

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

where $s_{12}=s \times \mathrm{id}_{s}, s_{23}=\mathrm{id}_{S} \times s$, and $s_{13}=\left(\mathrm{id}_{S} \times \tau\right) s_{12}\left(\mathrm{id}_{S} \times \tau\right)$ with $\tau$ the twist map, i.e., $\tau(x, y)=(y, x)$, for all $x, y \in S$.
We briefly call $s$ a solution of the PE.
In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$
s(a, b)=\left(a \cdot b, \theta_{a}(b)\right)
$$

for all $a, b \in S$, where $\theta_{a}$ is a map from $S$ into itself, for every $a \in S$.
Note that the structure $(S, \cdot)$ is a semigroup.

## Set-theoretical solutions of the PE

Given a set $S$, a map s: $S \times S \rightarrow S \times S$ is a set-theoretical solution of the $P E$ on $S$ if

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

where $s_{12}=s \times \mathrm{id}_{s}, s_{23}=\mathrm{id}_{S} \times s$, and $s_{13}=\left(\mathrm{id}_{S} \times \tau\right) s_{12}\left(\mathrm{id}_{S} \times \tau\right)$ with $\tau$ the twist map, i.e., $\tau(x, y)=(y, x)$, for all $x, y \in S$.
We briefly call $s$ a solution of the $P E$.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write
for all $a, b \in S$, where $\theta_{a}$ is a map from $S$ into itself, for every $a \in S$.
Note that the structure $(S, \cdot)$ is a semigroup.

## Set-theoretical solutions of the PE

Given a set $S$, a map s: $S \times S \rightarrow S \times S$ is a set-theoretical solution of the $P E$ on $S$ if

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

where $s_{12}=s \times \mathrm{id}_{s}, s_{23}=\mathrm{id}_{s} \times s$, and $s_{13}=\left(\mathrm{id}_{s} \times \tau\right) s_{12}\left(\mathrm{id}_{s} \times \tau\right)$ with $\tau$ the twist map, i.e., $\tau(x, y)=(y, x)$, for all $x, y \in S$.
We briefly call $s$ a solution of the $P E$.
In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$
s(a, b)=\left(a \cdot b, \theta_{a}(b)\right)
$$

for all $a, b \in S$, where $\theta_{a}$ is a map from $S$ into itself, for every $a \in S$.
Note that the structure $(S, \cdot)$ is a semigroup.

## Set-theoretical solutions of the PE

Given a set $S$, a map s: $S \times S \rightarrow S \times S$ is a set-theoretical solution of the $P E$ on $S$ if

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

where $s_{12}=s \times \mathrm{id}_{s}, s_{23}=\mathrm{id}_{s} \times s$, and $s_{13}=\left(\mathrm{id}_{s} \times \tau\right) s_{12}\left(\mathrm{id}_{s} \times \tau\right)$ with $\tau$ the twist map, i.e., $\tau(x, y)=(y, x)$, for all $x, y \in S$.
We briefly call $s$ a solution of the $P E$.
In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$
s(a, b)=\left(a \cdot b, \theta_{a}(b)\right)
$$

for all $a, b \in S$, where $\theta_{a}$ is a map from $S$ into itself, for every $a \in S$.
Note that the structure $(S, \cdot)$ is a semigroup.

## Set-theoretical solutions of the PE

Given a set $S$, a map s: $S \times S \rightarrow S \times S$ is a set-theoretical solution of the $P E$ on $S$ if

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

where $s_{12}=s \times \mathrm{id}_{s}, s_{23}=\mathrm{id} s_{S} \times s$, and $s_{13}=\left(\mathrm{id}_{S} \times \tau\right) s_{12}\left(\mathrm{id}_{S} \times \tau\right)$ with $\tau$ the twist map, i.e., $\tau(x, y)=(y, x)$, for all $x, y \in S$.
We briefly call $s$ a solution of the $P E$.
In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$
s(a, b)=\left(a \cdot b, \theta_{a}(b)\right)
$$

for all $a, b \in S$, where $\theta_{a}$ is a map from $S$ into itself, for every $a \in S$. Note that the structure $(S, \cdot)$ is a semigroup.

## Reversed solutions of the PE

A solution of the reversed $P E$ on a set $S$ is a map $t: S \times S \rightarrow S \times S$ such that

$$
t_{12} t_{13} t_{23}=t_{23} t_{12}
$$

We briefly call $t$ a reversed solution.
A comparison with the PE:

$$
s_{23} s_{13} s_{12}=s_{12} s_{23}
$$

Remark: A map $s$ is a solution of the PE if and only if $t:=\tau S \tau$ is a reversed solution, that is given by
for all $a, b \in S$. Thus, every reversed solution can be written by using this notation.

## Reversed solutions of the PE

A solution of the reversed $P E$ on a set $S$ is a map $t: S \times S \rightarrow S \times S$ such that

$$
t_{12} t_{13} t_{23}=t_{23} t_{12}
$$

We briefly call $t$ a reversed solution.
A comparison with the PE:

$$
s_{23} s_{13} s_{12}=s_{12} s_{23}
$$

Remark: A map $s$ is a solution of the PE if and only if $t:=\tau S \tau$ is a reversed solution, that is given by

$$
t(a, b)=\left(\theta_{b}(a), b \cdot a\right)
$$

for all $a, b \in S$. Thus, every reversed solution can be written by using this notation.

## Reversed solutions of the PE

A solution of the reversed $P E$ on a set $S$ is a map $t: S \times S \rightarrow S \times S$ such that

$$
t_{12} t_{13} t_{23}=t_{23} t_{12}
$$

We briefly call $t$ a reversed solution.
A comparison with the PE:

$$
\boldsymbol{s}_{23} \boldsymbol{s}_{13} \boldsymbol{s}_{12}=\boldsymbol{s}_{12} \boldsymbol{s}_{23}
$$

Remark: A map $s$ is a solution of the PE if and only if $t:=\tau S \tau$ is a reversed
solution, that is given by

$$
t(a, b)=\left(\theta_{b}(a), b \cdot a\right)
$$

for all $a, b \in S$. Thus, every reversed solution can be written by using this
notation.

## Reversed solutions of the PE

A solution of the reversed $P E$ on a set $S$ is a map $t: S \times S \rightarrow S \times S$ such that

$$
t_{12} t_{13} t_{23}=t_{23} t_{12}
$$

We briefly call $t$ a reversed solution.
A comparison with the PE:

$$
s_{23} s_{13} s_{12}=s_{12} s_{23}
$$

Remark: A map $s$ is a solution of the PE if and only if $t:=\tau S \tau$ is a reversed
solution, that is given by

$$
t(a, b)=\left(\theta_{b}(a), b \cdot a\right),
$$

for all $a, b \in S$. Thus, every reversed solution can be written by using this
notation.

## Reversed solutions of the PE

A solution of the reversed $P E$ on a set $S$ is a map $t: S \times S \rightarrow S \times S$ such that

$$
t_{12} t_{13} t_{23}=t_{23} t_{12}
$$

We briefly call $t$ a reversed solution.
A comparison with the PE:

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

Remark: A map $s$ is a solution of the PE if and only if $t:=\tau s \tau$ is a reversed solution, that is given by

$$
t(a, b)=\left(\theta_{b}(a), b \cdot a\right),
$$

for all $a, b \in S$. Thus, every reversed solution can be written by using this notation.

## Reversed solutions of the PE

A solution of the reversed $P E$ on a set $S$ is a map $t: S \times S \rightarrow S \times S$ such that

$$
t_{12} t_{13} t_{23}=t_{23} t_{12}
$$

We briefly call $t$ a reversed solution.
A comparison with the PE:

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

Remark: A map $s$ is a solution of the PE if and only if $t:=\tau s \tau$ is a reversed solution, that is given by

$$
t(a, b)=\left(\theta_{b}(a), b \cdot a\right),
$$

for all $a, b \in S$. Thus, every reversed solution can be written by using this notation.

## Examples

- If $S$ is a semigroup and $\gamma$ an idempotent endomorphism of $S$ then the map $s: S \times S \rightarrow S \times S$ given by

$$
s(a, b)=(a b, \gamma(b))
$$

is a solution of the PE on $S$

- Militaru solutions: Given $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$. Then the map $s$ given by

$$
s(a, b)=(f(a), g(b))
$$

is both a solution of the PE and of the R-PE

## Examples

- If $S$ is a semigroup and $\gamma$ an idempotent endomorphism of $S$ then the map $s: S \times S \rightarrow S \times S$ given by

$$
s(a, b)=(a b, \gamma(b))
$$

is a solution of the PE on $S$ but not of the R-PE.

- Militaru solutions: Given $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$. Then the map $s$ given by

$$
s(a, b)=(f(a), g(b))
$$

is both a solution of the PE and of the R-PE.

## Examples

- If $S$ is a semigroup and $\gamma$ an idempotent endomorphism of $S$ then the map $s: S \times S \rightarrow S \times S$ given by

$$
s(a, b)=(a b, \gamma(b))
$$

is a solution of the PE on $S$ but not of the R-PE.

- Militaru solutions: Given $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$. Then the map $s$ given by

$$
s(a, b)=(f(a), g(b))
$$

> is both a solution of the PE and of the R-PE.

## Examples

- If $S$ is a semigroup and $\gamma$ an idempotent endomorphism of $S$ then the map $s: S \times S \rightarrow S \times S$ given by

$$
s(a, b)=(a b, \gamma(b))
$$

is a solution of the PE on $S$ but not of the R-PE.

- Militaru solutions: Given $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$. Then the map $s$ given by

$$
s(a, b)=(f(a), g(b))
$$

is both a solution of the PE and of the R-PE.

## Set-theoretical solutions of the quantum YBE

According to [Drinfel'd, 1992], given a set $S$, a map $\mathcal{R}: S \times S \rightarrow S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on $S$, if

$$
\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}=\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}
$$

holds, with the same notation adopted for the PE.
For simplicity, we call $\mathcal{R}$ a

## Comparison with the QYBE:

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

## Set-theoretical solutions of the quantum YBE

According to [Drinfel'd, 1992], given a set $S$, a map $\mathcal{R}: S \times S \rightarrow S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on $S$, if

$$
\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}=\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}
$$

holds, with the same notation adopted for the PE. For simplicity, we call $\mathcal{R}$ a solution of the QYBE.

Comparison with the QYBE:

$$
S_{23} S_{13} S_{12}=S_{12} S_{23}
$$

## Set-theoretical solutions of the quantum YBE

According to [Drinfel'd, 1992], given a set $S$, a map $\mathcal{R}: S \times S \rightarrow S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on $S$, if

$$
\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}=\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}
$$

holds, with the same notation adopted for the PE. For simplicity, we call $\mathcal{R}$ a solution of the QYBE.

Comparison with the QYBE:

$$
\begin{array}{ll|l}
\mathrm{PE} & s_{23} s_{13} s_{12}=s_{12} s_{23} & t_{23} t_{12}=t_{12} t_{13} t_{23} \quad \text { R-PE }
\end{array}
$$

## Set-theoretical solutions of the quantum YBE

According to [Drinfel'd, 1992], given a set $S$, a map $\mathcal{R}: S \times S \rightarrow S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on $S$, if

$$
\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}=\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}
$$

holds, with the same notation adopted for the PE. For simplicity, we call $\mathcal{R}$ a solution of the QYBE.

Comparison with the QYBE:

$$
\begin{array}{ll|l}
\mathrm{PE} & s_{23} s_{13} s_{12}=s_{12} s_{23} & t_{23} t_{12}=t_{12} t_{13} t_{23} \quad \text { R-PE }
\end{array}
$$

## Set-theoretical solutions of the quantum YBE

According to [Drinfel'd, 1992], given a set $S$, a map $\mathcal{R}: S \times S \rightarrow S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on $S$, if

$$
\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}=\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}
$$

holds, with the same notation adopted for the PE. For simplicity, we call $\mathcal{R}$ a solution of the QYBE.

Comparison with the QYBE:

$$
\begin{array}{ll|l}
\mathrm{PE} & s_{23} s_{13} s_{12}=s_{12} s_{23} & t_{23} t_{12}=t_{12} t_{13} t_{23} \quad \text { R-PE }
\end{array}
$$

## Set-theoretical solutions of the quantum YBE

According to [Drinfel'd, 1992], given a set $S$, a map $\mathcal{R}: S \times S \rightarrow S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on $S$, if

$$
\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}=\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}
$$

holds, with the same notation adopted for the PE. For simplicity, we call $\mathcal{R}$ a solution of the QYBE.

Comparison with the QYBE:

$$
\begin{array}{ll|l}
\mathrm{PE} & s_{23} s_{13} s_{12}=s_{12} s_{23} & t_{23} t_{12}=t_{12} t_{13} t_{23} \quad \text { R-PE }
\end{array}
$$

## A special class of solutions

## Proposition (Catino, Mazzotta, S., 2019)

Let $s$ be a solution of the PE on a set $S$ defined by $s(a, b)=\left(a b, \theta_{a}(b)\right)$.
Then, the map $s$ is a solution of the QYBE if and only if the following conditions

$$
\begin{align*}
& a b c=a \theta_{b}(c) b c  \tag{Y1}\\
& \theta_{a} \theta_{b}=\theta_{b}  \tag{Y2}\\
& \theta_{a}(b c)=\theta_{\theta_{b}(c)}(b c) \tag{Y3}
\end{align*}
$$

are satisfied, for all $a, b, c \in S$. We call $s$ a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if $t$ is a reversed solution, $t(a, b)=\left(\theta_{b}(a), b a\right)$, then $t$ is a solution of the QYBE if and only if. $(\mathrm{Y} 1),(\mathrm{Y} 2)$, and $(\mathrm{Y} 3)$ are satisfied. We call $t$ a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.

## A special class of solutions

## Proposition (Catino, Mazzotta, S., 2019)

Let $s$ be a solution of the PE on a set $S$ defined by $s(a, b)=\left(a b, \theta_{a}(b)\right)$.
Then, the map $s$ is a solution of the QYBE if and only if the following conditions

$$
\begin{aligned}
& a b c=a \theta_{b}(c) b c \\
& \theta_{a} \theta_{b}=\theta_{b} \\
& \theta_{a}(b c)=\theta_{\theta_{b}(c)}(b c)
\end{aligned}
$$

are satisfied, for all $a, b, c \in S$. We call $s$ a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if $t$ is a reversed solution, $t(a, b)=\left(\theta_{b}(a), b a\right)$, then $t$ is a solution of the QYBE if and only if $(\mathrm{Y} 1),(\mathrm{Y} 2)$, and $(\mathrm{Y} 3)$ are satisfied. We call
$t$ a solution to the QYBE of reversed pentagonal type, or briefly a solution
R-QYBE.

## A special class of solutions

## Proposition (Catino, Mazzotta, S., 2019)

Let $s$ be a solution of the PE on a set $S$ defined by $s(a, b)=\left(a b, \theta_{a}(b)\right)$. Then, the map $s$ is a solution of the QYBE if and only if the following conditions

$$
\begin{aligned}
& a b c=a \theta_{b}(c) b c \\
& \theta_{a} \theta_{b}=\theta_{b} \\
& \theta_{a}(b c)=\theta_{\theta_{b}(c)}(b c)
\end{aligned}
$$

are satisfied, for all $a, b, c \in S$. We call $s$ a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if $t$ is a reversed solution, $t(a, b)=\left(\theta_{b}(a)\right.$, $\left.b a\right)$, then $t$ is a solution of the QYBE if and only if . $(\mathrm{Y} 1),(\mathrm{Y} 2)$, and $(\mathrm{Y} 3)$ are satisfied. We call $t$ a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.

## A special class of solutions

## Proposition (Catino, Mazzotta, S., 2019)

Let $s$ be a solution of the PE on a set $S$ defined by $s(a, b)=\left(a b, \theta_{a}(b)\right)$. Then, the map $s$ is a solution of the QYBE if and only if the following conditions

$$
\begin{align*}
& a b c=a \theta_{b}(c) b c  \tag{Y1}\\
& \theta_{a} \theta_{b}=\theta_{b}  \tag{Y2}\\
& \theta_{a}(b c)=\theta_{\theta_{b}(c)}(b c) \tag{Y3}
\end{align*}
$$

are satisfied, for all $a, b, c \in S$.
pentagonal type, or briefly a solution P-QYBE.

Analogously, if $t$ is a reversed solution, $t(a, b)=\left(\theta_{b}(a)\right.$, $\left.b a\right)$, then $t$ is a solution of the QYBE if and only if. $(\mathrm{Y} 1),(\mathrm{Y} 2)$, and $(\mathrm{Y} 3)$ are satisfied. We call $t$ a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE:

## A special class of solutions

## Proposition (Catino, Mazzotta, S., 2019)

Let $s$ be a solution of the PE on a set $S$ defined by $s(a, b)=\left(a b, \theta_{a}(b)\right)$. Then, the map $s$ is a solution of the QYBE if and only if the following conditions

$$
\begin{align*}
& a b c=a \theta_{b}(c) b c  \tag{Y1}\\
& \theta_{a} \theta_{b}=\theta_{b}  \tag{Y2}\\
& \theta_{a}(b c)=\theta_{\theta_{b}(c)}(b c) \tag{Y3}
\end{align*}
$$

are satisfied, for all $a, b, c \in S$. We call $s$ a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if $t$ is a reversed solution, $t(a, b)=\left(\theta_{b}(a), b a\right)$, then $t$ is a solution of the QYBE if and only if . $(\mathrm{Y} 1),(\mathrm{Y} 2)$, and $(\mathrm{Y} 3)$ are satisfied. We call $t$ a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE:

## A special class of solutions

## Proposition (Catino, Mazzotta, S., 2019)

Let $s$ be a solution of the PE on a set $S$ defined by $s(a, b)=\left(a b, \theta_{a}(b)\right)$. Then, the map $s$ is a solution of the QYBE if and only if the following conditions

$$
\begin{align*}
& a b c=a \theta_{b}(c) b c  \tag{Y1}\\
& \theta_{a} \theta_{b}=\theta_{b}  \tag{Y2}\\
& \theta_{a}(b c)=\theta_{\theta_{b}(c)}(b c) \tag{Y3}
\end{align*}
$$

are satisfied, for all $a, b, c \in S$. We call $s$ a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if $t$ is a reversed solution, $t(a, b)=\left(\theta_{b}(a)\right.$, $\left.b a\right)$, then $t$ is a solution of the QYBE if and only if. $(\mathrm{Y} 1),(\mathrm{Y} 2)$, and $(\mathrm{Y} 3)$ are satisfied. We call $t$ a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.

## A special class of solutions

## Proposition (Catino, Mazzotta, S., 2019)

Let $s$ be a solution of the PE on a set $S$ defined by $s(a, b)=\left(a b, \theta_{a}(b)\right)$. Then, the map $s$ is a solution of the QYBE if and only if the following conditions

$$
\begin{align*}
& a b c=a \theta_{b}(c) b c  \tag{Y1}\\
& \theta_{a} \theta_{b}=\theta_{b}  \tag{Y2}\\
& \theta_{a}(b c)=\theta_{\theta_{b}(c)}(b c) \tag{Y3}
\end{align*}
$$

are satisfied, for all $a, b, c \in S$. We call $s$ a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if $t$ is a reversed solution, $t(a, b)=\left(\theta_{b}(a), b a\right)$, then $t$ is a solution of the QYBE if and only if . $(\mathrm{Y} 1),(\mathrm{Y} 2)$, and $(\mathrm{Y} 3)$ are satisfied. We call $t$ a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE:

## A special class of solutions

## Proposition (Catino, Mazzotta, S., 2019)

Let $s$ be a solution of the PE on a set $S$ defined by $s(a, b)=\left(a b, \theta_{a}(b)\right)$. Then, the map $s$ is a solution of the QYBE if and only if the following conditions

$$
\begin{align*}
& a b c=a \theta_{b}(c) b c  \tag{Y1}\\
& \theta_{a} \theta_{b}=\theta_{b}  \tag{Y2}\\
& \theta_{a}(b c)=\theta_{\theta_{b}(c)}(b c) \tag{Y3}
\end{align*}
$$

are satisfied, for all $a, b, c \in S$. We call $s$ a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if $t$ is a reversed solution, $t(a, b)=\left(\theta_{b}(a), b a\right)$, then $t$ is a solution of the QYBE if and only if . $(\mathrm{Y} 1),(\mathrm{Y} 2)$, and $(\mathrm{Y} 3)$ are satisfied. We call $t$ a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.

## A special class of solutions

## Proposition (Catino, Mazzotta, S., 2019)

Let $s$ be a solution of the PE on a set $S$ defined by $s(a, b)=\left(a b, \theta_{a}(b)\right)$. Then, the map $s$ is a solution of the QYBE if and only if the following conditions

$$
\begin{align*}
& a b c=a \theta_{b}(c) b c  \tag{Y1}\\
& \theta_{a} \theta_{b}=\theta_{b}  \tag{Y2}\\
& \theta_{a}(b c)=\theta_{\theta_{b}(c)}(b c) \tag{Y3}
\end{align*}
$$

are satisfied, for all $a, b, c \in S$. We call $s$ a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if $t$ is a reversed solution, $t(a, b)=\left(\theta_{b}(a), b a\right)$, then $t$ is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied.

## A special class of solutions

## Proposition (Catino, Mazzotta, S., 2019)

Let $s$ be a solution of the PE on a set $S$ defined by $s(a, b)=\left(a b, \theta_{a}(b)\right)$. Then, the map $s$ is a solution of the QYBE if and only if the following conditions

$$
\begin{align*}
& a b c=a \theta_{b}(c) b c  \tag{Y1}\\
& \theta_{a} \theta_{b}=\theta_{b}  \tag{Y2}\\
& \theta_{a}(b c)=\theta_{\theta_{b}(c)}(b c) \tag{Y3}
\end{align*}
$$

are satisfied, for all $a, b, c \in S$. We call $s$ a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if $t$ is a reversed solution, $t(a, b)=\left(\theta_{b}(a), b a\right)$, then $t$ is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied. We call $t$ a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.

## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, the map

$$
s(a, b)=(f(a), g(b))
$$

is a solution P-QYBE on $S$. In this case the semigroup operation is defined by $a b:=f(a)$. Clearly, $s$ lies in the class of the well-known
Lyubashenko solutions.
then

$$
s(a, b)=(a b, \gamma(b))
$$

with $\gamma$ an idempotent endomorphism, is a solution to the P-QYBE on $S$. then the map

$$
s(a, b)=\left(a b, k^{2}\right)
$$

is a solution of the PE on $S$ but not of the YBE since $($

## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, the map

$$
s(a, b)=(f(a), g(b))
$$

is a solution P-QYBE on $S$. In this case the semigroup operation is defined by $a b:=f(a)$.
Lyubashenko solutions.
then

$$
s(a, b)=(a b, \gamma(b))
$$

with $\gamma$ an idempotent endomorphism, is a solution to the P-QYBE on $S$ then the map

## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, the map

$$
s(a, b)=(f(a), g(b))
$$

is a solution P-QYBE on $S$. In this case the semigroup operation is defined by $a b:=f(a)$. Clearly, $s$ lies in the class of the well-known Lyubashenko solutions.
then

$$
s(a, b)=(a b, \gamma(b))
$$

with $\gamma$ an idempotent endomorphism, is a solution to the P-QYBE on $S$ then the map

## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, the map

$$
s(a, b)=(f(a), g(b))
$$

is a solution P-QYBE on $S$. In this case the semigroup operation is defined by $a b:=f(a)$. Clearly, $s$ lies in the class of the well-known Lyubashenko solutions.

- If $S$ is such that $a b c=a d b c$, for all $a, b, c, d \in S$ (cf. [Monzo, 2003]), then

$$
s(a, b)=(a b, \gamma(b))
$$

with $\gamma$ an idempotent endomorphism, is a solution to the P-QYBE on $S$.
then the map

## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, the map

$$
s(a, b)=(f(a), g(b))
$$

is a solution P-QYBE on $S$. In this case the semigroup operation is defined by $a b:=f(a)$. Clearly, $s$ lies in the class of the well-known Lyubashenko solutions.

- If $S$ is such that $a b c=a d b c$, for all $a, b, c, d \in S$ (cf. [Monzo, 2003]), then

$$
s(a, b)=(a b, \gamma(b))
$$

with $\gamma$ an idempotent endomorphism, is a solution to the P-QYBE on $S$.

- If $S$ is such that $a b c=a b d b c$ and $a^{3}=a^{2}$, for all $a, b, c, d \in S$, then the map
is a solution of the PE on $S$ but not of the YBE since $($


## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, the map

$$
s(a, b)=(f(a), g(b))
$$

is a solution P-QYBE on $S$. In this case the semigroup operation is defined by $a b:=f(a)$. Clearly, $s$ lies in the class of the well-known Lyubashenko solutions.

- If $S$ is such that $a b c=a d b c$, for all $a, b, c, d \in S$ (cf. [Monzo, 2003]), then

$$
s(a, b)=(a b, \gamma(b))
$$

with $\gamma$ an idempotent endomorphism, is a solution to the P-QYBE on $S$.

- If $S$ is such that $a b c=a b d b c$ and $a^{3}=a^{2}$, for all $a, b, c, d \in S, k \in S$, then the map
is a solution of the PE on $S$ but not of the YBE since $($


## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, the map

$$
s(a, b)=(f(a), g(b))
$$

is a solution P-QYBE on $S$. In this case the semigroup operation is defined by $a b:=f(a)$. Clearly, $s$ lies in the class of the well-known Lyubashenko solutions.

- If $S$ is such that $a b c=a d b c$, for all $a, b, c, d \in S$ (cf. [Monzo, 2003]), then

$$
s(a, b)=(a b, \gamma(b))
$$

with $\gamma$ an idempotent endomorphism, is a solution to the P-QYBE on $S$.

- If $S$ is such that $a b c=a b d b c$ and $a^{3}=a^{2}$, for all $a, b, c, d \in S, k \in S$, then the map

$$
s(a, b)=\left(a b, k^{2}\right)
$$

is a solution of the PE on $S$

## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, the map

$$
s(a, b)=(f(a), g(b))
$$

is a solution P-QYBE on $S$. In this case the semigroup operation is defined by $a b:=f(a)$. Clearly, $s$ lies in the class of the well-known Lyubashenko solutions.

- If $S$ is such that $a b c=a d b c$, for all $a, b, c, d \in S$ (cf. [Monzo, 2003]), then

$$
s(a, b)=(a b, \gamma(b))
$$

with $\gamma$ an idempotent endomorphism, is a solution to the P-QYBE on $S$.

- If $S$ is such that $a b c=a b d b c$ and $a^{3}=a^{2}$, for all $a, b, c, d \in S, k \in S$, then the map

$$
s(a, b)=\left(a b, k^{2}\right)
$$

is a solution of the PE on $S$ but not of the YBE since $(\mathrm{Y} 1)$ does not hold.

## Solutions of the P-YBE on particular semigroups

We focus on solutions $s(a, b)=\left(a b, \theta_{a}(b)\right)$ of the PE defined on specific varieties of semigroups $S$ with the property

$$
a b c=a d b c
$$

for all $a, b, c, d \in S$.

of the "braid version $\square$

$$
r(a, b):=\tau s(a, b)=\left(\theta_{a}(b), a b\right)
$$

Given a set $S$, a map $\mathcal{R}: S \times S \rightarrow S \times S$ into itself is a solution to the QYBE on $S$ if and only if the map $r:=\tau \mathcal{R}$ satisfies the braid equation, i.e.,

$$
\left(r \times \mathrm{id}_{s}\right)\left(\mathrm{id}_{s} \times r\right)\left(r \times \mathrm{id}_{s}\right)=\left(\mathrm{id}_{s} \times r\right)\left(r \times \mathrm{id}_{s}\right)\left(\mathrm{id}_{s} \times r\right)
$$

## Solutions of the P-YBE on particular semigroups

We focus on solutions $s(a, b)=\left(a b, \theta_{a}(b)\right)$ of the PE defined on specific varieties of semigroups $S$ with the property

$$
a b c=a d b c
$$

for all $a, b, c, d \in S$. We are interested in analysing the powers of the solutions of the "braid version" of the P-QYBE,

$$
r(a, b):=\tau s(a, b)=\left(\theta_{a}(b), a b\right)
$$

Given a set $S$, a map $\mathcal{R}: S \times S \rightarrow S \times S$ into itself is a solution to the QYBE on $S$ if and only if the map $r:=\tau \mathcal{R}$ satisfies the braid equation, i.e.,

$$
\left(r \times \mathrm{id}_{s}\right)\left(\mathrm{id}_{s} \times r\right)\left(r \times \mathrm{id}_{s}\right)=\left(\mathrm{id}_{s} \times r\right)\left(r \times \mathrm{id}_{s}\right)\left(\mathrm{id}_{s} \times r\right)
$$

## Solutions of the P-YBE on particular semigroups

We focus on solutions $s(a, b)=\left(a b, \theta_{a}(b)\right)$ of the PE defined on specific varieties of semigroups $S$ with the property

$$
a b c=a d b c
$$

for all $a, b, c, d \in S$. We are interested in analysing the powers of the solutions of the "braid version" of the P-QYBE, i.e.,

$$
r(a, b):=\tau s(a, b)=\left(\theta_{a}(b), a b\right)
$$

Given a set $S$, a map $\mathcal{R}: S \times S \rightarrow S \times S$ into itself is a solution to the QYBE on $S$ if and only if the map $r:=\tau \mathcal{R}$ satisfies the braid equation, i.e.,

## Solutions of the P-YBE on particular semigroups

We focus on solutions $s(a, b)=\left(a b, \theta_{a}(b)\right)$ of the PE defined on specific varieties of semigroups $S$ with the property

$$
a b c=a d b c
$$

for all $a, b, c, d \in S$. We are interested in analysing the powers of the solutions of the "braid version" of the P-QYBE, i.e.,

$$
r(a, b):=\tau s(a, b)=\left(\theta_{a}(b), a b\right)
$$

Given a set $S$, a map $\mathcal{R}: S \times S \rightarrow S \times S$ into itself is a solution to the QYBE on $S$ if and only if the map $r:=\tau \mathcal{R}$ satisfies the braid equation, i.e.,

$$
\left(r \times \mathrm{id}_{s}\right)\left(\mathrm{id}_{s} \times r\right)\left(r \times \mathrm{id}_{s}\right)=\left(\mathrm{id}_{s} \times r\right)\left(r \times \mathrm{id}_{s}\right)\left(\mathrm{id}_{s} \times r\right)
$$

## The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

Theorem (Catino, Mazzotta, S., 2019)
Let $S$ be a semigroup with the property $a b c=a d b c$ and $r$ a (braid) solution P-YBE on $S$. Then, it holds
and the powers $r^{2}, r^{3}, r^{4}$ of the map $r$ are still solutions to the YBE.


Remark: If $S$ is also idempotent, it holds $r^{4}=r^{2}$

## The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

Theorem (Catino, Mazzotta, S., 2019)
Let $S$ be a semigroup with the property $a b c=a d b c$ and $r$ a (braid) solution $P-Y B E$ on $S$. Then, it holds
and the powers $r^{2}, r^{3}, r^{4}$ of the map $r$ are still solutions to the YBE.


Remark: If $S$ is also idempotent, it holds $r^{4}=r^{2}$

## The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

Theorem (Catino, Mazzotta, S., 2019)
Let $S$ be a semigroup with the property $a b c=a d b c$ and $r$ a (braid) solution $P-Y B E$ on $S$. Then, it holds

$$
r^{5}=r^{3}
$$

and the powers $r^{2}, r^{3}, r^{4}$ of the map $r$ are still solutions to the YBE.


Remark: If $S$ is also idempotent, it holds $r^{4}=r^{2}$.

## The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

Theorem (Catino, Mazzotta, S., 2019)
Let $S$ be a semigroup with the property $a b c=a d b c$ and $r$ a (braid) solution $P-Y B E$ on $S$. Then, it holds

$$
r^{5}=r^{3}
$$

and the powers $r^{2}, r^{3}, r^{4}$ of the map $r$ are still solutions to the YBE.


Remark: If $S$ is also idempotent, it holds $r^{4}=r^{2}$.

## The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

## Theorem (Catino, Mazzotta, S., 2019)

Let $S$ be a semigroup with the property $a b c=a d b c$ and $r$ a (braid) solution $P-Y B E$ on $S$. Then, it holds

$$
r^{5}=r^{3}
$$

and the powers $r^{2}, r^{3}, r^{4}$ of the map $r$ are still solutions to the YBE.

## Remark - Example

If $S$ is a left quasi normal semigroup, i.e., $a b c=a c b c$, then the map on $S$ defined by $r(a, b):=(b, a b)$ is a solution of the P-YBE such that $r^{5}=r^{3}$. If $S$ is not idempotent, then $r^{2}, r^{3}, r^{4}$ are not solutions of the YBE.

Remark: If $S$ is also idempotent, it holds $r^{4}=r^{2}$

## The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

## Theorem (Catino, Mazzotta, S., 2019)

Let $S$ be a semigroup with the property $a b c=a d b c$ and $r$ a (braid) solution $P-Y B E$ on $S$. Then, it holds

$$
r^{5}=r^{3}
$$

and the powers $r^{2}, r^{3}, r^{4}$ of the map $r$ are still solutions to the YBE.

## Remark - Example

If $S$ is a left quasi normal semigroup, i.e., $a b c=a c b c$, then the map on $S$ defined by $r(a, b):=(b, a b)$ is a solution of the P-YBE such that $r^{5}=r^{3}$. If $S$ is not idempotent, then $r^{2}, r^{3}, r^{4}$ are not solutions of the YBE.

Remark: If $S$ is also idempotent, it holds $r^{4}=r^{2}$.

## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, then the solution P-YBE defined by

$$
r(a, b)=(g(b), f(a))
$$

is such that $r^{4}=r^{2}$. Note that here $a b=f(a)$.


$$
r(a, b)=(\gamma(b), a b)
$$

with $\gamma$ idempotent endomorphism of $S$, is such that $r^{5}=r^{3}$.

## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, then the solution P-YBE defined by

$$
r(a, b)=(g(b), f(a))
$$

is such that $r^{4}=r^{2}$. Note that here $a b=f(a)$.

## P-YBE defined by

$$
r(a, b)=(\gamma(b), a b)
$$

with $\gamma$ idempotent endomorphism of $S$, is such that $r^{5}=r^{3}$.

## Examples

- Militaru solutions: If $f$ and $g$ idempotent maps from a set $S$ into itself such that $f g=g f$, then the solution P-YBE defined by

$$
r(a, b)=(g(b), f(a))
$$

is such that $r^{4}=r^{2}$. Note that here $a b=f(a)$.

- If $S$ is such that $a b c=a d b c$, for all $a, b, c \in S$, then the solution to the P-YBE defined by

$$
r(a, b)=(\gamma(b), a b)
$$

with $\gamma$ idempotent endomorphism of $S$, is such that $r^{5}=r^{3}$.

## A new method to construct solutions to the YBE

We introduce a new method to construct solutions of the Yang-Baxter equation defined on the Cartesian product of two sets $S$ and $T$ through solutions of the pentagon equation.

In particular, we show how to obtain a solution of the YBE involving a solution $s$ of the PE and a solution $t$ of the

## A new method to construct solutions to the YBE

We introduce a new method to construct solutions of the Yang-Baxter equation defined on the Cartesian product of two sets $S$ and $T$ through solutions of the pentagon equation.

In particular, we show how to obtain a solution of the YBE involving a solution $s$ of the PE and a solution $t$ of the R-YBE.

## A new construction - I

## We introduce the following definition.

```
Definition
Let S,T be semigroups, s a solution of the PE on S and t a solution R-YBE
on T}\mathrm{ . Let }\alpha:T->\mp@subsup{S}{}{S}\mathrm{ be a map, set }\mp@subsup{\alpha}{u}{}:=\alpha(u)\mathrm{ , for every }u\inT\mathrm{ , and set
    au}\mp@subsup{b}{v}{}:=\mp@subsup{\alpha}{u}{\prime}(a) \mp@subsup{\alpha}{\mp@subsup{0}{v}{}(u)}{(b)
for all a,b\inS and u,v\inT. If the following conditions hold
```



```
    0}\mp@subsup{\mp@code{a}}{b}{}\mp@subsup{\alpha}{u}{}=\mp@subsup{0}{\mp@subsup{\alpha}{v}{}(b)}{}\mp@subsup{\alpha}{\mp@subsup{0}{u}{}(v)}{
    0a}(bc)=\mp@subsup{0}{a\mp@subsup{0}{b}{}\mp@subsup{\alpha}{u}{}(c)}{}(bc
        au}\mp@subsup{b}{v}{}=\mp@subsup{\alpha}{\mp@subsup{0}{mv}{\prime}(u)}{}(a\mp@subsup{\alpha}{v}{}(b)
        0a}=\mp@subsup{\alpha}{u}{}\mp@subsup{0}{a}{
for all a,b,c\inS and }u,v,w\inT\mathrm{ , then we call (s,t, 人) a pentagon triple.
```


## A new construction - I

We introduce the following definition.
Definition
Let $S, T$ be semigroups, $s$ a solution of the PE on $S$ and $t$ a solution R-YBE on $T$. Let $\alpha: T \rightarrow S^{S}$ be a map, set $\alpha_{u}:=\alpha(u)$, for every $u \in T$, and set

$$
a_{u} b_{v}:=\alpha_{u}(a) \alpha_{\theta_{v}(u)}(b),
$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$
\begin{aligned}
a b_{u} c_{v} & =a \theta_{b} a_{v}(c) b_{u} c_{v} \\
\theta_{a} \theta_{b} \alpha_{u} & =\theta_{a_{v}(b)} a_{\theta_{u}(v)} \\
\theta_{a}(b c) & =\theta_{a \theta_{b} a_{u}(c)(b c)} \\
a_{u} b_{v} & =\alpha_{\theta_{m v}(u)}\left(a \alpha_{v}(b)\right) \\
\theta_{a} & =\alpha_{u} \theta_{a}
\end{aligned}
$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call $(s, t, \alpha)$ a pentagon triple.

## A new construction - I

We introduce the following definition.

## Definition

Let $S, T$ be semigroups, $s$ a solution of the PE on $S$ and $t$ a solution R-YBE on $T$. Let $\alpha: T \rightarrow S^{S}$ be a map, set $\alpha_{u}:=\alpha(u)$, for every $u \in T$, and set

$$
a_{u} b_{v}:=\alpha_{u}(a) \alpha_{\theta_{v}(u)}(b),
$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$
\begin{aligned}
a b_{u} c_{v} & =a \theta_{b} a_{v}(c) b_{u} c_{v} \\
\theta_{a} \theta_{b} \alpha_{u} & =\theta_{a_{v}(b)} \alpha_{\theta_{u}(v)} \\
\theta_{a}(b c) & =\theta_{a \theta_{b} a_{u}(c)(b c)}^{a_{u} b_{v}}
\end{aligned}=\alpha_{\theta_{m v}(u)}\left(a \alpha_{v}(b)\right), ~\left(\theta_{a}\right)=\alpha_{u} \theta_{a}
$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call $(s, t, \alpha)$ a pentagon triple.

## A new construction - I

We introduce the following definition.

## Definition

Let $S, T$ be semigroups, $s$ a solution of the PE on $S$ and $t$ a solution R-YBE on $T$. Let $\alpha: T \rightarrow S^{S}$ be a map, set $\alpha_{u}:=\alpha(u)$, for every $u \in T$, and set

$$
a_{u} b_{v}:=\alpha_{u}(a) \alpha_{\theta_{v}(u)}(b)
$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$
\begin{aligned}
a b_{u} c_{v} & =a \theta_{b} \alpha_{v}(c) b_{u} c_{v} \\
\theta_{a} \theta_{b} \alpha_{u} & =\theta_{\alpha_{v}(b)} \alpha_{\theta_{u}(v)} \\
\theta_{a}(b c) & =\theta_{a \theta_{b} \alpha_{u}(c)}(b c) \\
a_{u} b_{v} & =\alpha_{\theta_{m v}(u)}\left(a \alpha_{v}(b)\right) \\
\theta_{a} & =\alpha_{u} \theta_{a}
\end{aligned}
$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call $(s, t, \alpha)$ a pentagon triple.

## A new construction - I

We introduce the following definition.

## Definition

Let $S, T$ be semigroups, $s$ a solution of the PE on $S$ and $t$ a solution R-YBE on $T$. Let $\alpha: T \rightarrow S^{S}$ be a map, set $\alpha_{u}:=\alpha(u)$, for every $u \in T$, and set

$$
a_{u} b_{v}:=\alpha_{u}(a) \alpha_{\theta_{v}(u)}(b),
$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$
\begin{aligned}
a b_{u} c_{v} & =a \theta_{b} \alpha_{v}(c) b_{u} c_{v} \\
\theta_{a} \theta_{b} \alpha_{u} & =\theta_{\alpha_{v}(b)} \alpha_{\theta_{u}(v)} \\
\theta_{a}(b c) & =\theta_{a \theta_{b} \alpha_{u}(c)}(b c) \\
a_{u} b_{v} & =\alpha_{\theta_{w v}(u)}\left(a \alpha_{v}(b)\right) \\
\theta_{a} & =\alpha_{u} \theta_{a}
\end{aligned}
$$

for all $a, b, c \in S$ and $u, v, w \in T$,

## A new construction - I

We introduce the following definition.

## Definition

Let $S, T$ be semigroups, $s$ a solution of the PE on $S$ and $t$ a solution R-YBE on $T$. Let $\alpha: T \rightarrow S^{S}$ be a map, set $\alpha_{u}:=\alpha(u)$, for every $u \in T$, and set

$$
a_{u} b_{v}:=\alpha_{u}(a) \alpha_{\theta_{v}(u)}(b),
$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$
\begin{aligned}
a b_{u} c_{v} & =a \theta_{b} \alpha_{v}(c) b_{u} c_{v} \\
\theta_{a} \theta_{b} \alpha_{u} & =\theta_{\alpha_{v}(b)} \alpha_{\theta_{u}(v)} \\
\theta_{a}(b c) & =\theta_{a \theta_{b} \alpha_{u}(c)}(b c) \\
a_{u} b_{v} & =\alpha_{\theta_{w v}(u)}\left(a \alpha_{v}(b)\right) \\
\theta_{a} & =\alpha_{u} \theta_{a}
\end{aligned}
$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call $(s, t, \alpha)$ a pentagon triple.

## A new construction - I

We introduce the following definition.

## Definition

Let $S, T$ be semigroups, $s$ a solution of the PE on $S$ and $t$ a solution R-YBE on $T$. Let $\alpha: T \rightarrow S^{S}$ be a map, set $\alpha_{u}:=\alpha(u)$, for every $u \in T$, and set

$$
a_{u} b_{v}:=\alpha_{u}(a) \alpha_{\theta_{v}(u)}(b),
$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$
\begin{aligned}
a b_{u} c_{v} & =a \theta_{b} \alpha_{v}(c) b_{u} c_{v} \\
\theta_{a} \theta_{b} \alpha_{u} & =\theta_{\alpha_{v}(b)} \alpha_{\theta_{u}(v)} \\
\theta_{a}(b c) & =\theta_{a \theta_{b} \alpha_{u}(c)}(b c) \\
a_{u} b_{v} & =\alpha_{\theta_{w v}(u)}\left(a \alpha_{v}(b)\right) \\
\theta_{a} & =\alpha_{u} \theta_{a}
\end{aligned}
$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call $(s, t, \alpha)$ a pentagon triple.

## A new construction - II

Theorem (Catino, Mazzotta, S., 2019)
Let $(s, t, \alpha)$ be a pentagon triple. Then the map given by

```
    \(r(a, u ; b, v)=\left(\theta_{a} \alpha_{u}(b), v u ; a \alpha_{u}(b), \theta_{v}(u)\right)\),
for all \((a, u),(b, v) \in S \times T\) is a solution of the \(Y B E\).
```

This result is a special case of a more general construction.

## A new construction - II

Theorem (Catino, Mazzotta, S., 2019)
Let $(s, t, \alpha)$ be a pentagon triple. Then the map given by

$$
r(a, u ; b, v)=\left(\theta_{a} \alpha_{u}(b), v u ; a \alpha_{u}(b), \theta_{v}(u)\right)
$$

for all $(a, u),(b, v) \in S \times T$ is a solution of the $Y B E$.

This result is a special case of a more general construction.

## A new construction - II

Theorem (Catino, Mazzotta, S., 2019)
Let $(s, t, \alpha)$ be a pentagon triple. Then the map given by

$$
r(a, u ; b, v)=\left(\theta_{a} \alpha_{u}(b), v u ; a \alpha_{u}(b), \theta_{v}(u)\right)
$$

for all $(a, u),(b, v) \in S \times T$ is a solution of the $Y B E$.

This result is a special case of a more general construction.

## Example

## Consider

- $S$ a semigroup with the properties $a b d b c=a b c$ and $a^{3}=a^{2}, k \in S$, and $s(a, b)=\left(a b, k^{2}\right)$ the solution of the PE on $S$ (it is not a solution to the QYBE);
* $T$ a semigroup with the property $a d b c \approx a b c$ and $t(u, v)=(u, v u) a$ solution R-QYBE on $T$; - $\alpha_{\prime \prime}(a)=k^{2}$, for everv $a \in S$ and $u \in T$

Hence, the map given by

is a solution of the YBE on $S \times \cdot T$

## Example

## Consider

- $S$ a semigroup with the properties $a b d b c=a b c$ and $a^{3}=a^{2}, k \in S$, and $s(a, b)=\left(a b, k^{2}\right)$ the solution of the PE on $S$ (it is not a solution to the QYBE);
- $T$ a semigroup with the property $a d b c=a b c$ and $t(u, v)=(u, v u) a$ solution R-QYBE on $T$;

Hence, the map given by

is a solution of the YBE on $S \times \cdot T$

## Example

## Consider

- $S$ a semigroup with the properties $a b d b c=a b c$ and $a^{3}=a^{2}, k \in S$, and $s(a, b)=\left(a b, k^{2}\right)$ the solution of the PE on $S$ (it is not a solution to the QYBE);
- $T$ a semigroup with the property $a d b c=a b c$ and $t(u, v)=(u, v u)$ a solution R-QYBE on $T$;
- $\alpha_{u}(a)=k^{2}$, for every $a \in S$ and $u \in T$.

Hence, the map given by

is a solution of the YBE on $S \times \cdot T$

## Example

## Consider

- $S$ a semigroup with the properties $a b d b c=a b c$ and $a^{3}=a^{2}, k \in S$, and $s(a, b)=\left(a b, k^{2}\right)$ the solution of the PE on $S$ (it is not a solution to the QYBE);
- $T$ a semigroup with the property $a d b c=a b c$ and $t(u, v)=(u, v u)$ a solution R-QYBE on $T$;
- $\alpha_{u}(a)=k^{2}$, for every $a \in S$ and $u \in T$.

Hence, the map given by

$$
r(a, u ; b, v)=\left(k^{2}, v u ; a k^{2}, u\right)
$$

is a solution of the YBE on $S \times T$.

Thanks for your attention!

