L-algebras and their groups

Wolfgang Rump

How is it possible that a mathematical structure with a single binary operation, based on a single equation (associativity) appears on every showplace in mathematics, most often in an essential way?

To be sure: We are talking about groups! Are there other structures of that kind?

1. L-algebras and logic

Given that groups are invincible, let us exhibit a structure with a single operation, based, too, on a single equation, less trivial than associativity, a structure that contributes a missing aspect to many groups: order. Just as associativity allows to built finite strings, the cycloid equation

$$
\begin{equation*}
(x \cdot y) \cdot(x \cdot z)=(y \cdot x) \cdot(y \cdot z) \tag{L}
\end{equation*}
$$

gives a blueprint for infinite braid-like structures. It occurs in several ways in connection with right ℓ groups (e. g., Garside groups and various function spaces), geometry, and quantum theory.

The "L" stands for logic: Replacing • by an arrow for "implication", (L) asserts the equivalence (" $=$ ") of two logical propositions:

$$
\begin{equation*}
(x \rightarrow y) \rightarrow(x \rightarrow z)=(y \rightarrow x) \rightarrow(y \rightarrow z) \tag{L}
\end{equation*}
$$

To make the operation " \rightarrow " into a relation " \leqslant " (x entails y), we need an element 1 which stands for truth: x entails y if and only if $x \rightarrow y$ is true:

$$
x \leqslant y: \Longleftrightarrow x \rightarrow y=1 .
$$

A logical unit 1 has to satisfy

$$
\begin{equation*}
1 \rightarrow x=x, \quad x \rightarrow x=x \rightarrow 1=1 \tag{U}
\end{equation*}
$$

From (L) and (U) it follows that entailment \leqslant is reflexive and transitive. To get a partial order, we assume

$$
\begin{equation*}
x \rightarrow y=y \rightarrow x=1 \Longrightarrow x=y \tag{E}
\end{equation*}
$$

Definition 1. A set ($X ; \rightarrow$) with (L), (U), and (E) is said to be an L-algebra.

Thus every L-algebra comes with a partial order. The element 1 is always the greatest element of X.

Definition 2. An L-algebra X is discrete if the elements in $X \backslash\{1\}$ are pairwise incomparable.

Let $(X ; \cdot)$ be a discrete L-algebra. For any pair of distinct $x, y \in S^{1}(X):=X \backslash\{1\}$ we built a mesh

and iterate the procedure. Eq. (L) guarantees that the construction yields a lower semimodular lattice. The generic case looks as follows:

We obtain a labelled lattice, an L-algebra which can be regarded as the Cayley graph of a monoid $S(X)$, the self-similar closure of X. Now this construction generalizes to arbitrary L-algebras.

Definition 3. An L-algebra $(X ; \rightarrow)$ is said to be self-similar if for all $x, y \in X$ there is an element $z \leqslant y$ with $y \rightarrow z=x$.

Such an element z depends uniquely on x and y. The new operation $x y:=z$ is then associative! Moreover,

$$
\begin{equation*}
x y \rightarrow z=x \rightarrow(y \rightarrow z) \tag{A}
\end{equation*}
$$

Thus, logically, the multiplication stands for a noncommutative conjunction. The mesh relation

leads to another, commutative operation

$$
\begin{equation*}
x \wedge y:=(x \rightarrow y) x=(y \rightarrow x) y \tag{H}
\end{equation*}
$$

which makes X into a \wedge-semilattice. Thus $x \wedge y$ gives the classical conjunction. In what follows, we return to our former notation, writing • instead of \rightarrow. Replacing $x y \cdot z$ in (A) by $x \cdot y z$, we have the
following cocycle equation

$$
\begin{equation*}
x \cdot y z=((z \cdot x) \cdot y)(x \cdot z) \tag{S}
\end{equation*}
$$

which is equivalent to the first of the equations

$$
\begin{gather*}
x \cdot y x=y \tag{I}\\
x y \cdot z=x \cdot(y \cdot z) \tag{A}\\
(x \cdot y) x=(y \cdot x) y \tag{H}
\end{gather*}
$$

Proposition 1. A self-similar L-algebra X is equivalent to a monoid with a second operation . satisfying $(I),(A)$, and (H).

The unit element of the monoid is the logical unit 1. Note that (A) and (H) imply (L):
$(x \cdot y) \cdot(x \cdot z) \stackrel{(A)}{=}(x \cdot y) x \cdot z \stackrel{(H)}{=}(y \cdot x) y \cdot z \stackrel{(A)}{=}(y \cdot x) \cdot(y \cdot z)$.
The implication

$$
\begin{equation*}
x \cdot y=y \cdot x=1 \Longrightarrow x=y \tag{E}
\end{equation*}
$$

can be obtained from the equations as follows:

$$
x=1 x=(x \cdot y) x \stackrel{(H)}{=}(y \cdot x) y=1 y=y
$$

Theorem 1 (2008). Every L-algebra X is an L-subalgebra of a self-similar L-algebra $S(X)$, so that X generates the monoid $S(X)$. These two properties determine $S(X)$, up to isomorphism.
$S(X)$ is called the self-similar closure of X. Thus any L-algebra embeds into a bigger structure $S(X)$ with more operations to simplify calculations. For example, the \wedge-operation satisfies

$$
\begin{align*}
& x \cdot(y \wedge z)=(x \cdot y) \wedge(x \cdot z) \tag{1}\\
& (x \wedge y) \cdot z=(x \cdot y) \cdot(x \cdot z) \tag{2}
\end{align*}
$$

a commutative version of

$$
\begin{align*}
& x \cdot y z=((z \cdot x) \cdot y)(x \cdot z) \tag{S}\\
& x y \cdot z=x \cdot(y \cdot z) \tag{A}
\end{align*}
$$

The equation

$$
\begin{equation*}
(x \cdot y) \cdot(x \cdot z)=(y \cdot x) \cdot(y \cdot z) \tag{L}
\end{equation*}
$$

has the remarkable property that it extends from any set X to the free monoid $M(X)$, using only the equations (S) and (A), and $1 \cdot x=x$. For an L-algebra X, this can be used to construct the selfsimilar closure by a surjection $M(X) \rightarrow S(X)$.

Definition 4. An L-algebra X is \wedge-closed if it is closed with respect to \wedge in $S(X)$.

The \wedge-closure $C(X)$ in $S(X)$ is again an L-algebra. Moreover, there is a simple characterization:

Proposition 2. An L-algebra X is \wedge-closed if and only if it satisfies Eqs. (1) and (2).

2. The structure group

An L-algebra X is self-similar iff $S(X)=X$. Then

$$
\begin{equation*}
x \cdot y x=y \tag{I}
\end{equation*}
$$

implies that X is right cancellative. By

$$
\begin{equation*}
(x \cdot y) x=(y \cdot x) y \tag{H}
\end{equation*}
$$

X satisfies the left Ore condition. So X has a group $G(X)$ of left fractions $x^{-1} y(x, y \in X)$. For an arbitrary L-algebra X, we call $G(X):=G(S(X))$ the structure group of X.

Question: Which groups arise as the structure group of an L-algebra?

Theorem 2 (2016). The structure group of an L-algebra is torsion-free.

Example 1. The braid group B_{n} with n strings is a structure group. For example, consider the two generators of B_{3} :

Then

The braid group B_{3} is the structure group of the L-algebra $X=\{1, x, y, x y, y x\}$, given by

$$
x \cdot y:=x y, \quad y \cdot x:=y x .
$$

For example,

$$
\begin{gathered}
x \cdot x y \stackrel{(S)}{=}((y \cdot x) \cdot x)(x \cdot y)=(y x \cdot x) x y=1 x y=x y \\
y x \cdot x y=y \cdot(x \cdot x y)=y \cdot x y \stackrel{(I)}{=} x .
\end{gathered}
$$

The partial order of X is given by

The \wedge-closure $C(X)$ is a lattice ("benzene ring"):

an L-algebra with zero. (A smallest element in a lattice is usually denoted by 0 .)

Similarly, every finite Coxeter group gives rise to an L-algebra with 0 , and with the corresponding Artin group as its structure group.

The braid group B_{n} is a right ℓ-group, that is, a group with a lattice order satisfying

$$
(x \vee y) z=x z \vee y z
$$

If $z(x \vee y)=z x \vee z y$ also holds, the group is said to be lattice-ordered or briefly, an ℓ-group.

Example 2. The negative cone

$$
G^{-}:=\{x \in G \mid x \leqslant 1\}
$$

of a right ℓ-group G is a self-similar L-algebra:

$$
x \cdot y:=y x^{-1} \wedge 1
$$

Therefore, any right ℓ-group is a structure group (of its negative cone). Indeed, we even have

Proposition 3. Any right ℓ-group is a two-sided group of fractions of its negative cone.

In particular, any right ℓ-group is a structure group, hence torsion-free. For a while, it was not known whether the braid group B_{n} is torsion-free. This was first proved by Fadell, Fox, and Neuwirth (1962) by topological arguments. Direct proofs were given by Rolfsen-Zhu (1998) and Dehornoy (1998, 2004), using the Garside structure.

With the concept of right ℓ-group, a one-line proof becomes possible:

Proposition 4. Any right ℓ-group is torsion-free.
Proof. If $g^{n}=1$, then $h:=1 \vee g \vee \cdots \vee g^{n-1}$ satisfies $h g=h$. Whence $g=1$.

Note that braid groups are right ℓ-groups, but the structure group of an L-algebra need not even carry a partial order.

3. Commutative L-algebras

An element g of a right ℓ-group G is said to be normal if it satisfies $g(x \wedge y)=g x \wedge g y$ for all $x, y \in G$. The normal elements form an ℓ-group $N(G)$, the quasi-centre of G. For a braid group B_{n}, the quasi-centre is $\langle 0\rangle$, the infinite cyclic group generated by the smallest element 0 of its L-algebra. The centre of B_{n} is $\left\langle 0^{2}\right\rangle$.

Definition 5. A normal element u of a right ℓ group G is said to be a strong order unit if every $x \in G$ is majorized by some u^{n} with $n \in \mathbb{N}$.

Examples. In the abelian ℓ-group of continuous functions on a compact space, the positive constants are strong order units. In a braid group B_{n}, the Garside element 0^{-1} is a strong order unit.

Since each L-algebra embeds into a monoid, we have a natural commutativity concept for L-algebras:

Definition 6. Let X be an L-algebra. We say that X is commutative if its self-similar closure $S(X)$ is commutative as a monoid.

Commutative L-algebras with 0 are equivalent to MV-algebras, introduced by Chang in 1958 as models for many-valued logic. (Truth values are in the interval $[0,1]$ instead of $\{0,1\}$.)
Viewed as L-algebras, known facts on MV-algebras become more transparent, and new aspects arise.

Proposition 5. An L-algebra X is commutative if and only if the following are satisfied:

$$
\begin{gather*}
x \leqslant y \cdot x \tag{K}\\
x \vee y:=(x \cdot y) \cdot y=(y \cdot x) \cdot x \tag{V}
\end{gather*}
$$

Eq. (V) then makes X into a \vee-semilattice. If there is a smallest element, X is even a lattice:

Proposition 6. Let X be an MV-algebra.
(a) X is a distributive lattice.
(b) $y \mapsto x \cdot y$ is a lattice homomorphism $X \rightarrow X$.
(c) $x \mapsto x \cdot y$ is a lattice homomorphism $X^{\mathrm{op}} \rightarrow X$.

Mundici proved (1986) that every MV-algebra can be represented as an interval in an abelian ℓ-group.

In terms of L-algebras, this famous result reduces to a property of the structure group:

Theorem 3. For an MV-algebra X, the natural map $X \rightarrow G(X)$ embeds X as an interval $[0,1]$ into $G(X)$, and 0 is a strong order unit in $G(X)$.

Proof. As a commutative self-similar L-algebra, $S(X)$ is cancellative. Hence $S(X) \rightarrow G(X)$ is an embedding. If $x \in X$ and $x \leqslant a \leqslant 1$ in $S(X)$, then $a=a \vee x=(a \cdot x) \cdot x$. By

$$
\begin{equation*}
x y \cdot z=x \cdot(y \cdot z) \tag{A}
\end{equation*}
$$

and induction, $a \cdot x \in X$. Whence $a=(a \cdot x) \cdot x \in X$. So X is an interval in $S(X)$, hence in $G(X) . \quad \square$

Theorem 3 extends to ℓ-groups $G(X)$ (which gives Dvurečenskij's 2002 generalization) and even to right ℓ-groups (which applies, e. g., to Garside groups and para-unitary groups).

Every MV-algebra X has a natural involution

$$
x^{*}:=x \cdot 0
$$

which is an lattice anti-automorphism:

$$
\begin{aligned}
(x \vee y)^{*} & =x^{*} \wedge y^{*} \\
x^{*} \cdot y^{*} & =y \cdot x .
\end{aligned}
$$

4. Measure theory

The functorial property of the structure group of an L-algebra is closely related to (commutative or noncommutative) measure theory. In classical terms, a measure is a σ-additive function

$$
\mu: \mathscr{S}(X) \rightarrow \mathbb{R}^{+}
$$

from a σ-algebra $\mathscr{S}(X)$ of measurable sets to the non-negative reals. Let us replace the σ-algebra $\mathscr{S}(X)$ by any Boolean algebra. Sometimes it is also more reasonable to work with additive instead of σ-additive measures, or to consider values in the extended reals or in the unit interval $I:=[0,1]$. So one would consider a measure

$$
\mu: \mathscr{B} \rightarrow I
$$

from a Boolean algebra \mathscr{B} to the unit interval I. Note that both \mathscr{B} and I are MV-algebras. Indeed, a Boolean algebra is equivalent to an MV-algebra satisfying the sharpness equation

$$
x \cdot(x \cdot y)=x \cdot y
$$

This equation implies that $x \cdot x^{*}=x^{*}$, which yields $x \vee x^{*}=\left(x \cdot x^{*}\right) \cdot x^{*}=x^{*} \cdot x^{*}=1$ and $x \wedge x^{*}=$ $\left(x \cdot x^{*}\right) x=x^{*} x=(x \cdot 0) x=0$. The L-algebra structure of $I=[0,1]$ is given by

$$
x \cdot y:=\min \{1-x+y, 1\} .
$$

The structure group $G(I)$ of I is the additive group of reals \mathbb{R}, with the embedding $I \hookrightarrow \mathbb{R}$ given by $x \mapsto x-1$. For a Boolean algebra \mathscr{B}, the structure group $G(\mathscr{B})$ is a Specker group, which can be identified with a group of \mathbb{Z}-valued step functions on Spec \mathscr{B}.

Definition 7. Let X, Y be MV-algebras, viewed as subalgebras of $S(X)$ and $S(Y)$. We define a measure $\mu: X \rightarrow Y$ to be a map which satisfies $\mu(x y)=\mu(x) \mu(y)$ for all $x, y \in X$ with $x y \in X$.

The condition $x y \in X$ is equivalent to $y^{*} \leqslant x$. For a Boolean algebra, this stands for disjointness of x and y. An intrinsic condition for measures:

Proposition 7. A measure $\mu: X \rightarrow Y$ between $M V$-algebras is equivalent to a function which satisfies $\mu(x \cdot y)=\mu(x) \cdot \mu(y)$ and $\mu(x) \geqslant \mu(y)$ for all $x \geqslant y$ in X.

In terms of the structure group:
Theorem 4. Every measure $\mu: X \rightarrow Y$ between $M V$-algebras extends uniquely to a group homomorphism $G(\mu): G(X) \rightarrow G(Y)$. Conversely, any group homomorphism $f: G(X) \rightarrow G(Y)$ with $f(X) \subset Y$ restricts to a measure $\mu: X \rightarrow Y$.

The next result interpretes any MV-algebra as a generalized measure space. Recall first that every MV-algebra is a distributive lattice. There is a duality

$$
\begin{equation*}
\text { Spec }: \mathbf{D}^{\mathrm{op}} \longrightarrow \mathbf{S p} \tag{3}
\end{equation*}
$$

between distributive lattices and spectral spaces, the same spaces which also arise as prime spectra of commutative rings.

The functor Spec extends the well-known Stone duality between Boolean algebras and Stone spaces. If a spectral space X is endowed with the patch topology, we obtain a Stone space \widetilde{X} together with a bijective continuous map $\widetilde{X} \rightarrow X$.

For a distributive lattice D, this yields a natural embedding into a Boolean algebra $B(D)$.

Theorem 5. Let X be an $M V$-algebra. There is a unique measure $\mu: B(X) \rightarrow X$ with $\left.\mu\right|_{X}=1_{X}$.

We call μ the canonical measure μ_{X} of X.
Example 3. The canonical measure of $I:=[0,1]$ is an additive measure $\mu_{I}: B(I) \rightarrow I$ which uniquely extends to the Lebesgue measure on the Borel sets of I.

More group theory is in the wake of MV-algebras.

With measures $\mu: X \rightarrow Y$ as morphisms, MValgebras form a category $\mathbf{M V}$. For any μ, we call

$$
\text { Ker } \mu:=\{x \in X \mid \mu(x)=1\}
$$

the kernel of μ. To understand the next result, we mention that there is a concept of ideal for any L-algebra X, so that ideals I of X correspond to surjective morphisms $X \rightarrow X / I$.

Proposition 8. Let $\mu: X \rightarrow Y$ be a measure of $M V$-algebras. Then Ker μ is an ideal of X, and μ factors through $X \rightarrow X / \operatorname{Ker} \mu$.

So we can restrict ourselves to pure measures, that is, measures with trivial kernel. For example, the canonical measure of an MV-algebra is pure.

Definition 8. For an MV-algebra X, let $G_{0}(X)$ be the group of invertible measures $\mu: X \rightarrow X$, viewed as a subgroup of $G(X)$. The group $\pi_{1}(X)$ of $\alpha \in G_{0}(X)$ with $\mu_{X} \alpha=\mu_{X}$ will be called the fundamental group of X.

There is a covering theory of MV-algebras X for which $\mu_{X}: B(X) \rightarrow X$ is a universal covering. In particular, we have a canonical representation:

$$
X \cong B(X) / \pi_{1}(X)
$$

Coverings of X correspond to subgroups of $\pi_{1}(X)$.

5. Three types of algebraic logic

MV-algebras formalize Łukasiewicz' many-valued logic (Chang 1958), with truth values in the unit interval I. For the "working mathematician", this means that a proposition holds for all MV-algebras if it is valid in the MV-algebra I. We have seen that this type of logic is equivalent to measure theory in a wide sense.

Now MV-algebras are commutative L-algebras. So one could expect that quantum measuring, usually formalized in terms of operator algebras, is covered by non-commutative L-algebras. This is in fact true, and it does by no means exhaust the ambit of L-algebras.

Note that quantum theory has also been found to be a matter of logic. Birkhoff and von Neumann extracted it as the logic of quantum mechanics (Ann. Math., 1936). Now classical (Boolean) logic generalizes in three major ways:

logic	models	subject
intuitionistic	locales	general topology
Eukasiewicz	MV-algebras	measure theory
quantum	orthomodular lattices	von Neumann algebras

The models in the table (locales, MV-algebras, and orthomodular lattices) are L-algebras.

Topology

Quantum Theory

MV-algebras as generalized measure spaces have already been mentioned. It remains to give a brief description of the L-algebras arising in topology and quantum theory.

6. Locales

In the standard model of classical logic, propositions are represented by the subsets A of a fixed set X. Negation corresponds to the complement $X \backslash A$.

For intuitionistic logic, X is a topological space, and propositions correspond to open sets U in X. The negation U^{\prime} of U is given by the largest open set which is disjoint to U, that is, $U^{\prime}=X \backslash \bar{U}$. In general, double negation leads to a proper inclusion:

$$
U \subset U^{\prime \prime}
$$

Open sets form a complete lattice $\mathscr{O}(X)$ (a locale) which determines X in many cases (e. g., if X is Hausdorff). Every locale is a Brouwerian semilattice, that is, a \wedge-semilattice X with greatest element 1 and an operation \rightarrow satisfying

$$
x \wedge y \leqslant z \Longleftrightarrow x \leqslant y \rightarrow z
$$

Algebras $(X ; \rightarrow, 1)$ which embed into a Brouwerian semilattice are called Hilbert algebras. Henkin's 1950 theorem states that Hilbert algebras formalize the deduction theorem: A proposition x implies y if and only if $x \rightarrow y$ is true in any Hilbert algebra. Here is another characterization:

Proposition 9. A Hilbert algebra is equivalent to an L-algebra which is self-distributive:

$$
x \cdot(y \cdot z)=(x \cdot y) \cdot(x \cdot z)
$$

Brouwerian semilattices coincide with \wedge-closed Hilbert algebras.

So we have inclusions of categories:

$$
\text { Top } \subset \mathbf{L o c} \subset \mathbf{B S} \subset \mathbf{H i l b} \subset \mathbf{L A l g}
$$

For a topological space X, the map

$$
\mathscr{O}(X) \rightarrow G(\mathscr{O}(X))
$$

into the structure group is given by double negation, a lattice homomorphism (Glivenko's theorem).

7. Quantum logic

Propositions in quantum logic are represented by closed subspaces of a Hilbert space, negation being the orthogonal complement. The closed subspaces form an orthomodular lattice (OML), that is,

$$
x \leqslant y \Longrightarrow x \vee\left(x^{\perp} \wedge y\right)=y .
$$

More generally, the projections of a von Neumann algebra A form an OML.

Proposition 10. An $O M L$ is equivalent to an L-algebra with 0 which satisfies

$$
x \cdot 0 \leqslant y \Longrightarrow y \cdot x=x
$$

Here $x \cdot 0=x^{\perp}$. Moreover, such an L-algebra is \wedge-closed. The lattice operations are given by

$$
x \vee y=\left(x^{\perp} \cdot y^{\perp}\right) \cdot x, \quad x \wedge y=\left(x^{\perp} \vee y^{\perp}\right)^{\perp} .
$$

As in the case of MV-algebras, OMLs embed into their structure group:

Theorem 6. The structure group of an OML X is a right ℓ-group with negative cone $S(X)$. The natural map $X \rightarrow G(X)$ embeds X as an interval $[0,1]$ into $G(X)$, and 0^{-1} is a strong order unit.

The element 0^{-1} is singular in the following sense:
Definition 9. We call an element $s \geqslant 1$ of a right ℓ-group singular if $s^{-1} \leqslant x y \Longrightarrow y x=x \wedge y$ holds for all $x, y \leqslant 1$.

Now a singular strong order unit of a right ℓ group is necessarily unique. So we obtain a grouptheoretic characterization of OMLs (von Neumann algebras, up to duality and trivial factors $M_{2}(\mathbb{C})$):

Theorem 7. Up to isomorphism, $X \mapsto G(X)$ is a one-to-one correspondence between OMLs X and right ℓ-groups which admit a singular strong order unit.

More details: Von Neumann algebras, L-algebras, Baer *-monoids, and Garside groups, Forum Math. 30 (2018), no. 4, 973-995

