
(Jointwork with R.Hefiernan andtD.MacHale)

Embeddings

- Definition The group G is embedded in the group K if G is isomorphic to a subgroup of K.
- Example Cayley's Theorem yields an embedding of any group of order n into $K=S_{n}$.
- Often, the 'target group' K is specified in advance and the aim is to study the embedded group G.

Slightly different approach

- Given a collection of finite groups G_{1}, \ldots, G_{r}, what can we say about a group K in which all these groups can be embedded?
- In particular, what can we say about the order of such a group K ?

'Natural' questions (MacHale)

- Question 1 What is the minimal order of a group K in which all groups of order n can be embedded? When is K unique?
- Question 2 What is the minimal order of a group K in which all groups of order n or less can be embedded?
- We focus on Question 1 for $n \leq 15$.

Groups of order n for $n \leq 15$

- Abelian or dihedral apart from $n=8$ and $n=12$.
- For $n=8$, the groups of order n are: $C_{8}, C_{4} \times C_{2}$, $C_{2} \times C_{2} \times C_{2}, D_{4}$, and Q_{2}
- For $n=12$, the groups of order n are: C_{12}, $C_{2} \times C_{2} \times C_{3}, D_{6}, Q_{3}$ and A_{4}

Elementary bounds

By Lagrange's and Cayley's theorems, if K is a group of minimal order in which all groups of order n can be embedded, then:

$$
n \leq|K| \leq n!
$$

Lower bounds for p-groups

Theorem 1 Let p be a prime and let K be a group of minimal order in which all groups of order p^{s} can be embedded. Then $|K|$ is a multiple of $p^{2 s-1}$.

Theorem 2 Let p be an odd prime and let $s \geq 3$. Let K be a group of minimal order in which all groups of order p^{s} can be embedded. Then $|K|$ is a multiple of $p^{2 s}$.

The case $\boldsymbol{n}=8$

Theorem 3 The groups of minimal order in which all groups of order 8 can be embedded are:
(i) $\left\langle x, y \mid x^{8}=y^{2}=1, y x y=x^{3}\right\rangle \times C_{2}$
(ii) $\mathrm{C}_{8} \rtimes \mathrm{Aut}\left(\mathrm{C}_{8}\right)$.

The case $n=12$

Theorem 4 There is a unique group of minimal order in which all groups of order 12 can be embedded, namely $S_{3} \times S_{4}$.

Proof of Theorem 4

- Sylow 2-subgroups of K have order at least 8.
- Sylow 3-subgroups of K are non-cyclic $\Rightarrow|\mathrm{K}|$ is a multiple of 72.
- But 72 is too small!
- All groups of order 12 can be embedded in $\mathrm{S}_{3} \times \mathrm{S}_{4}$.
- All groups of order 12 cannot be embedded in any other group of order 144.
- 'Pen \& paper’ or GAP.

Why stop at $\boldsymbol{n}=\mathbf{1 5}$?

n - number of groups of order n

$$
\begin{gathered}
16-14 \\
32-51 \\
64-207 \\
128-2328 \\
256-56092 \\
512-10494213 \\
1024-49487365422
\end{gathered}
$$

(Besche, Eick, O’Brien 2001)

$n=16$ - The story so far

There exists a group of order $512=2^{9}$ in which all groups of order 16 can be embedded.

Conjectures

- Conjecture $1|\mathrm{Sn}|$ is not minimal with respect to the embedding of all groups of order n for $n \geq 2$.
- Conjecture $2|\mathrm{Sn}|$ is not minimal with respect to the embedding of all groups of order n or less for n ≥ 6.

An Advertisement

MUNSTER GROUPS 2019

Saturday 7h September 2019 Venve: Room F04, Cork Road Campus)

* Waterford institute of Technology

PRONISIONAL PROĆRAMME
10.00 Welcome and Registration
10.20 Paul Barry, WIT. The Riordan Group

11.10 Break

1130 Des MacHale, UCC Are The More Finite Rings than Finite Groups?
12.00 Rex Dark, NUIG The smallest nontrivial complete
groups of odd order
12.50 Lunch
13.50 J.P. McCarthy, CIT The Ergodic Theorem for

