Structure and permutation groups of a solution of the Yang-Baxter equation

Neus Fuster-Corral ${ }^{1}$
Universitat de València

Advances in Group Theory and Applications
 Lecce, 26th June, 2019

${ }^{1}$ This is a joint work with Adolfo Ballester-Bolinches and Ramon Esteban-Romero

Introduction

- The quantum Yang-Baxter Equation (YBE) is a consistency equation from statistical mechanics.

目 C. N. YANG: "Some exact results for the many-body problem in one dimension with repulsive delta-function interaction", Phys. Rev. Lett. 19 (1967), 1312-1315.

- Open problem: Find all the solutions of the YBE.
- We study a subclass of solutions, the non-degenerate involutive set-theoretic ones.
- This type of solutions is connected with some mathematical topics such as radical rings, trifactorised groups and Hopf algebras.

Definition

A set-theoretic solution of the Yang-Baxter equation is a pair (X, r), where X is a non-empty set and $r: X \times X \rightarrow X \times X$ is a map such that

$$
r_{12} r_{23} r_{12}=r_{23} r_{12} r_{23},
$$

where

$$
\begin{aligned}
& r_{12}=r \times \mathrm{id}_{X}: X \times X \times X \rightarrow X \times X \times X, \\
& r_{23}=\mathrm{id}_{X} \times r: X \times X \times X \rightarrow X \times X \times X
\end{aligned}
$$

Definition

A set-theoretic solution of the Yang-Baxter equation is a pair (X, r), where X is a non-empty set and $r: X \times X \rightarrow X \times X$ is a map such that

$$
r_{12} r_{23} r_{12}=r_{23} r_{12} r_{23},
$$

where

$$
\begin{aligned}
& r_{12}=r \times \mathrm{id}_{X}: X \times X \times X \rightarrow X \times X \times X, \\
& r_{23}=\mathrm{id}_{X} \times r: X \times X \times X \rightarrow X \times X \times X
\end{aligned}
$$

We denote $r(x, y)=\left(f_{x}(y), g_{y}(x)\right)$ for $x, y \in X$.

- (X, r) is non-degenerate if $f_{x}, g_{x} \in \operatorname{Sym}(X)$ for all $x \in X$.
- (X, r) is involutive if $r^{2}=r \circ r=\mathrm{id}_{X^{2}}$.

Definition

A set-theoretic solution of the Yang-Baxter equation is a pair (X, r), where X is a non-empty set and $r: X \times X \rightarrow X \times X$ is a map such that

$$
r_{12} r_{23} r_{12}=r_{23} r_{12} r_{23},
$$

where

$$
\begin{aligned}
& r_{12}=r \times \mathrm{id}_{X}: X \times X \times X \rightarrow X \times X \times X, \\
& r_{23}=\mathrm{id}_{X} \times r: X \times X \times X \rightarrow X \times X \times X
\end{aligned}
$$

We denote $r(x, y)=\left(f_{x}(y), g_{y}(x)\right)$ for $x, y \in X$.

- (X, r) is non-degenerate if $f_{x}, g_{x} \in \operatorname{Sym}(X)$ for all $x \in X$.
- (X, r) is involutive if $r^{2}=r \circ r=\mathrm{id}_{X^{2}}$.

Solution of the YBE \equiv Non-degenerate involutive set-theoretic solution of the Yang-Baxter equation.

We can use techniques from group theory to study the solutions of the YBE by considering two fundamental groups associated to a solution (X, r) : the structure group and the permutation group.
围 P. ETINGOF, T. SCHEDLER, A. SOLOVIEV: "Set-theoretical solutions to the quantum Yang-Baxter equation", Duke Math. J. 100 (1999), 169-209.

We can use techniques from group theory to study the solutions of the YBE by considering two fundamental groups associated to a solution (X, r) : the structure group and the permutation group.
围 P. ETINGOF, T. SCHEDLER, A. SOLOVIEV: "Set-theoretical solutions to the quantum Yang-Baxter equation", Duke Math. J. 100 (1999), 169-209.

Definition

The structure group of (X, r) is defined by the presentation

$$
\left.G(X, r)=\langle X| x y=f_{x}(y) g_{y}(x), \text { for } x, y \in X\right\rangle
$$

We can use techniques from group theory to study the solutions of the YBE by considering two fundamental groups associated to a solution (X, r) : the structure group and the permutation group.
围 P. ETINGOF, T. SCHEDLER, A. SOLOVIEV: "Set-theoretical solutions to the quantum Yang-Baxter equation", Duke Math. J. 100 (1999), 169-209.

Definition

The structure group of (X, r) is defined by the presentation

$$
\left.G(X, r)=\langle X| x y=f_{x}(y) g_{y}(x), \text { for } x, y \in X\right\rangle
$$

Definition

The permutation group of (X, r) is

$$
\mathcal{G}(X, r)=\left\langle f_{x} \mid x \in X\right\rangle \leq \operatorname{Sym}(X)
$$

Definition

A left brace is a non-empty set B with two binary operations, + and \cdot, such that
(1) $(B,+)$ is an abelian group,
(2) (B, \cdot) is a group,
(3) $a \cdot(b+c)=a \cdot b+a \cdot c-a \quad \forall a, b, c \in B$.

If we change condition 3 by

$$
(b+c) \cdot a=b \cdot a+c \cdot a-a,
$$

then we say that B is a right brace.
A two-sided brace is a left and right brace simultaneously.
目 W. RUMP: "Braces, radical rings, and the quantum Yang-Baxter equation", J. Algebra 307 (2007) 153-170.

Proposition

If (X, r) is a solution of the $Y B E$, then it is possible to define additions in $G(X, r)$ and $\mathcal{G}(X, r)$ in such a way they become left braces.

R F. CEDÓ, E. JESPERS, J. OKNIŃSKI: "Braces and the Yang-Baxter equation", Commun. Math. Phys. 327 (2014) 101-116.

Proposition

If (X, r) is a solution of the $Y B E$, then it is possible to define additions in $G(X, r)$ and $\mathcal{G}(X, r)$ in such a way they become left braces.

R F. CEDÓ, E. JESPERS, J. OKNIŃSKI: "Braces and the Yang-Baxter equation", Commun. Math. Phys. 327 (2014) 101-116.

Our aim is to use the Cayley graph of $(\mathcal{G}(X, r), \circ)$ to

- Obtain the addition in $\mathcal{G}(X, r)$.
- Describe the left brace structure of $G(X, r)$.

Definition

The Cayley graph of $(\mathcal{G}(X, r), \circ)$ with generating set $\left\{f_{x} \mid x \in X\right\}$ has

- vertices: elements α of $\mathcal{G}(X, r)$,
- edges: $\alpha \xrightarrow{x} \alpha f_{x}$ for $\alpha \in \mathcal{G}(X, r)$ and $x \in X$.

Definition

The Cayley graph of $(\mathcal{G}(X, r), \circ)$ with generating set $\left\{f_{x} \mid x \in X\right\}$ has

- vertices: elements α of $\mathcal{G}(X, r)$,
- edges: $\alpha \xrightarrow{x} \alpha f_{x}$ for $\alpha \in \mathcal{G}(X, r)$ and $x \in X$.

Theorem

In the Cayley graph of $(\mathcal{G}(X, r), \circ)$, if we replace the label of the edge $\alpha \xrightarrow{x} \alpha f_{x}, x \in X, \alpha \in \mathcal{G}(X, r)$, by $\alpha(x)$, then the labelled graph obtained is the Cayley graph of an abelian group. If + denotes the operation of this group, then $(\mathcal{G}(X, r),+, \circ)$ is a left brace.

Definition

The Cayley graph of $(\mathcal{G}(X, r), \circ)$ with generating set $\left\{f_{x} \mid x \in X\right\}$ has

- vertices: elements α of $\mathcal{G}(X, r)$,
- edges: $\alpha \xrightarrow{x} \alpha f_{x}$ for $\alpha \in \mathcal{G}(X, r)$ and $x \in X$.

Theorem

In the Cayley graph of $(\mathcal{G}(X, r), \circ)$, if we replace the label of the edge $\alpha \xrightarrow{x} \alpha f_{x}, x \in X, \alpha \in \mathcal{G}(X, r)$, by $\alpha(x)$, then the labelled graph obtained is the Cayley graph of an abelian group. If + denotes the operation of this group, then $(\mathcal{G}(X, r),+, \circ)$ is a left brace.

This result says that the addition in $\mathcal{G}(X, r)$ is defined as

$$
\alpha+f_{\alpha(x)}=\alpha f_{x} \text { for } x \in X, \alpha \in \mathcal{G}(X, r)
$$

that is,

$$
\alpha+f_{z}=\alpha f_{\alpha^{-1}(z)} \text { for } z \in X, \alpha \in \mathcal{G}(X, r)
$$

Example

Let (X, r) be the solution of the YBE with $X=\{1,2,3,4,5\}$ and $f_{1}=f_{2}=f_{3}=1, f_{4}=(1,2)(4,5)$ and $f_{5}=(1,3)(4,5)$.

Example

Let (X, r) be the solution of the YBE with $X=\{1,2,3,4,5\}$ and $f_{1}=f_{2}=f_{3}=1, f_{4}=(1,2)(4,5)$ and $f_{5}=(1,3)(4,5)$.

Example

Let (X, r) be the solution of the YBE with $X=\{1,2,3,4,5\}$ and $f_{1}=f_{2}=f_{3}=1, f_{4}=(1,2)(4,5)$ and $f_{5}=(1,3)(4,5)$.

Figure: Cayley graphs of $(\mathcal{G}(X, r), \circ)$ and $(\mathcal{G}(X, r),+)$.

The obtaining of $G(X, r)$

- Let (X, r) be a solution and consider the Cayley graph of $(\mathcal{G}(X, r),+)$.

The obtaining of $G(X, r)$

- Let (X, r) be a solution and consider the Cayley graph of $(\mathcal{G}(X, r),+)$.
- Let $e_{\alpha, x}$ denote the edge $\alpha \xrightarrow{x} \alpha f_{\alpha^{-1}(x)}$.

The obtaining of $G(X, r)$

- Let (X, r) be a solution and consider the Cayley graph of $(\mathcal{G}(X, r),+)$.
- Let $e_{\alpha, x}$ denote the edge $\alpha \xrightarrow{x} \alpha f_{\alpha^{-1}(x)}$.
- Let E be the set of edges of this Cayley graph and let W be the free \mathbb{Z}-module with basis E.

The obtaining of $G(X, r)$

- Let (X, r) be a solution and consider the Cayley graph of $(\mathcal{G}(X, r),+)$.
- Let $e_{\alpha, x}$ denote the edge $\alpha \xrightarrow{x} \alpha f_{\alpha^{-1}(x)}$.
- Let E be the set of edges of this Cayley graph and let W be the free \mathbb{Z}-module with basis E.
- $(\mathcal{G}(X, r), \circ)$ acts on on the left on E via $g * e_{\alpha, x}=e_{g \alpha, g(x)}$.

The obtaining of $G(X, r)$

- Let (X, r) be a solution and consider the Cayley graph of $(\mathcal{G}(X, r),+)$.
- Let $e_{\alpha, x}$ denote the edge $\alpha \xrightarrow{x} \alpha f_{\alpha^{-1}(x)}$.
- Let E be the set of edges of this Cayley graph and let W be the free \mathbb{Z}-module with basis E.
- $(\mathcal{G}(X, r), \circ)$ acts on on the left on E via $g * e_{\alpha, x}=e_{g \alpha, g(x)}$.
- This action is naturally extended to W and we consider the semidirect product $[W] \mathcal{G}(X, r)$.

The obtaining of $G(X, r)$

- Next we identify all edges with the same label taking the quotient modulo

$$
K=\left\langle e_{\alpha, y}-e_{\beta, y} \mid y \in X, \quad \alpha, \beta \in \mathcal{G}(X, r)\right\rangle
$$

The obtaining of $G(X, r)$

- Next we identify all edges with the same label taking the quotient modulo

$$
K=\left\langle e_{\alpha, y}-e_{\beta, y} \mid y \in X, \quad \alpha, \beta \in \mathcal{G}(X, r)\right\rangle
$$

- With this, we can construct the quotient group

$$
[W] \mathcal{G}(X, r) / K \cong[W / K] \mathcal{G}(X, r)
$$

and take the subgroup

$$
H=\left\langle\left(\bar{x}, f_{x}\right) \mid x \in X\right\rangle
$$

where $\bar{x}=e_{1, x}+K$.

Theorem

(1) H is isomorphic to the structure group $G(X, r)$.

Theorem

(1) H is isomorphic to the structure group $G(X, r)$.
(2) $H=\left\{\left(\sum_{x \in X} a_{x} \bar{x}, \sum_{x \in X} a_{x} f_{x}\right) \mid a_{x} \in \mathbb{Z}, x \in X\right\}$.

Theorem

(1) H is isomorphic to the structure group $G(X, r)$.
(2) $H=\left\{\left(\sum_{x \in X} a_{x} \bar{x}, \sum_{x \in X} a_{x} f_{x}\right) \mid a_{x} \in \mathbb{Z}, x \in X\right\}$.
(3) The product of H has the form

$$
\left(\sum_{x \in X} a_{x} \bar{x}, \alpha\right) \cdot\left(\sum_{x \in X} b_{x} \bar{x}, \beta\right)=\left(\sum_{x \in X}\left(a_{x}+b_{\alpha^{-1}(x)}\right) \bar{x}, \alpha \beta\right),
$$

where $\alpha=\sum_{x \in X} a_{x} f_{x}, \beta=\sum_{x \in X} b_{x} f_{x}$.

Theorem

(1) H is isomorphic to the structure group $G(X, r)$.
(2) $H=\left\{\left(\sum_{x \in X} a_{x} \bar{x}, \sum_{x \in X} a_{x} f_{x}\right) \mid a_{x} \in \mathbb{Z}, x \in X\right\}$.
(3) The product of H has the form

$$
\left(\sum_{x \in X} a_{x} \bar{x}, \alpha\right) \cdot\left(\sum_{x \in X} b_{x} \bar{x}, \beta\right)=\left(\sum_{x \in X}\left(a_{x}+b_{\alpha^{-1}(x)}\right) \bar{x}, \alpha \beta\right)
$$

where $\alpha=\sum_{x \in X} a_{x} f_{x}, \beta=\sum_{x \in X} b_{x} f_{x}$.
(9) If we define in H an operation + by means of

$$
\left(\sum_{x \in X} a_{x} \bar{x}, \alpha\right)+\left(\sum_{x \in X} b_{x} \bar{x}, \beta\right)=\left(\sum_{x \in X}\left(a_{x}+b_{x}\right) \bar{x}, \alpha+\beta\right),
$$

then $(H,+, \cdot)$ is a left brace.

Example

Let (X, r) be the solution of the YBE with $X=\{1,2,3,4,5\}$ and $f_{1}=f_{2}=f_{3}=1, f_{4}=(1,2)(4,5)$ and $f_{5}=(1,3)(4,5)$.
Let F be the free group on X and $w=445^{-1} \in F$.

Example

Let (X, r) be the solution of the YBE with $X=\{1,2,3,4,5\}$ and $f_{1}=f_{2}=f_{3}=1, f_{4}=(1,2)(4,5)$ and $f_{5}=(1,3)(4,5)$.
Let F be the free group on X and $w=445^{-1} \in F$.

Figure: Path in the Cayley graph of $(\mathcal{G}(X, r),+)$.

Its image in $(\mathcal{G}(X, r),+)$ is: $f_{4}+f_{4}-f_{5}=(2,3)(4,5)$.

Example

Let (X, r) be the solution of the YBE with $X=\{1,2,3,4,5\}$ and $f_{1}=f_{2}=f_{3}=1, f_{4}=(1,2)(4,5)$ and $f_{5}=(1,3)(4,5)$.
Let F be the free group on X and $w=445^{-1} \in F$.

Figure: Path in the Cayley graph of $(\mathcal{G}(X, r),+)$.

Its image in $(\mathcal{G}(X, r),+)$ is: $f_{4}+f_{4}-f_{5}=(2,3)(4,5)$. Its image in $(G(X, r),+)$ is:
$\left(\overline{4}, f_{4}\right)+\left(\overline{4}, f_{4}\right)-\left(\overline{5}, f_{5}\right)=(2 \cdot \overline{4}+(-1) \cdot \overline{5},(2,3)(4,5))$.

Example

Let (X, r) be the solution of the YBE with $X=\{1,2,3,4,5\}$ and $f_{1}=f_{2}=f_{3}=1, f_{4}=(1,2)(4,5)$ and $f_{5}=(1,3)(4,5)$.
Let F be the free group on X and $w=445^{-1} \in F$.

Example

Let (X, r) be the solution of the YBE with $X=\{1,2,3,4,5\}$ and $f_{1}=f_{2}=f_{3}=1, f_{4}=(1,2)(4,5)$ and $f_{5}=(1,3)(4,5)$.
Let F be the free group on X and $w=445^{-1} \in F$.
Its image in $(\mathcal{G}(X, r), \circ)$ is: $f_{4} \circ f_{4} \circ f_{5}^{-1}=(1,3)(4,5)$.

Example

Let (X, r) be the solution of the YBE with $X=\{1,2,3,4,5\}$ and $f_{1}=f_{2}=f_{3}=1, f_{4}=(1,2)(4,5)$ and $f_{5}=(1,3)(4,5)$.
Let F be the free group on X and $w=445^{-1} \in F$. Its image in $(\mathcal{G}(X, r), \circ)$ is: $f_{4} \circ f_{4} \circ f_{5}^{-1}=(1,3)(4,5)$.

Figure: Paths in the Cayley graphs of $(\mathcal{G}(X, r), \circ)$ and $(\mathcal{G}(X, r),+)$.
Its image in $(G(X, r), \cdot)$ is:
$\left(\overline{4}, f_{4}\right) \cdot\left(\overline{4}, f_{4}\right) \cdot\left(\overline{5}, f_{5}\right)^{-1}=(0 \cdot \overline{4}+1 \cdot \overline{5},(1,3)(4,5))$.

THANKS FOR YOUR ATTENTION!

