
L-algebras and their groups

Wolfgang Rump

How is it possible that a mathematical structure
with a single binary operation, based on a single
equation (associativity) appears on every showplace
in mathematics, most often in an essential way?

To be sure: We are talking about groups! —
Are there other structures of that kind?

1. L-algebras and logic

Given that groups are invincible, let us exhibit a
structure with a single operation, based, too, on
a single equation, less trivial than associativity, a
structure that contributes a missing aspect to many
groups: order. Just as associativity allows to built
finite strings, the cycloid equation

(x · y) · (x · z) = (y · x) · (y · z) (L)

gives a blueprint for infinite braid-like structures. It
occurs in several ways in connection with right `-
groups (e. g., Garside groups and various function
spaces), geometry, and quantum theory.



The “L” stands for logic: Replacing · by an arrow
for “implication”, (L) asserts the equivalence (“=”)
of two logical propositions:

(x→ y)→ (x→ z) = (y → x)→ (y → z) (L)

To make the operation “→” into a relation “6”
(x entails y), we need an element 1 which stands
for truth: x entails y if and only if x→ y is true:

x 6 y :⇐⇒ x→ y = 1.

A logical unit 1 has to satisfy

1→ x = x, x→ x = x→ 1 = 1 (U)

From (L) and (U) it follows that entailment 6 is
reflexive and transitive. To get a partial order, we
assume

x→ y = y → x = 1 =⇒ x = y (E)

Definition 1. A set (X ;→) with (L), (U), and (E)
is said to be an L-algebra.

Thus every L-algebra comes with a partial order.
The element 1 is always the greatest element of X .

Definition 2. An L-algebra X is discrete if the
elements in X r {1} are pairwise incomparable.
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Let (X ; ·) be a discrete L-algebra. For any pair of
distinct x, y ∈ S1(X) := X r {1} we built a mesh
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and iterate the procedure. Eq. (L) guarantees that
the construction yields a lower semimodular lattice.
The generic case looks as follows:
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Recall that a lattice is said to
be lower semimodular if
whenever x∨y covers y, then
x covers x ∧ y.
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We obtain a labelled lattice, an L-algebra which
can be regarded as the Cayley graph of a monoid
S(X), the self-similar closure of X . Now this
construction generalizes to arbitrary L-algebras.

Definition 3. An L-algebra (X ;→) is said to be
self-similar if for all x, y ∈ X there is an element
z 6 y with y → z = x.

Such an element z depends uniquely on x and y.
The new operation xy := z is then associative!
Moreover,

xy → z = x→ (y → z) (A)

Thus, logically, the multiplication stands for a non-
commutative conjunction. The mesh relation
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leads to another, commutative operation

x ∧ y := (x→ y)x = (y → x)y (H)

which makes X into a ∧-semilattice. Thus x ∧ y
gives the classical conjunction. In what follows,
we return to our former notation, writing · instead
of→. Replacing xy · z in (A) by x · yz, we have the
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following cocycle equation

x · yz =
(
(z · x) · y

)
(x · z), (S)

which is equivalent to the first of the equations

x·yx = y ( I )

xy · z = x · (y · z) (A)

(x · y)x = (y · x)y (H)

Proposition 1. A self-similar L-algebra X is
equivalent to a monoid with a second operation ·
satisfying (I), (A), and (H).

The unit element of the monoid is the logical unit 1.
Note that (A) and (H) imply (L):

(x·y)·(x·z)
(A)
= (x·y)x·z (H)

= (y·x)y·z (A)
= (y·x)·(y·z).

The implication

x · y = y · x = 1 =⇒ x = y (E)

can be obtained from the equations as follows:

x = 1x = (x · y)x
(H)
= (y · x)y = 1y = y.

Theorem 1 (2008). Every L-algebra X is an
L-subalgebra of a self-similar L-algebra S(X), so
that X generates the monoid S(X). These two
properties determine S(X), up to isomorphism.
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S(X) is called the self-similar closure of X .
Thus any L-algebra embeds into a bigger structure
S(X) with more operations to simplify calculations.
For example, the ∧-operation satisfies

x · (y ∧ z) = (x · y) ∧ (x · z) (1)

(x ∧ y) · z = (x · y) · (x · z), (2)

a commutative version of

x · yz =
(
(z · x) · y

)
(x · z) (S)

xy · z = x · (y · z). (A)

The equation

(x · y) · (x · z) = (y · x) · (y · z) (L)

has the remarkable property that it extends from
any set X to the free monoid M(X), using only
the equations (S) and (A), and 1 · x = x. For an
L-algebra X , this can be used to construct the self-
similar closure by a surjection M(X)� S(X).

Definition 4. An L-algebra X is ∧-closed if it is
closed with respect to ∧ in S(X).

The∧-closureC(X) in S(X) is again anL-algebra.
Moreover, there is a simple characterization:

Proposition 2. An L-algebra X is ∧-closed if
and only if it satisfies Eqs. (1) and (2).
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2. The structure group

An L-algebra X is self-similar iff S(X) = X . Then

x · yx = y ( I )

implies that X is right cancellative. By

(x · y)x = (y · x)y, (H)

X satisfies the left Ore condition. So X has a group
G(X) of left fractions x−1y (x, y ∈ X). For an
arbitrary L-algebra X , we call G(X) := G(S(X))
the structure group of X .

Question: Which groups arise as the structure
group of an L-algebra?

Theorem 2 (2016). The structure group of an
L-algebra is torsion-free.

Example 1. The braid group Bn with n strings
is a structure group. For example, consider the two
generators of B3:

@
@
@

��

��

@
@
@

��

��

x y
Then

�
��

��

@
@
@

��

��

@
@
@

@
@@

��

�
��

��

@
@

@
@
@@

��

��

@
@
@

��

xyx = yxy

7



The braid group B3 is the structure group of the
L-algebra X = {1, x, y, xy, yx}, given by

x · y := xy, y · x := yx.

For example,

x ·xy (S)
=
(
(y ·x) ·x

)
(x ·y) = (yx ·x)xy = 1xy = xy

yx · xy = y · (x · xy) = y · xy (I)
= x.

The partial order of X is given by
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The ∧-closure C(X) is a lattice (“benzene ring”):
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an L-algebra with zero. (A smallest element in
a lattice is usually denoted by 0.)

Similarly, every finite Coxeter group gives rise
to an L-algebra with 0, and with the corresponding
Artin group as its structure group.
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The braid group Bn is a right `-group, that is,
a group with a lattice order satisfying

(x ∨ y)z = xz ∨ yz.
If z(x ∨ y) = zx ∨ zy also holds, the group is said
to be lattice-ordered or briefly, an `-group.

Example 2. The negative cone

G− := {x ∈ G | x 6 1}
of a right `-group G is a self-similar L-algebra:

x · y := yx−1 ∧ 1.

Therefore, any right `-group is a structure group (of
its negative cone). Indeed, we even have

Proposition 3. Any right `-group is a two-sided
group of fractions of its negative cone.

In particular, any right `-group is a structure group,
hence torsion-free. For a while, it was not known
whether the braid group Bn is torsion-free. This
was first proved by Fadell, Fox, and Neuwirth (1962)
by topological arguments. Direct proofs were given
by Rolfsen-Zhu (1998) and Dehornoy (1998, 2004),
using the Garside structure.

With the concept of right `-group, a one-line proof
becomes possible:
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Proposition 4. Any right `-group is torsion-free.

Proof. If gn = 1, then h := 1 ∨ g ∨ · · · ∨ gn−1
satisfies hg = h. Whence g = 1. �

Note that braid groups are right `-groups, but the
structure group of an L-algebra need not even carry
a partial order.

3. Commutative L-algebras

An element g of a right `-group G is said to be
normal if it satisfies g(x ∧ y) = gx ∧ gy for all
x, y ∈ G. The normal elements form an `-group
N(G), the quasi-centre of G. For a braid group
Bn, the quasi-centre is 〈0〉, the infinite cyclic group
generated by the smallest element 0 of its L-algebra.
The centre of Bn is 〈02〉.

Definition 5. A normal element u of a right `-
group G is said to be a strong order unit if every
x ∈ G is majorized by some un with n ∈ N.

Examples. In the abelian `-group of continuous
functions on a compact space, the positive constants
are strong order units. In a braid group Bn, the
Garside element 0−1 is a strong order unit.

Since each L-algebra embeds into a monoid, we
have a natural commutativity concept forL-algebras:
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Definition 6. Let X be an L-algebra. We say that
X is commutative if its self-similar closure S(X)
is commutative as a monoid.

Commutative L-algebras with 0 are equivalent to
MV-algebras, introduced by Chang in 1958 as
models for many-valued logic. (Truth values are
in the interval [0, 1] instead of {0, 1}.)
Viewed as L-algebras, known facts on MV-algebras
become more transparent, and new aspects arise.

Proposition 5. An L-algebra X is commutative
if and only if the following are satisfied:

x 6 y · x (K)

x ∨ y := (x · y) · y = (y · x) · x (V)

Eq. (V) then makes X into a ∨-semilattice. If
there is a smallest element, X is even a lattice:

Proposition 6. Let X be an MV-algebra.

(a) X is a distributive lattice.

(b) y 7→ x ·y is a lattice homomorphism X → X.

(c) x 7→ x·y is a lattice homomorphism X
op→ X .

Mundici proved (1986) that every MV-algebra can
be represented as an interval in an abelian `-group.
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In terms of L-algebras, this famous result reduces to
a property of the structure group:

Theorem 3. For an MV-algebra X, the natural
map X → G(X) embeds X as an interval [0, 1]
into G(X), and 0 is a strong order unit in G(X).

Proof. As a commutative self-similar L-algebra,
S(X) is cancellative. Hence S(X) → G(X) is an
embedding. If x ∈ X and x 6 a 6 1 in S(X), then
a = a ∨ x = (a · x) · x. By

xy · z = x · (y · z) (A)

and induction, a·x ∈ X . Whence a = (a·x)·x ∈ X .
So X is an interval in S(X), hence in G(X). �

Theorem 3 extends to `-groupsG(X) (which gives
Dvurečenskij’s 2002 generalization) and even to right
`-groups (which applies, e. g., to Garside groups and
para-unitary groups).

Every MV-algebra X has a natural involution

x∗ := x · 0

which is an lattice anti-automorphism:

(x ∨ y)∗ = x∗ ∧ y∗

x∗ · y∗ = y · x.
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4. Measure theory

The functorial property of the structure group of an
L-algebra is closely related to (commutative or non-
commutative) measure theory. In classical terms, a
measure is a σ-additive function

µ : S (X)→ R+

from a σ-algebra S (X) of measurable sets to the
non-negative reals. Let us replace the σ-algebra
S (X) by any Boolean algebra. Sometimes it is
also more reasonable to work with additive instead
of σ-additive measures, or to consider values in the
extended reals or in the unit interval I := [0, 1]. So
one would consider a measure

µ : B → I

from a Boolean algebra B to the unit interval I .
Note that both B and I are MV-algebras. Indeed,
a Boolean algebra is equivalent to an MV-algebra
satisfying the sharpness equation

x · (x · y) = x · y
This equation implies that x · x∗ = x∗, which yields
x ∨ x∗ = (x · x∗) · x∗ = x∗ · x∗ = 1 and x ∧ x∗ =
(x · x∗)x = x∗x = (x · 0)x = 0. The L-algebra
structure of I = [0, 1] is given by

x · y := min{1− x + y, 1}.
13



The structure group G(I) of I is the additive group
of reals R, with the embedding I ↪→ R given by
x 7→ x− 1. For a Boolean algebra B, the structure
group G(B) is a Specker group, which can be
identified with a group of Z-valued step functions
on Spec B.

Definition 7. Let X, Y be MV-algebras, viewed
as subalgebras of S(X) and S(Y ). We define a
measure µ : X → Y to be a map which satisfies
µ(xy) = µ(x)µ(y) for all x, y ∈ X with xy ∈ X .

The condition xy ∈ X is equivalent to y∗ 6 x.
For a Boolean algebra, this stands for disjointness
of x and y. An intrinsic condition for measures:

Proposition 7. A measure µ : X → Y between
MV-algebras is equivalent to a function which
satisfies µ(x · y) = µ(x) · µ(y) and µ(x) > µ(y)
for all x > y in X.

In terms of the structure group:

Theorem 4. Every measure µ : X → Y between
MV-algebras extends uniquely to a group homo-
morphism G(µ) : G(X) → G(Y ). Conversely,
any group homomorphism f : G(X)→ G(Y ) with
f (X) ⊂ Y restricts to a measure µ : X → Y .
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The next result interpretes any MV-algebra as a
generalized measure space. Recall first that
every MV-algebra is a distributive lattice. There is
a duality

Spec : Dop −→ Sp (3)

between distributive lattices and spectral spaces,
the same spaces which also arise as prime spectra of
commutative rings.

The functor Spec extends the well-known Stone
duality between Boolean algebras and Stone spaces.
If a spectral space X is endowed with the patch
topology, we obtain a Stone space X̃ together with
a bijective continuous map X̃ → X .

For a distributive lattice D, this yields a natural
embedding into a Boolean algebra B(D).

Theorem 5. Let X be an MV-algebra. There is
a unique measure µ : B(X)� X with µ|X = 1X.

We call µ the canonical measure µX of X .

Example 3. The canonical measure of I := [0, 1] is
an additive measure µI : B(I) � I which uniquely
extends to the Lebesgue measure on the Borel
sets of I .

More group theory is in the wake of MV-algebras.
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With measures µ : X → Y as morphisms, MV-
algebras form a category MV. For any µ, we call

Kerµ := {x ∈ X | µ(x) = 1}
the kernel of µ. To understand the next result,
we mention that there is a concept of ideal for any
L-algebra X , so that ideals I of X correspond to
surjective morphisms X � X/I .

Proposition 8. Let µ : X → Y be a measure of
MV-algebras. Then Kerµ is an ideal of X, and
µ factors through X � X/Kerµ.

So we can restrict ourselves to pure measures,
that is, measures with trivial kernel. For example,
the canonical measure of an MV-algebra is pure.

Definition 8. For an MV-algebra X , let G0(X)
be the group of invertible measures µ : X → X ,
viewed as a subgroup of G(X). The group π1(X)
of α ∈ G0(X) with µXα = µX will be called the
fundamental group of X .

There is a covering theory of MV-algebras X
for which µX : B(X) � X is a universal covering.
In particular, we have a canonical representation:

X ∼= B(X)/π1(X)

Coverings ofX correspond to subgroups of π1(X).
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5. Three types of algebraic logic

MV-algebras formalize  Lukasiewicz’ many-valued
logic (Chang 1958), with truth values in the unit
interval I . For the “working mathematician”, this
means that a proposition holds for all MV-algebras
if it is valid in the MV-algebra I . We have seen that
this type of logic is equivalent to measure theory
in a wide sense.

Now MV-algebras are commutative L-algebras.
So one could expect that quantum measuring,
usually formalized in terms of operator algebras, is
covered by non-commutative L-algebras. This is in
fact true, and it does by no means exhaust the ambit
of L-algebras.

Note that quantum theory has also been found
to be a matter of logic. Birkhoff and von Neumann
extracted it as the logic of quantum mechanics
(Ann. Math., 1936). Now classical (Boolean) logic
generalizes in three major ways:

logic models subject

intuitionistic locales general topology
 Lukasiewicz MV-algebras measure theory

quantum orthomodular
lattices

von Neumann
algebras
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The models in the table (locales, MV-algebras, and
orthomodular lattices) are L-algebras.
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MV-algebras as generalized measure spaces have
already been mentioned. It remains to give a brief
description of the L-algebras arising in topology
and quantum theory.

6. Locales

In the standard model of classical logic, propositions
are represented by the subsets A of a fixed set X .
Negation corresponds to the complement X r A.
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For intuitionistic logic, X is a topological space,
and propositions correspond to open sets U in X .
The negation U ′ of U is given by the largest open
set which is disjoint to U , that is, U ′ = X r U . In
general, double negation leads to a proper inclusion:

U ⊂ U ′′.

Open sets form a complete lattice O(X) (a locale)
which determines X in many cases (e. g., if X is
Hausdorff). Every locale is a Brouwerian semi-
lattice, that is, a ∧-semilattice X with greatest
element 1 and an operation → satisfying

x ∧ y 6 z ⇐⇒ x 6 y → z

Algebras (X ;→, 1) which embed into a Brouwerian
semilattice are called Hilbert algebras. Henkin’s
1950 theorem states that Hilbert algebras formalize
the deduction theorem: A proposition x implies
y if and only if x→ y is true in any Hilbert algebra.
Here is another characterization:

Proposition 9. A Hilbert algebra is equivalent
to an L-algebra which is self-distributive:

x · (y · z) = (x · y) · (x · z)

Brouwerian semilattices coincide with ∧-closed
Hilbert algebras.
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So we have inclusions of categories:

Top ⊂ Loc ⊂ BS ⊂ Hilb ⊂ LAlg

For a topological space X , the map

O(X)→ G(O(X))

into the structure group is given by double negation,
a lattice homomorphism (Glivenko’s theorem).

7. Quantum logic

Propositions in quantum logic are represented by
closed subspaces of a Hilbert space, negation being
the orthogonal complement. The closed subspaces
form an orthomodular lattice (OML), that is,

x 6 y =⇒ x ∨ (x⊥ ∧ y) = y.

More generally, the projections of a von Neumann
algebra A form an OML.

Proposition 10. An OML is equivalent to an
L-algebra with 0 which satisfies

x · 0 6 y =⇒ y · x = x

Here x · 0 = x⊥. Moreover, such an L-algebra is
∧-closed. The lattice operations are given by

x ∨ y = (x⊥ · y⊥) · x, x ∧ y = (x⊥ ∨ y⊥)⊥.

As in the case of MV-algebras, OMLs embed into
their structure group:
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Theorem 6. The structure group of an OML X
is a right `-group with negative cone S(X). The
natural map X → G(X) embeds X as an interval
[0, 1] into G(X), and 0−1 is a strong order unit.

The element 0−1 is singular in the following sense:

Definition 9. We call an element s > 1 of a right
`-group singular if s−1 6 xy =⇒ yx = x∧y holds
for all x, y 6 1.

Now a singular strong order unit of a right `-
group is necessarily unique. So we obtain a group-
theoretic characterization of OMLs (von Neumann
algebras, up to duality and trivial factors M2(C)):

Theorem 7. Up to isomorphism, X 7→ G(X) is
a one-to-one correspondence between OMLs X
and right `-groups which admit a singular strong
order unit.

More details: Von Neumann algebras, L-algebras,
Baer ∗-monoids, and Garside groups, Forum Math. 30
(2018), no. 4, 973-995
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