Interaction Between Convergence Spaces and Discrete Groups

Pranav Sharma Lovely Professional University. India.

Advances in Group Theory and Applications 2019

Lecce June 25-28, 2019

Pranav Sharma

Contents

Edge-colored Cayley digraph

Generating set Γ of a group G

Let Γ be a subset of a group G such that each element of G is a product of elements of Γ and no element of Γ is **redundant**.

Edge-colored Cayley digraph

The Cayley digraph for G generated by Γ is the directed graph C such that the vertex set of C is G and the edge set of C is $E = \{(g, g\gamma) : g \in G, \gamma \in \Gamma\}$. The edges are colored by $j : E \to \Gamma$, where j(g, h) = s.

Consider the symmetric group S_3 with generators $\{(12), (123)\}$.

Generator	id	(12)	(13)	(23)	(123)	(132)
(123)	(123)	(23)	(12)	(13)	(132)	id

Cayley Graphs

Edge-colored Cayley digraph of S_3

Cayley Graphs

Cayley digraph (without color)

Cayley Graphs

Reflexive Cayley digraph¹

The Cayley graph for G generated by Γ is the reflexive digraph C such that the vertex set of C is G and the edge set of C is $\{(g, h) : g\gamma = h \land (\gamma = e \lor \gamma \in \Gamma)\}$.

¹ [Definition 3.20], D.R.Patten, Problems in the theory of convergence spaces. 2014, Thesis. Pranav Sharma Interaction Between Convergence Spaces and Discrete Groups Convergence Spaces

Convergence generated by a reflexive digraph

The graph neighbourhood² of the vertices are

$$\overrightarrow{1} = \{1\}, \quad \overrightarrow{2} = \{1, 2\}, \quad \overrightarrow{3} = \{1, 2, 3\}.$$

This graph can be represented as the following convergence:

$$\begin{array}{ll} \{1\}^{\uparrow} \to \{1,2,3\} & \{1,2\}^{\uparrow} \to \{2,3\} & \{1,2,3\}^{\uparrow} \to \{3\} \\ \{2\}^{\uparrow} \to \{2,3\} & \{1,3\}^{\uparrow} \to \{3\} \\ \{3\}^{\uparrow} \to \{3\} & \{2,3\}^{\uparrow} \to \{3\} \end{array}$$

No topology can describe this convergence.

 2 [Definition 3.1], D.R.Patten (2014), Problems in the theory of convergence spaces. Thesis.

Pranav Sharma

Convergence space³

Let λ be an arbitrary relation between X and the power set of, set of all filters on X. The relation is called convergence on that set if for $\mathcal{F}_1, \mathcal{F}_2$ in $\mathbb{F}X$ and x in X the following conditions hold:

- (i) Centred: $x^{\uparrow} \in \lambda(x)$,
- (ii) **Isotone**: If $\mathcal{F}_1 \in \lambda(x)$ and $\mathcal{F}_1 \leq \mathcal{F}_2$ then $\mathcal{F}_2 \in \lambda(x)$, and
- (iii) **Finitely deep**: If $\mathcal{F}_1, \mathcal{F}_2 \in \lambda(x)$ then, $\mathcal{F}_1 \cap \mathcal{F}_2 \in \lambda(x)$.

Category of convergence spaces contain category of reflexive directed graphs.

³S. Dolecki and F. Mynard, Convergence Foundations of Topology, World Scientific Publishing Company, 2016. Pranav Sharma Interaction Between Convergence Spaces and Discrete Groups

A Cayley graph for $\mathbb{Z}\oplus\mathbb{Z}$ is the graph Cartesian product $\mathbb{Z}\times\mathbb{Z}$ generated by $(\Gamma\times\{e\})\cup(\{e\}\times\Gamma).^4$

Define a function $+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ as +(a, b) = a + b. Clearly, + is continuous.

Pranav Sharma

⁴[Example 4.6], Patten et. al, Differential calculus on Cayley graphs, 2015

Convergence Groups

A convergence group is a group endowed with a convergence structure such that group operations are continuous in the sense of convergence.

Remark

- The equivalence between the Cayley graphs and the convergence spaces can be used to construct the convergence groups beyond the class of homeomorphism groups.
- Convergence spaces are used in unifying discrete and continuous models of computation and they play a vital role in extending the definition of differential to the discrete structures.
- Convergence spaces play a prominent role in extending the Pontryagin duality theorem beyond local compactness.

Dual group

Circle group , $\mathbb{T}\cong\mathbb{R}/\mathbb{Z}\cong U(1)$

The multiplicative group of all complex numbers of unit modulus with the natural topology as a subspace of the complex plane.

Character group, \hat{G} or $\mathbb{C}Hom(G, \mathbb{T})$

The homomorphism, $\chi: G \to \mathbb{T}$ is called a character and the set of all continuous characters, of an **abelian** group with the operation of pointwise multiplication is called character group.

Dual group, (\hat{G}, τ_{co})

The character group with compact open topology is called the dual group.

Convergence Groups

Pontryagin-van Kampen theorem

Pontryagin duality

For a topological abelian group there is a natural evaluation homomorphism from the group to its double dual defined by

$$\alpha_{\mathcal{G}}: \mathcal{G} \to \hat{\mathcal{G}} \quad \alpha_{\mathcal{G}}(g)(\chi) = \chi(g) \quad \forall \ g \in \mathcal{G}.$$

If this evaluation map is a topological isomorphism then the group is said to satisfy Pontryagin duality or is said to be **Pontryagin reflexive**.

Pontryagin-van Kampen theorem⁵

Every locally compact abelian (LCA) group is canonically isomorphic to its double dual group.

⁵van-Kampen, R. E. (1935). Locally bicompact abelian groups and their character groups. Ann Math, 97:448-463. Pranav Sharma Interaction Between Convergence Spaces and Discrete Groups

Moving Beyond Topology?

A topology on $\mathbb{C}Hom(G, \mathbb{T})$ is called admissible if the evaluation mapping

$$e: \mathbb{C} Hom(G, \mathbb{T}) imes G o \mathbb{T}, \quad e(\chi, g) = \chi(x)$$

is continuous.

Reflexive Admissible Topological Group⁶

If G is a reflexive topological abelian group, then the evaluation mapping is continuous if and only if G is locally compact.

Topological structures are inadequate for situations in analysis particularly when we go beyond local compactness.

Beyond topology - Convergence spaces

⁰Martin-Peinador, E. (1995). A reflexive admissible topological group must be locally compact. Proc Amer Math Soc, 123(11):3563-3566.

Continuous convergence structure λ_c

The continuous convergence structure on the character group of a convergence abelian group is the coarsest convergence structure which makes the evaluation mapping $e : \mathbb{C}Hom(G, \mathbb{T}) \times G \to \mathbb{T}$ continuous.

Continuous dual group, $\Gamma_c G$

The character group with continuous convergence structure is called the dual group.

Continuous duality 7

A convergence group is c-reflexive if the mapping

$$\kappa: G \to \Gamma_c \Gamma_c G$$

defined by

$$\kappa(g)(\chi) = \chi(g) \; orall \; g \in {\sf G}, \; \chi \in {\sf \Gamma}_c {\sf G}$$

is a continuous group homomorphism, here $\Gamma_c G = (\mathbb{C}Hom(G, \mathbb{T}), \lambda_c)$

⁷H.-P. Butzmann, Duality theory for convergence groups, Topology Appl. 111 (2000), no. 1, 95–104.
 Pranav Sharma Interaction Between Convergence Spaces and Discrete Groups

Example

Non c-reflexive locally compact convergence group⁸

Let X be a locally compact topological space, C(X) and $C(X, \mathbb{T})$ respectively denote the group of all continuous, real-valued functions on X and the group of unimodular $(X \to \mathbb{T})$ continuous functions on X. Define

$$ho: \mathcal{C}_c(X)
ightarrow \mathcal{C}_c(X, \mathbb{T}) \text{ as }
ho(f) =
ho \circ f.$$

• ρ is continuous and a group homomorphism.

As X is locally compact so

$$C_c(X) = C_{co}(X)$$
 and $C_c(X, \mathbb{T}) = C_{co}(X, \mathbb{T})$.

• $C_c(X, \mathbb{T})$ is reflexive.

Pranav Sharma

⁸Beattie,R. and Butzmann,H.-P.(2013). Convergence Structures and Applications to Functional Analysis. Bücher. Springer Netherlands, 2013.

Convergence Groups

For

$$\kappa: X \to \Gamma_c C(X, \mathbb{T})$$
 defined as $\kappa(x)f = f(x)$

we have,

Theorem⁹

The group generated by $\kappa(X)$, (denoted $G = \langle \kappa(X) \rangle$) is a locally compact subgroup of $\Gamma_c C_c(X, \mathbb{T})$.

Example¹⁰

For X a connected, compact topological space, the group $G = \kappa(X) > \kappa(X)$ is not reflexive.

Problem

• To characterise the class of **reflexive locally compact convergence groups**.

Pranav Sharma

⁹Proposition 8.5.12, Beattie,R. and Butzmann,H.-P.(2013). Convergence Structures and Applications to Functional Analysis. Bücher. Springer Netherlands, 2013.

¹⁰Example 8.5.14, Beattie, R. and Butzmann, H.-P. (2013). Convergence Structures and Applications to Functional Analysis. Bücher. Springer Netherlands, 2013.

Approach to solve the problem

- Local quasi convexity.
 - It has been obtained that local quasi convexity is a necessary condition for a locally compact convergence group to be c-reflexive.
 - Non-topological compact convergence groups (if they exist) are reflexive iff they are locally quasi convex.
- Convergence measure spaces.
 - The problem is to obtain the notation of integration on convergence spaces and hence a notation similar to Haar measure for the convergence groups.
 - Are the convergence groups whose topological modification locally compact topological group reflexive?
- Bounded convergence groups.