New solutions of the Yang-Baxter equation obtained through solutions of the pentagon equation

Paola Stefanelli
✉️ paola.stefanelli@unisalento.it

Advances in Group Theory and Applications 2019
Lecce, 27th June 2019
The study of the pentagon equation (PE) classically originates from the field of Mathematical Physics and it is widely investigated also in Analysis. The paper [Dimakis, Müller-Hoissen, 2015] can be useful for a brief introduction to this topic.

Recent developments have been provided in [Catino, Mazzotta, Miccoli, 2019], where this equation is dealt with from an algebraic point of view.

Aim of this talk

Show new applications of the PE to set-theoretical solutions of the well-known Yang-Baxter equation. [Catino, Mazzotta, S., work in progress]
The study of the pentagon equation (PE) classically originates from the field of Mathematical Physics and it is widely investigated also in Analysis. The paper [Dimakis, Müller-Hoissen, 2015] can be useful for a brief introduction to this topic.

Recent developments have been provided in [Catino, Mazzotta, Miccoli, 2019], where this equation is dealt with from an algebraic point of view.

Aim of this talk

Show new applications of the PE to set-theoretical solutions of the well-known Yang-Baxter equation. [Catino, Mazzotta, S., work in progress]
Set-theoretical solutions of the PE

Given a set S, a map $s : S \times S \to S \times S$ is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where $s_{12} = s \times \text{id}_S$, $s_{23} = \text{id}_S \times s$, and $s_{13} = (\text{id}_S \times \tau)s_{12}(\text{id}_S \times \tau)$ with τ the twist map, i.e., $\tau(x, y) = (y, x)$, for all $x, y \in S$.

We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a, b) = (a \cdot b, \theta_a(b)),$$

for all $a, b \in S$, where θ_a is a map from S into itself, for every $a \in S$. Note that the structure (S, \cdot) is a semigroup.
Set-theoretical solutions of the PE

Given a set S, a map $s : S \times S \rightarrow S \times S$ is a *set-theoretical solution of the PE* on S if

$$s_{23} \circ s_{13} \circ s_{12} = s_{12} \circ s_{23}$$

where $s_{12} = s \circ \text{id}_S$, $s_{23} = \text{id}_S \circ s$, and $s_{13} = (\text{id}_S \circ \tau) \circ s_{12} \circ (\text{id}_S \circ \tau)$ with τ the twist map, i.e., $\tau(x, y) = (y, x)$, for all $x, y \in S$. We briefly call s a *solution of the PE*.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a, b) = (a \cdot b, \theta_a(b)),$$

for all $a, b \in S$, where θ_a is a map from S into itself, for every $a \in S$. Note that the structure (S, \cdot) is a semigroup.
Set-theoretical solutions of the PE

Given a set S, a map $s : S \times S \to S \times S$ is a **set-theoretical solution of the PE** on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where $s_{12} = s \times \text{id}_S$, $s_{23} = \text{id}_S \times s$, and $s_{13} = (\text{id}_S \times \tau)s_{12}(\text{id}_S \times \tau)$ with τ the twist map, i.e., $\tau(x, y) = (y, x)$, for all $x, y \in S$. We briefly call s a **solution of the PE**.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a, b) = (a \cdot b, \theta_a(b)),$$

for all $a, b \in S$, where θ_a is a map from S into itself, for every $a \in S$. Note that the structure (S, \cdot) is a semigroup.
Set-theoretical solutions of the PE

Given a set S, a map $s : S \times S \to S \times S$ is a set-theoretical solution of the PE on S if

\[s_{23} s_{13} s_{12} = s_{12} s_{23} \]

where $s_{12} = s \times \text{id}_S$, $s_{23} = \text{id}_S \times s$, and $s_{13} = (\text{id}_S \times \tau)s_{12}(\text{id}_S \times \tau)$ with τ the twist map, i.e., $\tau(x, y) = (y, x)$, for all $x, y \in S$.

We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

\[s(a, b) = (a \cdot b, \theta_a(b)) , \]

for all $a, b \in S$, where θ_a is a map from S into itself, for every $a \in S$.

Note that the structure (S, \cdot) is a semigroup.
Set-theoretical solutions of the PE

Given a set S, a map $s : S \times S \to S \times S$ is a **set-theoretical solution of the PE** on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where $s_{12} = s \times \text{id}_S$, $s_{23} = \text{id}_S \times s$, and $s_{13} = (\text{id}_S \times \tau) s_{12} (\text{id}_S \times \tau)$ with τ the twist map, i.e., $\tau(x, y) = (y, x)$, for all $x, y \in S$.

We briefly call s a **solution of the PE**.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a, b) = (a \cdot b, \theta_a(b)),$$

for all $a, b \in S$, where θ_a is a map from S into itself, for every $a \in S$.

Note that the structure (S, \cdot) is a semigroup.
Set-theoretical solutions of the PE

Given a set S, a map $s : S \times S \to S \times S$ is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where $s_{12} = s \times \text{id}_S$, $s_{23} = \text{id}_S \times s$, and $s_{13} = (\text{id}_S \times \tau)s_{12}(\text{id}_S \times \tau)$ with τ the twist map, i.e., $\tau(x, y) = (y, x)$, for all $x, y \in S$.
We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a, b) = (a \cdot b, \theta_a(b)),$$

for all $a, b \in S$, where θ_a is a map from S into itself, for every $a \in S$.

Note that the structure (S, \cdot) is a semigroup.
Set-theoretical solutions of the PE

Given a set S, a map $s : S \times S \to S \times S$ is a set-theoretical solution of the PE on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where $s_{12} = s \times \text{id}_S$, $s_{23} = \text{id}_S \times s$, and $s_{13} = (\text{id}_S \times \tau)s_{12}(\text{id}_S \times \tau)$ with τ the twist map, i.e., $\tau(x, y) = (y, x)$, for all $x, y \in S$.

We briefly call s a solution of the PE.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a, b) = (a \cdot b, \theta_a(b)),$$

for all $a, b \in S$, where θ_a is a map from S into itself, for every $a \in S$.

Note that the structure (S, \cdot) is a semigroup.
Set-theoretical solutions of the PE

Given a set S, a map $s : S \times S \to S \times S$ is a \textit{set-theoretical solution of the PE} on S if

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

where $s_{12} = s \times \text{id}_S$, $s_{23} = \text{id}_S \times s$, and $s_{13} = (\text{id}_S \times \tau) s_{12} (\text{id}_S \times \tau)$ with τ the twist map, i.e., $\tau(x, y) = (y, x)$, for all $x, y \in S$.

We briefly call s a \textit{solution of the PE}.

In particular, as in [Catino, Mazzotta, Miccoli, 2019] we write

$$s(a, b) = (a \cdot b, \theta_a(b)),$$

for all $a, b \in S$, where θ_a is a map from S into itself, for every $a \in S$.

Note that the structure (S, \cdot) is a semigroup.
Reversed solutions of the PE

A *solution of the reversed PE* on a set S is a map $t : S \times S \to S \times S$ such that

$$t_{12} t_{13} t_{23} = t_{23} t_{12}$$

We briefly call t a *reversed solution*.

A comparison with the PE:

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

Remark: A map s is a solution of the PE if and only if $t := \tau s \tau$ is a reversed solution, that is given by

$$t(a, b) = (\theta_{b}(a), b \cdot a),$$

for all $a, b \in S$. Thus, every reversed solution can be written by using this notation.
Reversed solutions of the PE

A *solution of the reversed PE* on a set S is a map $t : S \times S \to S \times S$ such that

$$t_{12} \quad t_{13} \quad t_{23} = t_{23} \quad t_{12}$$

We briefly call t a *reversed solution*.

A comparison with the PE:

$$s_{23} \quad s_{13} \quad s_{12} = s_{12} \quad s_{23}$$

Remark: A map s is a solution of the PE if and only if $t := \tau s \tau$ is a reversed solution, that is given by

$$t (a, b) = (\theta_b (a), b \cdot a),$$

for all $a, b \in S$. Thus, every reversed solution can be written by using this notation.
Reversed solutions of the PE

A solution of the reversed PE on a set S is a map $t : S \times S \to S \times S$ such that

$$t_{12} t_{13} t_{23} = t_{23} t_{12}$$

We briefly call t a reversed solution.

A comparison with the PE:

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

Remark: A map s is a solution of the PE if and only if $t := \tau s \tau$ is a reversed solution, that is given by

$$t(a, b) = (\theta_b(a), b \cdot a),$$

for all $a, b \in S$. Thus, every reversed solution can be written by using this notation.
Reversed solutions of the PE

A solution of the reversed PE on a set S is a map $t : S \times S \to S \times S$ such that

$$t_{12} t_{13} t_{23} = t_{23} t_{12}$$

We briefly call t a reversed solution.

A comparison with the PE:

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

Remark: A map s is a solution of the PE if and only if $t := \tau s \tau$ is a reversed solution, that is given by

$$t (a, b) = (\theta_b (a), b \cdot a),$$

for all $a, b \in S$. Thus, every reversed solution can be written by using this notation.
Reversed solutions of the PE

A \textit{solution of the reversed PE} on a set S is a map $t : S \times S \rightarrow S \times S$ such that

$$t_{12} t_{13} t_{23} = t_{23} t_{12}$$

We briefly call t a \textit{reversed solution}.

A comparison with the PE:

$$s_{23} s_{13} s_{12} = s_{12} s_{23}$$

\textbf{Remark:} A map s is a solution of the PE if and only if $t := \tau s \tau$ is a reversed solution, that is given by

$$t(a, b) = (\theta_b(a), b \cdot a),$$

for all $a, b \in S$. Thus, every reversed solution can be written by using this notation.
Reversed solutions of the PE

A solution of the reversed PE on a set S is a map $t : S \times S \rightarrow S \times S$ such that

$$ t_{12} t_{13} t_{23} = t_{23} t_{12} $$

We briefly call t a reversed solution.

A comparison with the PE:

$$ s_{23} s_{13} s_{12} = s_{12} s_{23} $$

Remark: A map s is a solution of the PE if and only if $t := \tau s \tau$ is a reversed solution, that is given by

$$ t(a, b) = (\theta_b(a), b \cdot a), $$

for all $a, b \in S$. Thus, every reversed solution can be written by using this notation.
Examples

- If S is a semigroup and γ an idempotent endomorphism of S then the map $s : S \times S \rightarrow S \times S$ given by

$$s(a, b) = (ab, \gamma(b))$$

is a solution of the PE on S but not of the R-PE.

- Militaru solutions: Given f and g idempotent maps from a set S into itself such that $fg = gf$. Then the map s given by

$$s(a, b) = (f(a), g(b))$$

is both a solution of the PE and of the R-PE.
Examples

- If S is a semigroup and γ an idempotent endomorphism of S then the map $s : S \times S \rightarrow S \times S$ given by

$$s(a, b) = (ab, \gamma(b))$$

is a solution of the PE on S but not of the R-PE.

- **Militaru solutions**: Given f and g idempotent maps from a set S into itself such that $fg = gf$. Then the map s given by

$$s(a, b) = (f(a), g(b))$$

is both a solution of the PE and of the R-PE.
Examples

- If S is a semigroup and γ an idempotent endomorphism of S then the map $s : S \times S \to S \times S$ given by
 \[s(a, b) = (ab, \gamma(b)) \]
is a solution of the PE on S but not of the R-PE.

- **Militaru solutions**: Given f and g idempotent maps from a set S into itself such that $fg = gf$. Then the map s given by
 \[s(a, b) = (f(a), g(b)) \]
is both a solution of the PE and of the R-PE.
Examples

- If S is a semigroup and γ an idempotent endomorphism of S then the map $s : S \times S \to S \times S$ given by

$$s(a, b) = (ab, \gamma(b))$$

is a solution of the PE on S but not of the R-PE.

- **Militaru solutions**: Given f and g idempotent maps from a set S into itself such that $fg = gf$. Then the map s given by

$$s(a, b) = (f(a), g(b))$$

is both a solution of the PE and of the R-PE.
Set-theoretical solutions of the quantum YBE

According to [Drinfel’d, 1992], given a set \(S \), a map \(\mathcal{R} : S \times S \rightarrow S \times S \) is said to be a set-theoretical solution of the quantum Yang-Baxter equation on \(S \), if

\[
\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} = \mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}
\]

holds, with the same notation adopted for the PE. For simplicity, we call \(\mathcal{R} \) a solution of the QYBE.

Comparison with the QYBE:

\[
\text{PE} \quad s_{23} s_{13} s_{12} = s_{12} s_{23} \quad | \quad t_{23} t_{12} = t_{12} t_{13} t_{23} \\
\text{R-PE}
\]
Set-theoretical solutions of the quantum YBE

According to [Drinfel’d, 1992], given a set S, a map $\mathcal{R} : S \times S \rightarrow S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} = \mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call \mathcal{R} a solution of the QYBE.

Comparison with the QYBE:

$$\begin{align*}
\text{PE} & \quad s_{23} s_{13} s_{12} = s_{12} s_{23} & t_{23} t_{12} = t_{12} t_{13} t_{23} & \text{R-PE}
\end{align*}$$
Set-theoretical solutions of the quantum YBE

According to [Drinfel’d, 1992], given a set S, a map $\mathcal{R} : S \times S \to S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} = \mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call \mathcal{R} a solution of the QYBE.

Comparison with the QYBE:

$$\begin{align*}
\text{PE} & \quad s_{23} s_{13} s_{12} = s_{12} s_{23} & \quad t_{23} t_{12} = t_{12} t_{13} t_{23} & \quad \text{R-PE}
\end{align*}$$
Set-theoretical solutions of the quantum YBE

According to [Drinfel’d, 1992], given a set S, a map $\mathcal{R} : S \times S \to S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} = \mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call \mathcal{R} a solution of the QYBE.

Comparison with the QYBE:

<table>
<thead>
<tr>
<th>PE</th>
<th>$s_{23} s_{13} s_{12} = s_{12} s_{23}$</th>
<th>$t_{23} t_{12} = t_{12} t_{13} t_{23}$</th>
<th>R-PE</th>
</tr>
</thead>
</table>
The pentagon equation and the Yang-Baxter equation

Set-theoretical solutions of the quantum YBE

According to [Drinfel’d, 1992], given a set S, a map $\mathcal{R} : S \times S \to S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} = \mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call \mathcal{R} a solution of the QYBE.

Comparison with the QYBE:

$$\begin{align*}
\text{PE} & \quad s_{23} s_{13} s_{12} = s_{12} s_{23} \quad | \quad t_{23} t_{12} = t_{12} t_{13} t_{23} \\
\text{R-PE} &
\end{align*}$$
Set-theoretical solutions of the quantum YBE

According to [Drinfel’d, 1992], given a set S, a map $\mathcal{R} : S \times S \rightarrow S \times S$ is said to be a set-theoretical solution of the quantum Yang-Baxter equation on S, if

$$\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12} = \mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}$$

holds, with the same notation adopted for the PE. For simplicity, we call \mathcal{R} a solution of the QYBE.

Comparison with the QYBE:

$$\begin{align*}
\text{PE} & \quad s_{23} s_{13} s_{12} = s_{12} s_{23} & t_{23} t_{12} = t_{12} t_{13} t_{23} & \text{R-PE}
\end{align*}$$
A special class of solutions

Proposition (Catino, Mazzotta, S., 2019)

Let \(s \) be a solution of the PE on a set \(S \) defined by \(s(a, b) = (ab, \theta_a(b)) \). Then, the map \(s \) is a solution of the QYBE if and only if the following conditions

\[
abc = a\theta_b(c)bc \quad (Y1)
\]
\[
\theta_a\theta_b = \theta_b \quad (Y2)
\]
\[
\theta_a(bc) = \theta_{\theta_b(c)}(bc) \quad (Y3)
\]

are satisfied, for all \(a, b, c \in S \). We call \(s \) a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if \(t \) is a reversed solution, \(t(a, b) = (\theta_b(a), ba) \), then \(t \) is a solution of the QYBE if and only if \((Y1), (Y2), \) and \((Y3)\) are satisfied. We call \(t \) a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.
A special class of solutions

Proposition (Catino, Mazzotta, S., 2019)

Let \(s \) be a solution of the PE on a set \(S \) defined by \(s (a, b) = (ab, \theta_a (b)) \).
Then, the map \(s \) is a solution of the QYBE if and only if the following conditions are satisfied, for all \(a, b, c \in S \).

\[
\begin{align*}
abc &= a\theta_b (c) bc \quad \text{(Y1)} \\
\theta_a \theta_b &= \theta_b \quad \text{(Y2)} \\
\theta_a (bc) &= \theta_{\theta_b (c)} (bc) \quad \text{(Y3)}
\end{align*}
\]

We call \(s \) a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if \(t \) is a reversed solution, \(t (a, b) = (\theta_b (a), ba) \), then \(t \) is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied. We call \(t \) a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.
A special class of solutions

Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by $s(a, b) = (ab, \theta_a(b))$. Then, the map s is a solution of the QYBE if and only if the following conditions

$$abc = a\theta_b(c)bc$$ \hspace{2cm} (Y1)
$$\theta_a\theta_b = \theta_b$$ \hspace{2cm} (Y2)
$$\theta_a(bc) = \theta_{\theta_b(c)}(bc)$$ \hspace{2cm} (Y3)

are satisfied, for all $a, b, c \in S$. We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if t is a reversed solution, $t(a, b) = (\theta_b(a), ba)$, then t is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied. We call t a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.
A special class of solutions

Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by $s(a, b) = (ab, \theta_a(b))$. Then, the map s is a solution of the QYBE if and only if the following conditions are satisfied, for all $a, b, c \in S$.

\[
\begin{align*}
abc &= a\theta_b(c)bc \quad \text{(Y1)} \\
\theta_a\theta_b &= \theta_b \quad \text{(Y2)} \\
\theta_a(bc) &= \theta_{\theta_b(c)}(bc) \quad \text{(Y3)}
\end{align*}
\]

We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if t is a reversed solution, $t(a, b) = (\theta_b(a), ba)$, then t is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied. We call t a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.
A special class of solutions

Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by $s(a, b) = (ab, \theta_a(b))$. Then, the map s is a solution of the QYBE if and only if the following conditions

\[
abc = a\theta_b(c)bc \quad (Y1)
\]
\[
\theta_a\theta_b = \theta_b \quad (Y2)
\]
\[
\theta_a(bc) = \theta_{\theta_b(c)}(bc) \quad (Y3)
\]

are satisfied, for all $a, b, c \in S$. We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if t is a reversed solution, $t(a, b) = (\theta_b(a), ba)$, then t is a solution of the QYBE if and only if $(Y1)$, $(Y2)$, and $(Y3)$ are satisfied. We call t a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.
A special class of solutions

Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by $s(a, b) = (ab, \theta_a(b))$. Then, the map s is a solution of the QYBE if and only if the following conditions

\[
abc = a\theta_b(c)bc \quad \text{(Y1)}
\]
\[
\theta_a\theta_b = \theta_b \quad \text{(Y2)}
\]
\[
\theta_a(bc) = \theta_{\theta_b(c)}(bc) \quad \text{(Y3)}
\]

are satisfied, for all $a, b, c \in S$. We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if t is a reversed solution, $t(a, b) = (\theta_b(a), ba)$, then t is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied. We call t a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.
A special class of solutions

Proposition (Catino, Mazzotta, S., 2019)

Let \(s \) be a solution of the PE on a set \(S \) defined by \(s(a, b) = (ab, \theta_a(b)) \). Then, the map \(s \) is a solution of the QYBE if and only if the following conditions are satisfied, for all \(a, b, c \in S \). We call \(s \) a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

\[
\begin{align*}
abc &= a\theta_b(c)bc \\
\theta_a\theta_b &= \theta_b \\
\theta_a(bc) &= \theta_{\theta_b(c)}(bc)
\end{align*}
\]

Analogously, if \(t \) is a reversed solution, \(t(a, b) = (\theta_b(a), ba) \), then \(t \) is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied. We call \(t \) a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.
A special class of solutions

Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by $s(a, b) = (ab, \theta_a(b))$. Then, the map s is a solution of the QYBE if and only if the following conditions

1. $abc = a\theta_b(c)bc$ \hspace{1cm} (Y1)
2. $\theta_a\theta_b = \theta_b$ \hspace{1cm} (Y2)
3. $\theta_a(bc) = \theta_{\theta_b(c)}(bc)$ \hspace{1cm} (Y3)

are satisfied, for all $a, b, c \in S$. We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if t is a reversed solution, $t(a, b) = (\theta_b(a), ba)$, then t is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied. We call t a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.
A special class of solutions

Proposition (Catino, Mazzotta, S., 2019)

Let s be a solution of the PE on a set S defined by $s(a, b) = (ab, \theta_a(b))$. Then, the map s is a solution of the QYBE if and only if the following conditions

\[
abc = a\theta_b(c)bc \quad (Y1)
\]
\[
\theta_a\theta_b = \theta_b \quad (Y2)
\]
\[
\theta_a(bc) = \theta_{\theta_b(c)}(bc) \quad (Y3)
\]

are satisfied, for all $a, b, c \in S$. We call s a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if t is a reversed solution, $t(a, b) = (\theta_b(a), ba)$, then t is a solution of the QYBE if and only if $(Y1)$, $(Y2)$, and $(Y3)$ are satisfied. We call t a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.
A special class of solutions

Proposition (Catino, Mazzotta, S., 2019)

Let \(s \) be a solution of the PE on a set \(S \) defined by \(s(a, b) = (ab, \theta_a(b)) \). Then, the map \(s \) is a solution of the QYBE if and only if the following conditions

\[
abc = a\theta_b(c)bc \\
\theta_a\theta_b = \theta_b \\
\theta_a(bc) = \theta_{\theta_b(c)}(bc)
\]

are satisfied, for all \(a, b, c \in S \). We call \(s \) a solution to the QYBE of pentagonal type, or briefly a solution P-QYBE.

Analogously, if \(t \) is a reversed solution, \(t(a, b) = (\theta_b(a), ba) \), then \(t \) is a solution of the QYBE if and only if (Y1), (Y2), and (Y3) are satisfied. We call \(t \) a solution to the QYBE of reversed pentagonal type, or briefly a solution R-QYBE.
Examples

- **Militaru solutions**: If \(f \) and \(g \) idempotent maps from a set \(S \) into itself such that \(fg = gf \), the map

\[
s(a, b) = (f(a), g(b))
\]

is a solution P-QYBE on \(S \). In this case the semigroup operation is defined by \(ab := f(a) \). Clearly, \(s \) lies in the class of the well-known Lyubashenko solutions.

- If \(S \) is such that \(abc = adbc \), for all \(a, b, c, d \in S \) (cf. [Monzo, 2003]), then

\[
s(a, b) = (ab, \gamma(b))
\]

with \(\gamma \) an idempotent endomorphism, is a solution to the P-QYBE on \(S \).

- If \(S \) is such that \(abc = abdbc \) and \(a^3 = a^2 \), for all \(a, b, c, d \in S, k \in S \), then the map

\[
s(a, b) = (ab, k^2)
\]

is a solution of the PE on \(S \) but not of the YBE since (Y1) does not hold.
Examples

- **Militaru solutions**: If f and g idempotent maps from a set S into itself such that $fg = gf$, the map

$$s(a, b) = (f(a), g(b))$$

is a solution P-QYBE on S. In this case the semigroup operation is defined by $ab := f(a)$. Clearly, s lies in the class of the well-known Lyubashenko solutions.

- If S is such that $abc = adbc$, for all $a, b, c, d \in S$ (cf. [Monzo, 2003]), then

$$s(a, b) = (ab, \gamma(b))$$

with γ an idempotent endomorphism, is a solution to the P-QYBE on S.

- If S is such that $abc = abdbc$ and $a^3 = a^2$, for all $a, b, c, d \in S, k \in S$, then the map

$$s(a, b) = (ab, k^2)$$

is a solution of the PE on S but not of the YBE since (Y1) does not hold.
Examples

- *Militaru solutions:* If \(f \) and \(g \) idempotent maps from a set \(S \) into itself such that \(fg = gf \), the map

\[
s(a, b) = (f(a), g(b))
\]

is a solution P-QYBE on \(S \). In this case the semigroup operation is defined by \(ab := f(a) \). Clearly, \(s \) lies in the class of the well-known *Lyubashenko solutions.*

- If \(S \) is such that \(abc = adbc \), for all \(a, b, c, d \in S \) (cf. [Monzo, 2003]), then

\[
s(a, b) = (ab, \gamma(b))
\]

with \(\gamma \) an idempotent endomorphism, is a solution to the P-QYBE on \(S \).

- If \(S \) is such that \(abc = abdbc \) and \(a^3 = a^2 \), for all \(a, b, c, d \in S, k \in S \), then the map

\[
s(a, b) = (ab, k^2)
\]

is a solution of the PE on \(S \) but not of the YBE since (Y1) does not hold.
Examples

- **Militaru solutions**: If f and g idempotent maps from a set S into itself such that $fg = gf$, the map

 $$s(a, b) = (f(a), g(b))$$

 is a solution P-QYBE on S. In this case the semigroup operation is defined by $ab := f(a)$. Clearly, s lies in the class of the well-known Lyubashenko solutions.

- If S is such that $abc = adbc$, for all $a, b, c, d \in S$ (cf. [Monzo, 2003]), then

 $$s(a, b) = (ab, \gamma(b))$$

 with γ an idempotent endomorphism, is a solution to the P-QYBE on S.

- If S is such that $abc = abdbc$ and $a^3 = a^2$, for all $a, b, c, d \in S, k \in S$, then the map

 $$s(a, b) = (ab, k^2)$$

 is a solution of the PE on S but not of the YBE since (Y1) does not hold.
Examples

- **Militaru solutions**: If f and g idempotent maps from a set S into itself such that $fg = gf$, the map

$$s(a, b) = (f(a), g(b))$$

is a solution P-QYBE on S. In this case the semigroup operation is defined by $ab := f(a)$. Clearly, s lies in the class of the well-known Lyubashenko solutions.

- If S is such that $abc = adbc$, for all $a, b, c, d \in S$ (cf. [Monzo, 2003]), then

$$s(a, b) = (ab, \gamma(b))$$

with γ an idempotent endomorphism, is a solution to the P-QYBE on S.

- If S is such that $abc = abdbc$ and $a^3 = a^2$, for all $a, b, c, d \in S$, $k \in S$, then the map

$$s(a, b) = (ab, k^2)$$

is a solution of the PE on S but not of the YBE since $(Y1)$ does not hold.
Examples

- **Militaru solutions**: If f and g idempotent maps from a set S into itself such that $fg = gf$, the map

 $$s(a, b) = (f(a), g(b))$$

 is a solution P-QYBE on S. In this case the semigroup operation is defined by $ab := f(a)$. Clearly, s lies in the class of the well-known Lyubashenko solutions.

- If S is such that $abc = adbc$, for all $a, b, c, d \in S$ (cf. [Monzo, 2003]), then

 $$s(a, b) = (ab, \gamma(b))$$

 with γ an idempotent endomorphism, is a solution to the P-QYBE on S.

- If S is such that $abc = abdbc$ and $a^3 = a^2$, for all $a, b, c, d \in S$, $k \in S$, then the map

 $$s(a, b) = (ab, k^2)$$

 is a solution of the PE on S but not of the YBE since $(Y1)$ does not hold.
Examples

- **Militaru solutions**: If \(f \) and \(g \) idempotent maps from a set \(S \) into itself such that \(fg = gf \), the map
 \[
s(a, b) = (f(a), g(b))
 \]
is a solution P-QYBE on \(S \). In this case the semigroup operation is defined by \(ab := f(a) \). Clearly, \(s \) lies in the class of the well-known Lyubashenko solutions.

- If \(S \) is such that \(abc = adbc \), for all \(a, b, c, d \in S \) (cf. [Monzo, 2003]), then
 \[
s(a, b) = (ab, \gamma(b))
 \]
with \(\gamma \) an idempotent endomorphism, is a solution to the P-QYBE on \(S \).

- If \(S \) is such that \(abc = abdbc \) and \(a^3 = a^2 \), for all \(a, b, c, d \in S, k \in S \), then the map
 \[
s(a, b) = (ab, k^2)
 \]
is a solution of the PE on \(S \) but not of the YBE since \((Y1)\) does not hold.
Examples

- **Militaru solutions**: If \(f \) and \(g \) idempotent maps from a set \(S \) into itself such that \(fg = gf \), the map
 \[
s(a, b) = (f(a), g(b))
 \]
is a solution P-QYBE on \(S \). In this case the semigroup operation is defined by \(ab := f(a) \). Clearly, \(s \) lies in the class of the well-known **Lyubashenko solutions**.

- If \(S \) is such that \(abc = abdc \), for all \(a, b, c, d \in S \) (cf. [Monzo, 2003]), then
 \[
s(a, b) = (ab, \gamma(b))
 \]
with \(\gamma \) an idempotent endomorphism, is a solution to the P-QYBE on \(S \).

- If \(S \) is such that \(abc = abdbc \) and \(a^3 = a^2 \), for all \(a, b, c, d \in S, k \in S \), then the map
 \[
s(a, b) = (ab, k^2)
 \]
is a solution of the PE on \(S \) but not of the YBE since (Y1) does not hold.
Solutions of the P-YBE on particular semigroups

We focus on solutions \(s(a, b) = (ab, \theta_a(b)) \) of the PE defined on specific varieties of semigroups \(S \) with the property

\[
abc = adbc
\]

for all \(a, b, c, d \in S \). We are interested in analysing the powers of the solutions of the “braid version” of the P-QYBE, i.e.,

\[
r(a, b) := \tau s(a, b) = (\theta_a(b), ab).
\]

Given a set \(S \), a map \(\mathcal{R} : S \times S \to S \times S \) into itself is a solution to the QYBE on \(S \) if and only if the map \(r := \tau \mathcal{R} \) satisfies the braid equation, i.e.,

\[
(r \times \text{id}_S)(\text{id}_S \times r)(r \times \text{id}_S) = (\text{id}_S \times r)(r \times \text{id}_S)(\text{id}_S \times r).
\]
Solutions of the P-YBE on particular semigroups

We focus on solutions $s(a, b) = (ab, \theta_a(b))$ of the PE defined on specific varieties of semigroups S with the property

$$abc = adbc$$

for all $a, b, c, d \in S$. We are interested in analysing the powers of the solutions of the “braid version” of the P-QYBE, i.e.,

$$r(a, b) := \tau s(a, b) = (\theta_a(b), ab).$$

Given a set S, a map $\mathcal{R} : S \times S \to S \times S$ into itself is a solution to the QYBE on S if and only if the map $r := \tau \mathcal{R}$ satisfies the braid equation, i.e.,

$$(r \times \text{id}_S)(\text{id}_S \times r)(r \times \text{id}_S) = (\text{id}_S \times r)(r \times \text{id}_S)(\text{id}_S \times r).$$
Solutions of the P-YBE on particular semigroups

We focus on solutions \(s(a, b) = (ab, \theta_a(b)) \) of the PE defined on specific varieties of semigroups \(S \) with the property

\[abc = adbc \]

for all \(a, b, c, d \in S \). We are interested in analysing the powers of the solutions of the “braid version” of the P-QYBE, i.e.,

\[r(a, b) := \tau s(a, b) = (\theta_a(b), ab) . \]

Given a set \(S \), a map \(\mathcal{R} : S \times S \to S \times S \) into itself is a solution to the QYBE on \(S \) if and only if the map \(r := \tau \mathcal{R} \) satisfies the braid equation, i.e.,

\[(r \times \text{id}_S)(\text{id}_S \times r)(r \times \text{id}_S) = (\text{id}_S \times r)(r \times \text{id}_S)(\text{id}_S \times r). \]
Solutions of the P-YBE on particular semigroups

We focus on solutions $s(a, b) = (ab, \theta_a(b))$ of the PE defined on specific varieties of semigroups S with the property

$$abc = adbc$$

for all $a, b, c, d \in S$. We are interested in analysing the powers of the solutions of the “braid version” of the P-QYBE, i.e.,

$$r(a, b) := \tau s(a, b) = (\theta_a(b), ab).$$

Given a set S, a map $R : S \times S \to S \times S$ into itself is a solution to the QYBE on S if and only if the map $r := \tau R$ satisfies the braid equation, i.e.,

$$(r \times \text{id}_S)(\text{id}_S \times r)(r \times \text{id}_S) = (\text{id}_S \times r)(r \times \text{id}_S)(\text{id}_S \times r).$$
The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

Theorem (Catino, Mazzotta, S., 2019)

Let S be a semigroup with the property $abc = adbc$ and r a (braid) solution P-YBE on S. Then, it holds

$$ r^5 = r^3 $$

and the powers r^2, r^3, r^4 of the map r are still solutions to the YBE.

Remark - Example

If S is a left quasi normal semigroup, i.e., $abc = acbc$, then the map on S defined by $r(a, b) := (b, ab)$ is a solution of the P-YBE such that $r^5 = r^3$. If S is not idempotent, then r^2, r^3, r^4 are not solutions of the YBE.

Remark: If S is also idempotent, it holds $r^4 = r^2$.
Solutions of the QYBE of pentagonal type

The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

Theorem (Catino, Mazzotta, S., 2019)

Let \(S \) be a semigroup with the property \(abc = adbc \) and \(r \) a (braid) solution P-YBE on \(S \). Then, it holds

\[
 r^5 = r^3
\]

and the powers \(r^2, r^3, r^4 \) of the map \(r \) are still solutions to the YBE.

Remark - Example

If \(S \) is a left quasi normal semigroup, i.e., \(abc = acbc \), then the map on \(S \) defined by \(r(a, b) := (b, ab) \) is a solution of the P-YBE such that \(r^5 = r^3 \). If \(S \) is not idempotent, then \(r^2, r^3, r^4 \) are not solutions of the YBE.

Remark: If \(S \) is also idempotent, it holds \(r^4 = r^2 \).
The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

Theorem (Catino, Mazzotta, S., 2019)

Let S be a semigroup with the property $abc = adbc$ and r a (braid) solution P-YBE on S. Then, it holds

$$r^5 = r^3$$

and the powers r^2, r^3, r^4 of the map r are still solutions to the YBE.

Remark - Example

If S is a left quasi normal semigroup, i.e., $abc = acbc$, then the map on S defined by $r(a, b) := (b, ab)$ is a solution of the P-YBE such that $r^5 = r^3$. If S is not idempotent, then r^2, r^3, r^4 are not solutions of the YBE.

Remark: If S is also idempotent, it holds $r^4 = r^2$.
The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

Theorem (Catino, Mazzotta, S., 2019)

Let \(S \) be a semigroup with the property \(abc = adbc \) and \(r \) a (braid) solution P-YBE on \(S \). Then, it holds

\[
r^5 = r^3
\]

and the powers \(r^2, r^3, r^4 \) of the map \(r \) are still solutions to the YBE.

Remark - Example

If \(S \) is a left quasi normal semigroup, i.e., \(abc = acbc \), then the map on \(S \) defined by \(r(a, b) := (b, ab) \) is a solution of the P-YBE such that \(r^5 = r^3 \). If \(S \) is not idempotent, then \(r^2, r^3, r^4 \) are not solutions of the YBE.

Remark: If \(S \) is also idempotent, it holds \(r^4 = r^2 \).
The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

Theorem (Catino, Mazzotta, S., 2019)

Let S be a semigroup with the property $abc = adbc$ and r a (braid) solution P-YBE on S. Then, it holds

$$r^5 = r^3$$

and the powers r^2, r^3, r^4 of the map r are still solutions to the YBE.

Remark - Example

If S is a left quasi normal semigroup, i.e., $abc = acbc$, then the map on S defined by $r(a, b) := (b, ab)$ is a solution of the P-YBE such that $r^5 = r^3$. If S is not idempotent, then r^2, r^3, r^4 are not solutions of the YBE.

Remark: If S is also idempotent, it holds $r^4 = r^2$.
The powers of these solutions P-YBE

We show that the solutions P-YBE on these semigroups lie in a special class of solutions of the Yang-Baxter equation.

Theorem (Catino, Mazzotta, S., 2019)

Let S be a semigroup with the property $abc = adbc$ and r a (braid) solution P-YBE on S. Then, it holds

$$r^5 = r^3$$

and the powers r^2, r^3, r^4 of the map r are still solutions to the YBE.

Remark - Example

If S is a left quasi normal semigroup, i.e., $abc = acbc$, then the map on S defined by $r(a, b) := (b, ab)$ is a solution of the P-YBE such that $r^5 = r^3$. If S is not idempotent, then r^2, r^3, r^4 are not solutions of the YBE.

Remark: If S is also idempotent, it holds $r^4 = r^2$.
Examples

- **Militaru solutions:** If f and g idempotent maps from a set S into itself such that $fg = gf$, then the solution P-YBE defined by
 \[r(a, b) = (g(b), f(a)) \]
is such that $r^4 = r^2$. Note that here $ab = f(a)$.

- If S is such that $abc = adbc$, for all $a, b, c \in S$, then the solution to the P-YBE defined by
 \[r(a, b) = (\gamma(b), ab) \]
with γ idempotent endomorphism of S, is such that $r^5 = r^3$.

P. Stefanelli | New solutions of the YBE obtained through solutions of the PE
Examples

- **Militaru solutions**: If \(f \) and \(g \) idempotent maps from a set \(S \) into itself such that \(fg = gf \), then the solution P-YBE defined by

\[
 r(a, b) = (g(b), f(a))
\]

is such that \(r^4 = r^2 \). Note that here \(ab = f(a) \).

- If \(S \) is such that \(abc = adbc \), for all \(a, b, c \in S \), then the solution to the P-YBE defined by

\[
 r(a, b) = (\gamma(b), ab)
\]

with \(\gamma \) idempotent endomorphism of \(S \), is such that \(r^5 = r^3 \).
Examples

- **Militaru solutions**: If f and g idempotent maps from a set S into itself such that $fg = gf$, then the solution P-YBE defined by

 \[r(a, b) = (g(b), f(a)) \]

 is such that $r^4 = r^2$. Note that here $ab = f(a)$.

- If S is such that $abc = adbc$, for all $a, b, c \in S$, then the solution to the P-YBE defined by

 \[r(a, b) = (\gamma(b), ab) \]

 with γ idempotent endomorphism of S, is such that $r^5 = r^3$.
A new method to construct solutions to the YBE

We introduce a new method to construct solutions of the Yang-Baxter equation defined on the Cartesian product of two sets S and T through solutions of the pentagon equation.

In particular, we show how to obtain a solution of the YBE involving a solution s of the PE and a solution t of the R-YBE.
We introduce a new method to construct solutions of the Yang-Baxter equation defined on the Cartesian product of two sets S and T through solutions of the pentagon equation.

In particular, we show how to obtain a solution of the YBE involving a solution s of the PE and a solution t of the R-YBE.
A new construction - I

We introduce the following definition.

Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let $\alpha : T \to S^S$ be a map, set $\alpha_u := \alpha(u)$, for every $u \in T$, and set

$$a_u b_v := \alpha_u(a) \alpha_{\theta_v(u)}(b),$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$a b_u c_v = a \theta_b \alpha_v(c) b_u c_v$$
$$\theta_a \theta_b \alpha_u = \theta_{\alpha_v(b)} \alpha_{\theta_u(v)}$$
$$\theta_a(b c) = \theta_{a \theta_b \alpha_u(c)}(bc)$$
$$a_u b_v = \alpha_{\theta_wv(u)}(a \alpha_v(b))$$
$$\theta_a = \alpha_u \theta_a$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call (s, t, α) a pentagon triple.
A new construction - I

We introduce the following definition.

Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let $\alpha : T \to S^S$ be a map, set $\alpha_u := \alpha(u)$, for every $u \in T$, and set

$$a_u b_v := \alpha_u(a) \alpha_{\theta_v(u)}(b),$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$a b_u c_v = a \theta_b \alpha_v(c) b_u c_v$$

$$\theta_a \theta_b \alpha_u = \theta_{\alpha_v(b)} \alpha_{\theta_u(v)}$$

$$\theta_a (bc) = \theta_{a \theta_b \alpha_u(c)}(bc)$$

$$a_u b_v = \alpha_{\theta_{uv}(u)}(a \alpha_v(b))$$

$$\theta_a = \alpha_u \theta_a$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call (s, t, α) a **pentagon triple**.
A new construction - I

We introduce the following definition.

Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let $\alpha : T \to S^S$ be a map, set $\alpha_u := \alpha(u)$, for every $u \in T$, and set

$$a_u b_v := \alpha_u(a) \alpha_{\theta_v(u)}(b),$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$a b_u c_v = a \theta_v b \alpha_v(c) b_u c_v,$$

$$\theta_a\theta_b \alpha_u = \theta_{\alpha_v(b)} \alpha_{\theta(u)v},$$

$$\theta_a(bc) = \theta_a \theta_b \alpha_u(c)(bc),$$

$$a_u b_v = \alpha_{\theta_{wv}(u)}(a \alpha_v(b)),$$

$$\theta_a = \alpha_u \theta_a$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call (s, t, α) a pentagon triple.
We introduce the following definition.

Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let $\alpha : T \rightarrow S^S$ be a map, set $\alpha_u := \alpha(u)$, for every $u \in T$, and set

$$a_u b_v := \alpha_u(a) \alpha_{\theta_v(u)}(b),$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$a\ b_u\ c_v\ =\ a\theta_b\alpha_v(c)\ b_u\ c_v$$
$$\theta_a\theta_b\alpha_u\ =\ \theta_{\alpha_v(b)}\alpha_{\theta_u(v)}$$
$$\theta_a(bc)\ =\ \theta_{a\theta_b\alpha_u(c)}(bc)$$
$$a_u b_v\ =\ \alpha_{\theta_{w\nu}(u)}(a\alpha_v(b))$$
$$\theta_a\ =\ \alpha_u\theta_a$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call (s, t, α) a **pentagon triple**.
A new construction - I

We introduce the following definition.

Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let $\alpha : T \rightarrow S^S$ be a map, set $\alpha_u := \alpha(u)$, for every $u \in T$, and set

$$a_u b_v := \alpha_u(a) \alpha_{\theta_v(u)}(b),$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$a b_u c_v = a\theta_b \alpha_v(c) b_u c_v$$

$$\theta_a \theta_b \alpha_u = \theta_{\alpha_v(b)} \alpha_{\theta_u(v)}$$

$$\theta_a (bc) = \theta_{a\theta_b \alpha_u(c)}(bc)$$

$$a_u b_v = \alpha_{\theta_w(u)}(a \alpha_v(b))$$

$$\theta_a = \alpha_u \theta_a$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call (s, t, α) a **pentagon triple**.
A new construction - I

We introduce the following definition.

Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let $\alpha : T \rightarrow S^S$ be a map, set $\alpha_u := \alpha(u)$, for every $u \in T$, and set

$$a_u b_v := \alpha_u(a) \alpha_{\theta_v(u)}(b),$$

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

$$a b_u c_v = a \theta_b \alpha_v(c) b_u c_v$$
$$\theta_a \theta_b \alpha_u = \theta_{\alpha_v(b)} \alpha_{\theta_u(v)}$$
$$\theta_a (bc) = \theta_{a \theta_b \alpha_u(c)}(bc)$$
$$a_u b_v = \alpha_{\theta_w(u)}(a \alpha_v(b))$$
$$\theta_a = \alpha_u \theta_a$$

for all $a, b, c \in S$ and $u, v, w \in T$, then we call (s, t, α) a **pentagon triple**.
A new construction - I

We introduce the following definition.

Definition

Let S, T be semigroups, s a solution of the PE on S and t a solution R-YBE on T. Let $\alpha : T \to S^S$ be a map, set $\alpha_u := \alpha(u)$, for every $u \in T$, and set

\[
a_u b_v := \alpha_u(a) \alpha_{\theta^v(u)}(b),
\]

for all $a, b \in S$ and $u, v \in T$. If the following conditions hold

\[
ab u c_v = a\theta_b \alpha_v(c) b u c_v
\]

\[
\theta_a \theta_b \alpha_u = \theta_{\alpha_v(b) \alpha_{u}(v)}
\]

\[
\theta_a(b c) = \theta_{a\theta_b \alpha_u(c)}(b c)
\]

\[
a_u b_v = \alpha_{\theta^w(v)}(a \alpha_v(b))
\]

\[
\theta_a = \alpha_u \theta_a
\]

for all $a, b, c \in S$ and $u, v, w \in T$, then we call (s, t, α) a **pentagon triple**.
A new construction - II

Theorem (Catino, Mazzotta, S., 2019)

Let \((s, t, \alpha)\) be a pentagon triple. Then the map given by

\[
r(a, u; b, v) = (\theta_a \alpha_u(b), vu; a\alpha_u(b), \theta_v(u)),
\]

for all \((a, u), (b, v) \in S \times T\) is a solution of the YBE.

This result is a special case of a more general construction.
A new construction - II

Theorem (Catino, Mazzotta, S., 2019)

Let \((s, t, \alpha)\) be a pentagon triple. Then the map given by

\[
r(a, u; b, v) = (\theta_a \alpha_u(b), vu; a\alpha_u(b), \theta_v(u)),
\]

for all \((a, u), (b, v) \in S \times T\) is a solution of the YBE.

This result is a special case of a more general construction.
A new construction - II

Theorem (Catino, Mazzotta, S., 2019)

Let \((s, t, \alpha)\) be a pentagon triple. Then the map given by

\[
r(a, u; b, v) = (\theta_a \alpha_u(b), vu; a\alpha_u(b), \theta_v(u)),
\]

for all \((a, u), (b, v) \in S \times T\) is a solution of the YBE.

This result is a special case of a more general construction.
Example

Consider

- S a semigroup with the properties $abdbc = abc$ and $a^3 = a^2$, $k \in S$, and $s(a, b) = (ab, k^2)$ the solution of the PE on S (it is not a solution to the QYBE);

- T a semigroup with the property $adbc = abc$ and $t(u, v) = (u, vu)$ a solution R-QYBE on T;

- $\alpha_u(a) = k^2$, for every $a \in S$ and $u \in T$.

Hence, the map given by

$$r(a, u; b, v) = (k^2, vu; ak^2, u),$$

is a solution of the YBE on $S \times T$.
Example

Consider

- S a semigroup with the properties $abdbc = abc$ and $a^3 = a^2$, $k \in S$, and $s(a, b) = (ab, k^2)$ the solution of the PE on S (it is not a solution to the QYBE);
- T a semigroup with the property $adbc = abc$ and $t(u, v) = (u, vu)$ a solution R-QYBE on T;
- $\alpha_u(a) = k^2$, for every $a \in S$ and $u \in T$.

Hence, the map given by

$$r(a, u; b, v) = (k^2, vu; ak^2, u),$$

is a solution of the YBE on $S \times T$.
Example

Consider

- S a semigroup with the properties $abdbca = abc$ and $a^3 = a^2$, $k \in S$, and $s(a, b) = (ab, k^2)$ the solution of the PE on S (it is not a solution to the QYBE);
- T a semigroup with the property $adbc = abc$ and $t(u, v) = (u, vu)$ a solution R-QYBE on T;
- $\alpha_u(a) = k^2$, for every $a \in S$ and $u \in T$.

Hence, the map given by

$$r(a, u ; b, v) = (k^2, vu ; ak^2, u),$$

is a solution of the YBE on $S \times T$.
Example

Consider

- S a semigroup with the properties $abdbc = abc$ and $a^3 = a^2$, $k \in S$, and $s(a, b) = (ab, k^2)$ the solution of the PE on S (it is not a solution to the QYBE);
- T a semigroup with the property $adbc = abc$ and $t(u, v) = (u, vu)$ a solution R-QYBE on T;
- $\alpha_u(a) = k^2$, for every $a \in S$ and $u \in T$.

Hence, the map given by

$$r(a, u ; b, v) = (k^2, vu ; ak^2, u),$$

is a solution of the YBE on $S \times T$.

P. Stefanelli | New solutions of the YBE obtained through solutions of the PE
Thanks for your attention!