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1 Introduction

The concept of degeneration probably first arises in the second half of the twenti-

eth century when a lot of attention was paid to the study of various limit processes

linking physical theories. The pioneering works in this direction were a paper by

Segal (1951) who studied a limit process of a family of some physically important

isomorphic Lie groups, and a series of papers of Inönü and Wigner (1953, 1954)

devoted to the limit process c → ∞ in special relativity theory showing how the

symmetry group of relativistic mechanics (the Poincaré group) degenerates to the

symmetry group of classical mechanics (Galilean group). The target algebras of

such limit processes (which are nothing else but the points in the closure in metric

topology of the orbit of the initial algebra under the ‘change of basis’ action of

the general linear group) are called contractions (or degenerations in the more

general context of an arbitrary field and Zariski closure).



Despite their theoretical and practical interest, results about degenerations, espe-

cially in fields other then C or R, are still fragmentary. In work of Grunewald and

O’Halloran, it is shown that the closures in the Zariski topology and in the stan-

dard topology of the orbit of a point of an affine variety over C under the action

of an algebraic group coincide. A criterion for a Lie algebra to be a degeneration

of another Lie algebra over an algebraically closed field is given in other work of

Grunewald and O’Halloran. In a paper of V.L. Popov the question of whether or

not a given orbit (of a point under the action of an algebraic group) lies in the

Zariski closure of another orbit is being considered and a method of solving this

problem is presented. However, in practice it is extremely difficult to apply the

above criterion and method.



For some classes of algebras (like real and complex 3- and 4-dimensional Lie alge-

bras, low-dimensional nilpotent Lie algebras, some subclasses of Malcev algebras)

the problem of determining all degenerations within the given class has been con-

sidered by various authors.

Our motivation comes from works of Gorbatsevich and in particular the notion

of the level of complexity of a finite dimensional algebra.

It is a well-known fact that if F is infinite then every n-dimensional F-algebra

degenerates to an, the n-dimensional Abelian Lie algebra over F. We will be

concerned with the following

Problem. Determine the isomorphism classes of n-dimensional F-algebras, where

F is an arbitrary infinite field, that have an as their only proper degeneration.

Note that the case F = C is already settled by works of Gorbatsevich and Khu-

doyberdiyev and Omirov. There is also relevant work of Lauret over F = R.



2 Preliminaries

Fix a positive integer n with n ≥ 3 and an arbitrary infinite field F. Also let

G = GL(n,F).

Definition. An n-dimensional F-algebra (not necessarily associative) is a pair

(A, [, ]) where A is a vector space over F with dimFA = n and [, ] : A× A → A :

(x, y) 7→ [x, y] (x, y ∈ A) is an F-bilinear map. We call [x, y] the product of x

and y.

The structure constants of this algebra with respect to its ordered basis (b1, . . . , bn)

are the scalars αijk ∈ F (1 ≤ i, j, k ≤ n) given by [bi, bj] =
∑n

k=1 αijkbk. We will

regard this set of structure constants αijk as an ordered n3-tuple (αijk)1≤i,j,k≤n in

Fn3

via the lexicographic ordering on the triples (i, j, k) for 1 ≤ i, j, k ≤ n. We call

the n3-tuple α = (αijk) ∈ Fn3

the structure vector of (A, [, ]) relative to the F-basis

(b1, . . . , bn) of A. More generally, we call the element β = (βijk)1≤i,j,k≤n ∈ Fn3

a

structure vector for (A, [, ]) if there exists an ordered F-basis (b′1, . . . , b
′
n) for A

relative to which the structure vector for (A, [, ]) is β = (βijk).



For the rest of this talk we fix V to be an n-dimensional F-vector space. We also

fix (v∗1, . . . , v
∗
n) to be an ordered F-basis of V . We will be referring to this basis of

V on several occasions in the sequel.

Definition. We call g an algebra structure on V if g is an F-algebra having V as

its underlying vector space (and hence has multiplication defined via a suitable

F-bilinear map [, ]g : V × V → V ). We denote by An(F) the set of all algebra

structures on V .

Regarding An(F) and Fn3

as F-vector spaces in the usual way, we can obtain an

F-isomorphism Θ : An(F) → Fn3

such that the image of an algebra structure

g ∈ An(F) is the structure vector of g relative to the basis (v∗1, . . . , v
∗
n) of V we

have fixed.

Example. Θ(an) = 0, the zero vector of Fn3

.



Definition. With the help of the bijection Θ : An(F) → Fn3

, given above we

can define a map Ω : Fn3 × G → Fn3

: (λ, g) 7→ λg (λ ∈ Fn3

, g = (gij) ∈ G)

where λg ∈ Fn3

is the structure vector of Θ
−1

(λ) ∈ An(F) relative to the basis

(v1, . . . , vn) of V given by vj =
∑n

i=1 gijv
∗
i .

The map Ω defines a linear right action of G on Fn3

. We can thus regard Fn3

as

a right FG-module via this action. The corresponding orbit for λ ∈ Fn3

will be

denoted by O(λ). Note that the resulting orbits correspond precisely to isomor-

phism classes of n-dimensional F-algebras.

We will be concerned with algebraic (Zariski-closed) subsets of Fn3

. The Zariski

closure of a subset Y of Fn3

will be denoted by Y .



Next we introduce some subsets of An(F) which are defined via identities.

(i) Ba
n(F) = {g = (V, [, ]) ∈ An(F) : [[x1, x2], x3] = 0V for all x1, x2, x3 ∈ V }.

(ii) Ka
n(F) = {g = (V, [, ]) ∈ An(F) : [x, x] = 0V for all x ∈ V }.

(iii) La
n(F) = {g = (V, [, ]) ∈ Ka

n(F) : [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0V for all

x, y, z ∈ V }.

Denote by Bn(F), Kn(F), Ln(F) the subsets of Fn3

which are the images of Ba
n(F),

Ka
n(F), La

n(F) respectively via the map Θ.

One can observe that Bn(F), Kn(F) and Ln(F) are all unions of orbits. More-

over, they are algebraic subsets of Fn3

as they can be described via polynomial

equations.

Clearly Kn(F) is an F-subspace of Fn3

(dimFKn(F) = 1
2n

2(n− 1)). As Kn(F) also

is union of orbits, it can be regarded as an FG-module via the (linear) action of

G on Fn3

we are considering.

For the rest of this talk, by an FG-submodule of Fn3

we will mean any subspace

of Fn3

which is also an FG-module via the above action of G.



3 Degenerations

Lemma. Let λ,µ ∈ Fn3

with µ ∈ O(λ). Then O(µ) ⊆ O(λ) (and hence O(µ) ⊆

O(λ)).

Much more can be said using the theory of algebraic groups if the field F is

algebraically closed. In particular, we then have that the orbits are locally closed.

Definition. Let g1, g2 ∈ An(F). We say that g1 degenerates to g2 (respectively,

g1 properly degenerates to g2) if there exist structure vectors λ1 of g1 and λ2 of

g2 such that λ2 ∈ O(λ1) (respectively, λ2 ∈ O(λ1) \O(λ1)).

Our next lemma will play some part in the proof of our main result. The following

definition is needed in order to state this lemma.



Definition. Let q̂ = (q1, . . . , qn) ∈ Zn be given. Also let T = {(i, j, k) ∈ Z3 : 1 ≤

i, j, k ≤ n}.

(i) For each r ∈ Z, define the subset S(q̂, r) of T by S(q̂, r) = {(i, j, k) ∈ T :

qi + qj − qk = r}.

(ii) Given a structure vector λ = (λijk) ∈ Fn3

, define a new structure vector

λ(q̂) = (λijk(q̂)) ∈ Fn3

by

λijk(q̂) =

 λijk, if (i, j, k) ∈ ∪r≤0S(q̂, r),

0F, otherwise.

It is clear from the above definition that, given q̂ ∈ Zn, only finitely many of the

S(q̂, r) are nonempty as r runs through Z, and T is the disjoint union of these

nonempty S(q̂, r).



Lemma. Let q̂ = (qi)
n
i=1 ∈ Zn and let λ = (λijk) ∈ Fn3

. Suppose further that

λijk = 0F whenever (i, j, k) ∈ ∪r<0S(q̂, r). Then λ(q̂) ∈ O(λ).

(In particular, the hypothesis of the lemma is satisfied regardless of the choice of

λ by all q̂ ∈ Zn such that ∪r<0S(q̂, r) = ∅.)

Example. Let q̂ = (qi)
n
i=1 ∈ Zn where qi = 1, 1 ≤ i ≤ n. Then S(q̂, r) = ∅ for

r 6= 1, so ∪r<0S(q̂, r) = ∅. Moreover, λ(q̂) = 0 (the structure vector of the abelian

Lie algebra an) for any λ ∈ Fn3

. It is now immediate from the above lemma that

any (n-dimensional) algebra g ∈ An(F) degenerates to an (a well-known result).



Various authors have considered necessary conditions for degenerations within

special classes of algebras. Below we give some of these conditions in the general

context of algebras over an arbitrary field.

Definition. Let g = (V, [, ]) ∈ An(F). Define the left annihilator of g by annL g =

{c ∈ V : [c, a] = 0V for all a ∈ V }.

In particular, annL g = Z(g), the center of g, when g ∈ La
n(F).

Considering certain n×n2 matrices formed by the structure constants of an algebra

in An(F) we can prove the following result.

Lemma. Let g, g1 ∈ An(F) and suppose that g degenerates to g1. Then,

dimF(annL g1) ≥ dimF(annL g) and dimF g
2
1 ≤ dimF g

2.



4 Orbit closures in An(F) consisting of precisely two orbits

First we introduce the algebra structures rn and hn ∈ La
n(F).

Definition. Let ρ = (ρijk) and η = (ηijk) ∈ Fn3

be such that the only nonzero

components of ρ are ρini = 1F = −ρnii for 1 ≤ i ≤ n − 1 and the only nonzero

components of η are η123 = 1F = −η213. It is easy to observe that ρ,η ∈ Ln(F).

Now define rn, hn ∈ La
n(F) by rn = Θ

−1

(ρ) and hn = Θ
−1

(η) with Θ as defined in

Section 2.



We denote by F-sp(x1, . . . , xn) the set of F-linear combinations of the elements

x1, . . . , xn of V .

Definition. Let g = (V, [, ]g) ∈ An(F).

(i) We say that g satisfies condition (∗) if [x, y]g ∈ F-sp(x, y) for all x, y ∈ V .

(ii) We say that g satisfies condition (∗∗) if [x, x]g ∈ F-sp(x) for all x ∈ V .

It is then immediate that every g ∈ Ka
n(F) satisfies condition (∗∗). Moreover,

g ∈ An(F) satisfies condition (∗∗) whenever g satisfies condition (∗) but the

converse is not true in general. It is easy to see that the subset {λ ∈ Fn3

: λ is a

structure vector for some g ∈ An(F) that satisfies condition (∗)} of Fn3

is a union

of orbits. Finally, we remark that hn does not satisfy condition (∗) whereas an,

the n-dimensional abelian Lie algebra, satisfies condition (∗).

Lemma. Let g = (V, [, ]g) ∈ An(F) and suppose that g satisfies condition (∗∗).

Suppose further that g does not satisfy condition (∗). Then g degenerates to hn.

(In particular, the hypothesis of the lemma is satisfied by any g ∈ Ka
n(F) which

does not satisfy condition (∗).)



Next we introduce some more subsets of Fn3

. Let P = {λ = (λijk)1≤i,j,k≤n ∈

Kn(F) : λijk = 0F whenever k 6∈ {i, j} and λiji = λkjk whenever j 6∈ {i, k}}. It

is easy to see that P is an algebraic subset of Fn3

. In fact, P is an n-dimensional

F-subspace of Kn(F). We also denote by ρ(FG) and η(FG) the FG-submodules

of Fn3

generated by ρ and η respectively.

Lemma. P = O(ρ) ∪ {0} = O(ρ) = ρ(FG).

Corollary. (i) rn satisfies condition (∗).

(ii) Let λ ∈ Fn3

. Then λ belongs to P if, and only if, λ is a structure vector for

some algebra g ∈ Ka
n(F) which satisfies condition (∗).

Since the algebras rn, hn are not isomorphic, we get that P ∩O(η) = ∅. Moreover,

combining the lemmas and corollary immediately above with the fact that 0 ∈

O(λ) for any λ ∈ Fn3

we get

Corollary. Let λ ∈ Kn(F) \P . Then,

(i) η ∈ O(λ).

(ii) If, in addition, λ 6∈ O(η), then O(λ) contains at least 3 distinct orbits.



Using the facts that dimF Z(hn) = n − 2 and that hn ∈ Ba
n(F) we can prove the

following two results.

Lemma. Let g = (V, [, ]) ∈ Ka
n(F)∩Ba

n(F) with dimF(ann g) = n − 2. Then

g ∼= hn.

Lemma. The only proper degeneration of hn is to the abelian Lie algebra an. In

other words, O(η) = O(η) ∪ {0}.

We can now state the first of our two main results. Its proof is the direct conse-

quence of the above discussion.

Theorem. Let n ≥ 3 and let F be an arbitrary infinite field. Then, among all

n-dimensional algebras satisfying the identity [x, x] = 0, algebras rn and hn are the

only ones (up to isomorphism) which have the n-dimensional abelian Lie algebra

an as their only proper degeneration.



Next we turn our attention to algebras in An(F) \Kn(F) which have closures

consisting of precisely two orbits.

Definition. We introduce the algebra structures dn and en(α), for α ∈ F, as

follows. Let δn = (δijk) ∈ Fn3

be the structure vector which has δ112 = 1F as

its only nonzero component. Also, for α ∈ F, let εn(α) = (εijk(α)) ∈ Fn3

be

the structure vector which has ε111(α) = 1F, ε1ii(α) = α (for 2 ≤ i ≤ n) and

εi1i(α) = (1F − α) (for 2 ≤ i ≤ n) as its only components which can possibly be

nonzero. Finally define the algebra structures dn, en(α) ∈ An(F) by dn = Θ−1(δn)

and en(α) = Θ−1(εn(α)) with Θ as in Section 2.



The proof of the second of our two main results relies on the following two lemmas.

Lemma. Let g = (V, [, ]) ∈ An(F) and suppose g does not satisfy condition (∗∗).

Then g degenerates to dn.

Lemma. Let g = (V, [, ]) ∈ An(F) \Ka
n(F) and suppose g satisfies condition (∗).

Then g degenerates to en(α) for some α ∈ F.

A key step in the proof of the above lemmas is to pick a suitable “starting” basis

for the algebras involved.

Theorem. Let n ≥ 3 and let F be an arbitrary infinite field. Then dn together

with the family {en(α) : α ∈ F} give a complete list of non-isomorphic elements

of An(F) \Ka
n(F) which have an as their only proper degeneration.



5 On the composition series of the FG-module Kn(F)

Definition. Let g = (V, [, ]g) ∈ An(F). Fix x ∈ V . We define the adjoint map in

g (relative to x) by adx : V → V : y 7→ [x, y]g, (y ∈ V ). Then adx is an F-linear

map. We say that the algebra structure g is unimodular if trace(adx) = 0F for

each x ∈ V .

Definition. Define Un(F) = {λ = (λijk) ∈ Kn(F) :
∑n

j=1 λijj = 0F for i =

1, . . . , n}. This is the set of structure vectors corresponding to unimodular algebra

structures in Ka
n(F).

It is easy to see that Un(F) is an F-subspace of Fn3

and that Un(F) is also a union

of orbits. We can thus regard Un(F) as an FG-submodule of Fn3

.

Lemma. (i) Un(F) = η(FG).

(ii) ρ ∈ Un(F) if, and only if, charF|(n− 1).

Below we discuss briefly certain observations on the composition series of Kn(F)

as an FG-module. For this we need to consider the cases charF 6 |(n − 1) and

charF|(n− 1) separately.



(i) case charF 6 |(n− 1): Then ρ(FG) ∩ η(FG) = {0} in view of the above remark

(recall η(FG) = Un(F) always). Moreover, our assumption on charF ensures that

η(FG) is an irreducible FG-module. So, in this case, ρ(FG) and η(FG) are both

irreducible FG-submodules of Kn(F). The results of the previous section now

ensure that Kn(F) has precisely two composition series, namely {0} ⊆ ρ(FG) ⊆

Kn(F) and {0} ⊆ η(FG) ⊆ Kn(F).

(ii) case charF|(n − 1): Then ρ ∈ η(FG) and hence ρ(FG) ⊆ η(FG). Similar

argument as above then shows that every composition series for Kn(F) necessarily

begins with {0} ⊆ ρ(FG) ⊆ η(FG).


