Minimal Embeddings of Small Finite Groups

Lecce 2019

(Joint work with R. Heffernan and D. MacHale)

Embeddings

- **Definition** The group *G* is *embedded* in the group *K* if *G* is isomorphic to a subgroup of *K*.
- **Example** Cayley's Theorem yields an embedding of any group of order *n* into $K = S_n$.
- Often, the 'target group' *K* is specified in advance and the aim is to study the embedded group *G*.

Slightly different approach

- Given a collection of finite groups G_1, \ldots, G_r , what can we say about a group K in which all these groups can be embedded?
- In particular, what can we say about the order of such a group K?

'Natural' questions (MacHale)

- Question 1 What is the minimal order of a group *K* in which all groups of order *n* can be embedded? When is *K* unique?
- Question 2 What is the minimal order of a group *K* in which all groups of order *n* or less can be embedded?
- We focus on Question 1 for $n \le 15$.

Groups of order *n* for $n \le 15$

- Abelian or dihedral apart from n = 8 and n = 12.
- For n = 8, the groups of order n are: C_8 , $C_4 \times C_2$, $C_2 \times C_2 \times C_2$, D_4 , and Q_2
- For n = 12, the groups of order n are: C_{12} , $C_2 \times C_2 \times C_3$, D_6 , Q_3 and A_4

Elementary bounds

By Lagrange's and Cayley's theorems, if K is a group of minimal order in which all groups of order n can be embedded, then:

 $n \leq |K| \leq n!$

Lower bounds for *p*-groups

Theorem 1 Let *p* be a prime and let *K* be a group of minimal order in which all groups of order p^s can be embedded. Then |K| is a multiple of p^{2s-1} .

Theorem 2 Let *p* be an <u>odd</u> prime and let $s \ge 3$. Let *K* be a group of minimal order in which all groups of order p^s can be embedded. Then |K| is a multiple of p^{2s} .

The case *n* = 8

Theorem 3 The groups of minimal order in which all groups of order 8 can be embedded are:

(i)
$$\langle x, y | x^8 = y^2 = 1$$
, $yxy = x^3 \rangle \times C_2$

(ii) $C_8 \rtimes Aut(C_8)$.

The case *n* = 12

Theorem 4 There is a unique group of minimal order in which all groups of order 12 can be embedded, namely $S_3 \times S_4$.

Proof of Theorem 4

- Sylow 2-subgroups of *K* have order at least 8.
- Sylow 3-subgroups of K are non-cyclic ⇒ | K | is a multiple of 72.
- But 72 is too small!
- All groups of order 12 can be embedded in $S_3 \times S_4$.
- All groups of order 12 cannot be embedded in any other group of order 144.
- 'Pen & paper' or GAP.

Why stop at *n* = 15?

n - number of groups of order *n*

16 - 14 32 - 51 64 - 207 128 - 2328 256 - 56092 512 - 10494213 1024 - 49487365422

(Besche, Eick, O'Brien 2001)

n = 16 - The story so far

There exists a group of order $512 = 2^9$ in which all groups of order 16 can be embedded.

Conjectures

• Conjecture 1 | Sn | is not minimal with respect to the embedding of all groups of order n for $n \ge 2$.

 Conjecture 2 | Sn | is not minimal with respect to the embedding of all groups of order n or less for n ≥ 6.

An Advertisement

MUNSTER GROUPS 2019

Saturday 7th September 2019

Venue: Room F04, Cork Road Campus, Waterford Institute of Technology

PROVISIONAL PROGRAMME

 10.00 Welcome and Registration

 10.20 Paul Barry, WIT

 The Riordan Group

 11.10 Break

11.30 Des MacHale, UCC Are There More Finite Rings than Finite Groups?

12.00 Rex Dark, NUIG The smallest nontrivial complete groups of odd order

12.50 Lunch

13.50 J.P. McCarthy, CIT The Ergodic Theorem for Random Walks: from Finite Groups, to Group Algebras, to Finite Quantum Groups

14.40 Short Talk 2

15.10 Short Talk 3

15.40 Break

16.00 Ted Hurley, NUIG From groups to group rings to codes and information
16.50 End