Set-theoretical solutions of the pentagon equation on groups

Marzia Mazzotta
\square marzia.mazzotta@unisalento.it

Advances in Group Theory and Applications 2019
Lecce, 26th June 2019

Solutions of the pentagon equation on a vector space

Definition

Let V be a vector space over a field K. A linear operator $S \in \operatorname{End}(V \otimes V)$ is called a solution of the pentagon equation (PE) if it satisfies

$$
S_{12} S_{13} S_{23}=S_{23} S_{12}
$$

where $S_{12}=S \otimes$ id $_{V}, S_{23}=\operatorname{id}_{V} \otimes S, S_{13}=\left(\tau \otimes\right.$ id $\left._{v}\right) S_{12}\left(\tau \otimes\right.$ id $\left._{v}\right)$ (here τ denotes the flip map $v \otimes w \rightarrow w \otimes v)$.

Set-theoretical solutions of the pentagon equation

Definition

A set-theoretical solution of the pentagon equation (PE) on an arbitrary set M is a map $s: M \times M \rightarrow M \times M$ which satisfies the "reversed" pentagon relation

$$
s_{23} s_{13} s_{12}=s_{12} s_{23}
$$

where $s_{12}=s \times \operatorname{id}_{M}, s_{23}=\operatorname{id}_{M} \times s$ and $s_{13}=\left(\operatorname{id}_{M} \times \tau\right) s_{12}\left(\operatorname{id}_{M} \times \tau\right)$ (here τ denotes the flip map $(x, y) \rightarrow(y, x))$.

Link between the two equations

Let K be a field, M a finite set, and $V:=K^{M}$. Then, $V \otimes V \cong K^{M \times M}$. For each map s:M×M $\rightarrow M \times M$ one can associate its pull-back S, i.e:, the linear operator $S \in \operatorname{End}(V \otimes V)$ such that

$$
(S \varphi)(x, y)=\varphi(s(x, y))
$$

S is a solution of the PE if and only if s is a set-theoretical solution of the PE. Hereinafter, we briefly call a set-theoretical solution s a solution.

Link between the two equations

Let K be a field, M a finite set, and $V:=K^{M}$. Then, $V \otimes V \cong K^{M \times M}$. For each map s:M×M $\rightarrow M \times M$ one can associate its pull-back S, i.e., the linear operator $S \in \operatorname{End}(V \otimes V)$ such that

$$
(S \varphi)(x, y)=\varphi(s(x, y)), \quad \varphi \in K^{M \times M}
$$

S is a solution of the PE if and only if s is a set-theoretical solution of the PE.

Hereinafter, we briefly call a set-theoretical solution s a solution.

Link between the two equations

Let K be a field, M a finite set, and $V:=K^{M}$. Then, $V \otimes V \cong K^{M \times M}$. For each map s: $M \times M \rightarrow M \times M$ one can associate its pull-back S, i.e., the linear operator $S \in \operatorname{End}(V \otimes V)$ such that

$$
(S \varphi)(x, y)=\varphi(s(x, y)), \quad \varphi \in K^{M \times M}
$$

S is a solution of the PE if and only if s is a set-theoretical solution of the PE.

Hereinafter, we briefly call a set-theoretical solution s a solution.

Link between the two equations

Let K be a field, M a finite set, and $V:=K^{M}$. Then, $V \otimes V \cong K^{M \times M}$. For each map s: $M \times M \rightarrow M \times M$ one can associate its pull-back S, i.e., the linear operator $S \in \operatorname{End}(V \otimes V)$ such that

$$
(S \varphi)(x, y)=\varphi(s(x, y)), \quad \varphi \in K^{M \times M}
$$

S is a solution of the PE if and only if s is a set-theoretical solution of the PE.

Hereinafter, we briefly call a set-theoretical solution sa solution.

A pioneering work

For a map s:M×M $\rightarrow M \times M$ define binary operations and $*$ via

$$
s(x, y)=(x \cdot y, x * y)
$$

for all $x, y \in M$.
Proposition (Kashaev-Sergeev, 1998)
The maps is a solution on M if and only if the following conditions hold

1. $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
2. $(x * y) \cdot((x \cdot y) * z)=x *(y \cdot z)$,
3. $(x * y) *((x \cdot y) * z)=y * z$,
for all $x, y, z \in M$.

A pioneering work

For a map s: $M \times M \rightarrow M \times M$ define binary operations . and $*$ via

$$
s(x, y)=(x \cdot y, x * y)
$$

for all $x, y \in M$.
Proposition (Kashaev-Sergeev, 1998)
The map s is a solution on M if and only if the following conditions hold

2. $(x * y) \cdot((x \cdot y) * z)=x *(y \cdot z)$,
for all $x, y, z \in M$.

A pioneering work

For a map s: $M \times M \rightarrow M \times M$ define binary operations . and $*$ via

$$
s(x, y)=(x \cdot y, x * y)
$$

for all $x, y \in M$.
Proposition (Kashaev-Sergeev, 1998)
The map s is a solution on M if and only if the following conditions hold 1. $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
2. $(x * y) \cdot((x \cdot y) * z)=x *(y \cdot z)$,
for all $x, y, z \in M$.

A pioneering work

For a map s:M×M $\rightarrow M \times M$ define binary operations and $*$ via

$$
s(x, y)=(x \cdot y, x * y)
$$

for all $x, y \in M$.
Proposition (Kashaev-Sergeev, 1998)
The map s is a solution on M if and only if the following conditions hold

1. $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
2. $(x * y) \cdot((x \cdot y) * z)=x *(y \cdot z)$,
3. $(x * y) *((x \cdot y) * z)=y * z$,

A pioneering work

For a map s:M×M $\rightarrow M \times M$ define binary operations and $*$ via

$$
s(x, y)=(x \cdot y, x * y)
$$

for all $x, y \in M$.
Proposition (Kashaev-Sergeev, 1998)
The map s is a solution on M if and only if the following conditions hold

1. $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
2. $(x * y) \cdot((x \cdot y) * z)=x *(y \cdot z)$,
3. $(x * y) *((x \cdot y) * z)=y * z$,
for all $x, y, z \in M$.

Examples of solutions

1. (Militaru solutions) If M is a set, f, g are maps from M into itself such that $f^{2}=f, g^{2}=g$, and $f g=g f$, then

$$
s(x, y)=(f(x), g(y))
$$

is a solution on M.
2. If (M, \cdot) is a semigroup, $\gamma \in \operatorname{End}(M), \gamma^{2}=\gamma$, the map is a solution on M.
3. (Kac-Takesaki solutions) If (M, \cdot) is a group, the maps are solutions on M.

Examples of solutions

1. (Militaru solutions) If M is a set, f, g are maps from M into itself such that $f^{2}=f, g^{2}=g$, and $f g=g f$, then

$$
s(x, y)=(f(x), g(y))
$$

is a solution on M.
2. If (M, \cdot) is a semigroup, $\gamma \in \operatorname{End}(M), \gamma^{2}=\gamma$, the map

$$
s(x, y)=(x \cdot y, \gamma(y))
$$

is a solution on M.
are solutions on M.

Examples of solutions

1. (Militaru solutions) If M is a set, f, g are maps from M into itself such that $f^{2}=f, g^{2}=g$, and $f g=g f$, then

$$
s(x, y)=(f(x), g(y))
$$

is a solution on M.
2. If (M, \cdot) is a semigroup, $\gamma \in \operatorname{End}(M), \gamma^{2}=\gamma$, the map

$$
s(x, y)=(x \cdot y, \gamma(y))
$$

is a solution on M.
3. (Kac-Takesaki solutions) If (M, \cdot) is a group, the maps

$$
s(x, y)=(x \cdot y, y) \quad \text { and } \quad t(x, y)=\left(x, x^{-1} \cdot y\right)
$$

are solutions on M.

Examples of solutions on factorizable groups

Let M be a group and A, B two subgroups such that $A \cap B=\{1\}$ and $M=A B$. Let $p_{1}: M \rightarrow A$ and $p_{2}: M \rightarrow B$ be maps such that $x=p_{1}(x) p_{2}(x)$, for every $x \in M$.
4. (Zakrzewski solution) The map is solution on M.
5. (Baaj-Skandalis solution) The map
is a solution on M.

Examples of solutions on factorizable groups

Let M be a group and A, B two subgroups such that $A \cap B=\{1\}$ and $M=A B$. Let $p_{1}: M \rightarrow A$ and $p_{2}: M \rightarrow B$ be maps such that $x=p_{1}(x) p_{2}(x)$, for every $x \in M$.
4. (Zakrzewski solution) The map

$$
s(x, y)=\left(p_{2}\left(y p_{1}(x)^{-1}\right) x, y p_{1}(x)^{-1}\right)
$$

is solution on M.
5.. (Baaj-Skandalis solution) The map is a solution on M.

Examples of solutions on factorizable groups

Let M be a group and A, B two subgroups such that $A \cap B=\{1\}$ and $M=A B$. Let $p_{1}: M \rightarrow A$ and $p_{2}: M \rightarrow B$ be maps such that $x=p_{1}(x) p_{2}(x)$, for every $x \in M$.
4. (Zakrzewski solution) The map

$$
s(x, y)=\left(p_{2}\left(y p_{1}(x)^{-1}\right) x, y p_{1}(x)^{-1}\right)
$$

is solution on M.
5. (Baaj-Skandalis solution) The map

$$
s(x, y)=\left(x p_{1}\left(p_{2}(x)^{-1} y\right), p_{2}(x)^{-1} y\right)
$$

is a solution on M.

A question arises

Kashaev and Sergeev proved that if (M, \cdot) is a group, then the only invertible solution $s(x, y)=(x \cdot y, x * y)$ on M is given by

$$
s(x, y)=(x \cdot y, y)
$$

Question
Are there any other solutions of the form

$$
s(x, y)=(x \cdot y, x * y)
$$

on a group (M, \cdot), if s is not invertible?

A question arises

Kashaev and Sergeev proved that if (M, \cdot) is a group, then the only invertible solution $s(x, y)=(x \cdot y, x * y)$ on M is given by

$$
s(x, y)=(x \cdot y, y) .
$$

Question

Are there any other solutions of the form

$$
s(x, y)=(x \cdot y, x * y)
$$

on a group (M, \cdot), if s is not invertible?

A question arises

Kashaev and Sergeev proved that if (M, \cdot) is a group, then the only invertible solution $s(x, y)=(x \cdot y, x * y)$ on M is given by

$$
s(x, y)=(x \cdot y, y) .
$$

Question

Are there any other solutions of the form

$$
s(x, y)=(x \cdot y, x * y)
$$

on a group ($M, \cdot)$, if s is not invertible?

A new notation

If $s(x, y)=(x \cdot y, x * y)$ is a solution, we set $x * y=: \theta_{x}(y)$, for all $x, y \in M$, where $\theta_{x}: M \rightarrow M$ is a map, for every $x \in M$.

```
Proposition
```



```
    1. (M,.) is a semigroup,
    2. }\mp@subsup{0}{x}{}(y\cdotz)=\mp@subsup{0}{x}{}(y)\cdot\mp@subsup{0}{x\cdoty}{\prime}(z)
    3. }\mp@subsup{0}{\mp@subsup{0}{x}{}(y)}{}\mp@subsup{0}{x\cdoty}{}=\mp@subsup{0}{y}{}\mathrm{ ,
hold, for all }x,y,z\inM\mathrm{ .
```


A new notation

If $s(x, y)=(x \cdot y, x * y)$ is a solution, we set $x * y=: \theta_{x}(y)$, for all $x, y \in M$, where $\theta_{x}: M \rightarrow M$ is a map, for every $x \in M$.

Proposition

The map $s(x, y)=\left(x \cdot y, \theta_{x}(y)\right)$ is a solution on a set M if and only if

1. (M, \cdot) is a semigroup,
2. $\theta_{x}(y \cdot z)=\theta_{x}(y) \cdot \theta_{x \cdot y}(z)$,
3. $n_{\theta_{x}(y)} n_{x \cdot y}=n_{y}$,
hold, for all $x, y, z \in M$.

A new notation

If $s(x, y)=(x \cdot y, x * y)$ is a solution, we set $x * y=: \theta_{x}(y)$, for all $x, y \in M$, where $\theta_{x}: M \rightarrow M$ is a map, for every $x \in M$.

Proposition

The map $s(x, y)=\left(x \cdot y, \theta_{x}(y)\right)$ is a solution on a set M if and only if

1. (M, \cdot) is a semigroup,
2. $\theta_{x}(y \cdot z)=\theta_{x}(y) \cdot \theta_{x \cdot y}(z)$,
3. $\theta_{\theta_{x}(y)} \theta_{x \cdot y}=\theta_{y}$,
hold, for all $x, y, z \in M$

A new notation

If $s(x, y)=(x \cdot y, x * y)$ is a solution, we set $x * y=: \theta_{x}(y)$, for all $x, y \in M$, where $\theta_{x}: M \rightarrow M$ is a map, for every $x \in M$.

Proposition

The map $s(x, y)=\left(x \cdot y, \theta_{x}(y)\right)$ is a solution on a set M if and only if

1. (M, \cdot) is a semigroup,
2. $\theta_{x}(y \cdot z)=\theta_{x}(y) \cdot \theta_{x \cdot y}(z)$,
hold, for all $x, y, z \in M$.

A new notation

If $s(x, y)=(x \cdot y, x * y)$ is a solution, we set $x * y=: \theta_{x}(y)$, for all $x, y \in M$, where $\theta_{x}: M \rightarrow M$ is a map, for every $x \in M$.

Proposition

The map $s(x, y)=\left(x \cdot y, \theta_{x}(y)\right)$ is a solution on a set M if and only if

1. (M, \cdot) is a semigroup,
2. $\theta_{x}(y \cdot z)=\theta_{x}(y) \cdot \theta_{x \cdot y}(z)$,
3. $\theta_{\theta_{x}(y)} \theta_{x \cdot y}=\theta_{y}$,
hold, for all $x, y, z \in M$.

A new notation

If $s(x, y)=(x \cdot y, x * y)$ is a solution, we set $x * y=: \theta_{x}(y)$, for all $x, y \in M$, where $\theta_{x}: M \rightarrow M$ is a map, for every $x \in M$.

Proposition

The map $s(x, y)=\left(x \cdot y, \theta_{x}(y)\right)$ is a solution on a set M if and only if

1. (M, \cdot) is a semigroup,
2. $\theta_{x}(y \cdot z)=\theta_{x}(y) \cdot \theta_{x \cdot y}(z)$,
3. $\theta_{\theta_{x}(y)} \theta_{x \cdot y}=\theta_{y}$,
hold, for all $x, y, z \in M$.

The kernel of a solution

Although θ_{1} is not a homomorphism, we have the following result.

Proposition (Catino, Miccoli, M., 2019)
Let $s(x, y)=\left(x \cdot y, \theta_{x}(y)\right)$ be a solution on a ε roup ($\left.M, \cdot\right)$. The subset of M

$$
K:=\left\{x \mid x \in M, \theta_{1}(x)=1\right\},
$$

is a normal subgroup of M, that we call the kernel of s.

The kernel of a solution

Although θ_{1} is not a homomorphism, we have the following result.

Proposition (Catino, Miccoli, M., 2019)
Let $s(x, y)=\left(x \cdot y, \theta_{x}(y)\right)$ be a solution on a group (M, \cdot). The subset of M

$$
K:=\left\{x \mid x \in M, \theta_{1}(x)=1\right\},
$$

is a normal subgroup of M, that we call the kernel of s.

Description of solutions on groups

Theorem (Catino, Miccoli, M., 2019)
Let (M, \cdot) be a group and $K \unlhd M$. Moreover, consider

- R a system of representatives of M / K such that $1 \in R$,
- $\mu: M \rightarrow R$ a map such that $\mu(x) \in K \cdot x$, for every $x \in M$.

Then, the map s:M×M $\rightarrow M \times M$ given by

$$
s(x, y)=\left(x \cdot y, \mu(x)^{-1} \cdot \mu(x \cdot y)\right)
$$

for all $x, y \in M$, is a solution on M.

Description of solutions on groups

Theorem (Catino, Miccoli, M., 2019)

Let (M, \cdot) be a group and $K \unlhd M$. Moreover, consider

- R a system of representatives of M / K such that $1 \in R$,
- $\mu: M \rightarrow R$ a map such that $\mu(x) \in K \cdot x$, for every $x \in M$.

Then, the map $s: M \times M \rightarrow M \times M$ given by

$$
s(x, y)=\left(x \cdot y, \mu(x)^{-1} \cdot \mu(x \cdot y)\right)
$$

for all $x, y \in M$, is a solution on M.
Conversely, if $s(x, y)=\left(x \cdot y, \theta_{x}(y)\right)$ is a solution on M, for all $x, y \in M$, there exists $K \unlhd M$, the kernel of s, such that

- $\theta_{1}(M)$ is a system of representatives of M / K,
- $1 \in \theta_{1}(M)$,
- $\theta_{1}(x) \in K \cdot x$, for every $x \in M$.

Applications

1. The unique invertible solution on a group (M, \cdot) is given by

$$
s(x, y)=(x \cdot y, y)
$$

```
Let n\geq3 and }\mp@subsup{\mathcal{S}}{n}{}\mathrm{ the symmetric group of order n. Consider
    - K = 乐,
    > R={id}\mp@subsup{\mathcal{S}}{n}{},\pi},\mathrm{ where }\pi\mathrm{ is a transposition of }\mp@subsup{S}{n}{
    v the map }\mu:\mp@subsup{S}{n}{}->R\mathrm{ given by
```

 \(\mu(\alpha)= \begin{cases}\pi & \text { if } \alpha \text { is odd } \\ \text { id }_{S_{n}} & \text { if } \alpha \text { is even }\end{cases}\)
 Then, the map

is a solution on \mathcal{S}_{n}.

Applications

1. The unique invertible solution on a group (M, \cdot) is given by

$$
s(x, y)=(x \cdot y, y)
$$

2. Let $n \geq 3$ and \mathcal{S}_{n} the symmetric group of order n.

> the map $\mu: S_{n} \rightarrow R$ given by

for every $\alpha \in \mathcal{S}_{n}$.
Then, the map

is a solution on \mathcal{S}_{n}.

Applications

1. The unique invertible solution on a group (M, \cdot) is given by

$$
s(x, y)=(x \cdot y, y)
$$

2. Let $n \geq 3$ and \mathcal{S}_{n} the symmetric group of order n. Consider

- $K=\mathcal{A}_{n}$,
> $R=\left\{\right.$ id $\left._{S_{n}}, \pi\right\}$, where π is a transposition of S_{n}
\Rightarrow the $\operatorname{map} \mu: S_{n} \rightarrow R$ given by

Then, the map
$s(\alpha, \beta)=\left(\alpha \beta, \mu(\alpha)^{-1} \mu(\alpha \beta)\right)$
is a solution on S_{n}.

Applications

1. The unique invertible solution on a group (M, \cdot) is given by

$$
s(x, y)=(x \cdot y, y)
$$

2. Let $n \geq 3$ and \mathcal{S}_{n} the symmetric group of order n. Consider

- $K=\mathcal{A}_{n}$,
- $R=\left\{\operatorname{id}_{\mathcal{S}_{n}}, \pi\right\}$, where π is a transposition of \mathcal{S}_{n};

Then, the map

Applications

1. The unique invertible solution on a group (M, \cdot) is given by

$$
s(x, y)=(x \cdot y, y) .
$$

2. Let $n \geq 3$ and \mathcal{S}_{n} the symmetric group of order n. Consider

- $K=\mathcal{A}_{n}$,
- $R=\left\{\right.$ id $\left._{\mathcal{S}_{n}}, \pi\right\}$, where π is a transposition of \mathcal{S}_{n};
- the map $\mu: \mathcal{S}_{n} \rightarrow R$ given by

$$
\mu(\alpha)= \begin{cases}\pi & \text { if } \alpha \text { is odd } \\ \mathrm{id}_{\mathcal{S}_{n}} & \text { if } \alpha \text { is even }\end{cases}
$$

for every $\alpha \in \mathcal{S}_{n}$.
is a solution on \mathcal{S}_{n}.

Applications

1. The unique invertible solution on a group (M, \cdot) is given by

$$
s(x, y)=(x \cdot y, y)
$$

2. Let $n \geq 3$ and \mathcal{S}_{n} the symmetric group of order n. Consider

- $K=\mathcal{A}_{n}$,
- $R=\left\{\operatorname{id}_{\mathcal{S}_{n}}, \pi\right\}$, where π is a transposition of \mathcal{S}_{n};
- the map $\mu: \mathcal{S}_{n} \rightarrow R$ given by

$$
\mu(\alpha)= \begin{cases}\pi & \text { if } \alpha \text { is odd } \\ \operatorname{id}_{\mathcal{S}_{n}} & \text { if } \alpha \text { is even }\end{cases}
$$

for every $\alpha \in \mathcal{S}_{n}$.
Then, the map

$$
s(\alpha, \beta)=\left(\alpha \beta, \mu(\alpha)^{-1} \mu(\alpha \beta)\right)
$$

is a solution on \mathcal{S}_{n}.

Solutions on groups $(M, *)$

Another question is to describe all the solutions $s(x, y)=(x \cdot y, x * y)$ when $(M, *)$ is a group.

Proposition (Catino, Miccoli, M., 2019)
Let $(M *)$ be a group. Then $s(x, y)=(x \cdot y, x * y)$ is a solution on M if and only if

- $(M, *)$ is an elementary abelian 2-group,
- $x \cdot y=x$ holds, for all $x, y \in M$.

Solutions on groups $(M, *)$

Another question is to describe all the solutions $s(x, y)=(x \cdot y, x * y)$ when $(M, *)$ is a group.

Proposition (Catino, Miccoli, M., 2019)
Let $(M, *)$ be a group. Then, $s(x, y)=(x \cdot y, x * y)$ is a solution on M if and only if

- $(M, *)$ is an elementary abelian 2-group,
- $x \cdot y=x$ holds, for all $x, y \in M$.

Solutions on groups $(M, *)$

Another question is to describe all the solutions $s(x, y)=(x \cdot y, x * y)$ when $(M, *)$ is a group.

Proposition (Catino, Miccoli, M., 2019)
Let $(M, *)$ be a group. Then, $s(x, y)=(x \cdot y, x * y)$ is a solution on M if and only if

- $(M, *)$ is an elementary abelian 2-group,
- $x \cdot y=x$ holds, for all $x, y \in M$.

Current development

Question

How to find new examples of solutions on semigroups (S, \cdot) ?

In order to obtain new solutions, we focus on constructions of solutions. on the Cartesian product of two semigroups S and T [Catino, Stefanelli, M., in preparation]

From now on, we $\operatorname{set} x \cdot y=: x y$.

Current development

Question

How to find new examples of solutions on semigroups (S, \cdot) ?

In order to obtain new solutions, we focus on constructions of solutions on the Cartesian product of two semigroups S and T [Catino, Stefanelli, M., in preparation].

From now on, we set $x \cdot y=: x y$.

Current development

Question

How to find new examples of solutions on semigroups (S, \cdot) ?

In order to obtain new solutions, we focus on constructions of solutions on the Cartesian product of two semigroups S and T [Catino, Stefanelli, M., in preparation].

From now on, we set $x \cdot y=: x y$.

Matched product of solutions - I

Let S, T be semigroups, $s(a, b)=\left(a b, \theta_{a}(b)\right)$ and $t(u, v)=\left(u v, \theta_{u}(v)\right)$ solutions on S and T, respectively. Let $\alpha: T \rightarrow S^{S}$ and $\beta: S \rightarrow T^{T}$ be two maps, and set

$$
\forall u \in T \quad \alpha_{u}:=\alpha(u), \quad \forall a \in S \quad \beta_{a}:=\beta(a)
$$

If the following conditions are satisfied
for all $a, b, c \in S$ and $u, v \in T$; then we call (s, t, α, β) a matched quadruple.

Matched product of solutions - I

Let S, T be semigroups, $s(a, b)=\left(a b, \theta_{a}(b)\right)$ and $t(u, v)=\left(u v, \theta_{u}(v)\right)$ solutions on S and T, respectively. Let $\alpha: T \rightarrow S^{S}$ and $\beta: S \rightarrow T^{T}$ be two maps, and set

$$
\forall u \in T \quad \alpha_{u}:=\alpha(u), \quad \forall a \in S \quad \beta_{a}:=\beta(a)
$$

If the following conditions are satisfied

$$
\begin{aligned}
& \alpha_{v}\left(a \alpha_{u}(b)\right)=\alpha_{v}(a) \alpha_{\beta_{a}(v) u}(b) \\
& \beta_{c}\left(\beta_{b}(u) v\right)=\beta_{b \alpha_{v}(c)}(u) \beta_{c}(v) \\
& \theta_{a \alpha_{u}(b)}=\alpha_{\theta_{\beta_{b}(u)}(v)} \theta_{a \alpha_{u}(b)} \\
& \theta_{a} \alpha_{u}=\theta_{\alpha_{v}(a)} \alpha_{\beta_{a}(v) u} \\
& \beta_{\theta_{a \alpha_{u}(b)}} \alpha_{\beta_{b}(u) v}(c) \\
& \theta_{\beta_{b}(u)}(v)=\theta_{\beta_{b \alpha_{v}(c)}(u)} \beta_{c}(v)
\end{aligned}
$$

for all $a, b, c \in S$ and $u, v \in T$, then we call (s, t, α, β) a matched quadruple.

Matched product of solutions - I

Let S, T be semigroups, $s(a, b)=\left(a b, \theta_{a}(b)\right)$ and $t(u, v)=\left(u v, \theta_{u}(v)\right)$ solutions on S and T, respectively. Let $\alpha: T \rightarrow S^{S}$ and $\beta: S \rightarrow T^{T}$ be two maps, and set

$$
\forall u \in T \quad \alpha_{u}:=\alpha(u), \quad \forall a \in S \quad \beta_{a}:=\beta(a)
$$

If the following conditions are satisfied

$$
\begin{aligned}
& \alpha_{v}\left(a \alpha_{u}(b)\right)=\alpha_{v}(a) \alpha_{\beta_{a}(v) u}(b) \\
& \beta_{c}\left(\beta_{b}(u) v\right)=\beta_{b \alpha_{v}(c)}(u) \beta_{c}(v) \\
& \theta_{a \alpha_{u}(b)}=\alpha_{\theta_{\beta_{b}(u)}(v)} \theta_{a \alpha_{u}(b)} \\
& \theta_{a} \alpha_{u}=\theta_{\alpha_{v}(a)} \alpha_{\beta_{a}(v) u} \\
& \beta_{\theta_{a \alpha_{u}(b)}} \alpha_{\beta_{b}(u) v}(c) \\
& \theta_{\beta_{b}(u)}(v)=\theta_{\beta_{b \alpha_{v}(c)}(u)} \beta_{c}(v)
\end{aligned}
$$

for all $a, b, c \in S$ and $u, v \in T$, then we call (s, t, α, β) a matched quadruple.

Matched product of solutions - I

Let S, T be semigroups, $s(a, b)=\left(a b, \theta_{a}(b)\right)$ and $t(u, v)=\left(u v, \theta_{u}(v)\right)$ solutions on S and T, respectively. Let $\alpha: T \rightarrow S^{S}$ and $\beta: S \rightarrow T^{T}$ be two maps, and set

$$
\forall u \in T \quad \alpha_{u}:=\alpha(u), \quad \forall a \in S \quad \beta_{a}:=\beta(a)
$$

If the following conditions are satisfied

$$
\begin{aligned}
& \alpha_{v}\left(a \alpha_{u}(b)\right)=\alpha_{v}(a) \alpha_{\beta_{a}(v) u}(b) \\
& \beta_{c}\left(\beta_{b}(u) v\right)=\beta_{b \alpha_{v}(c)}(u) \beta_{c}(v) \\
& \theta_{a \alpha_{u}(b)}=\alpha_{\theta_{\beta_{b}(u)}(v)} \theta_{a \alpha_{u}(b)} \\
& \theta_{a} \alpha_{u}=\theta_{\alpha_{v}(a)} \alpha_{\beta_{a}(v) u} \\
& \beta_{\theta_{a \alpha_{u}(b)}} \alpha_{\beta_{b}(u) v}(c) \\
& \theta_{\beta_{b}(u)}(v)=\theta_{\beta_{b \alpha_{v}(c)}(u)} \beta_{c}(v)
\end{aligned}
$$

for all $a, b, c \in S$ and $u, v \in T$, then we call (s, t, α, β) a matched quadruple.

Matched product of solutions - I

Let S, T be semigroups, $s(a, b)=\left(a b, \theta_{a}(b)\right)$ and $t(u, v)=\left(u v, \theta_{u}(v)\right)$ solutions on S and T, respectively. Let $\alpha: T \rightarrow S^{S}$ and $\beta: S \rightarrow T^{T}$ be two maps, and set

$$
\forall u \in T \quad \alpha_{u}:=\alpha(u), \quad \forall a \in S \quad \beta_{a}:=\beta(a)
$$

If the following conditions are satisfied

$$
\begin{aligned}
& \alpha_{v}\left(a \alpha_{u}(b)\right)=\alpha_{v}(a) \alpha_{\beta_{a}(v) u}(b) \\
& \beta_{c}\left(\beta_{b}(u) v\right)=\beta_{b \alpha_{v}(c)}(u) \beta_{c}(v) \\
& \theta_{a \alpha_{u}(b)}=\alpha_{\theta_{\beta_{b}(u)}(v)} \theta_{a \alpha_{u}(b)} \\
& \theta_{a} \alpha_{u}=\theta_{\alpha_{v}(a)} \alpha_{\beta_{a}(v) u} \\
& \beta_{\theta_{a \alpha_{u}(b)}} \alpha_{\beta_{b}(u) v}(c) \\
& \theta_{\beta_{b}(u)}(v)=\theta_{\beta_{b \alpha_{v}(c)}(u)} \beta_{c}(v)
\end{aligned}
$$

for all $a, b, c \in S$ and $u, v \in T$, then we call (s, t, α, β) a matched quadruple.

Matched product of solutions - I

Let S, T be semigroups, $s(a, b)=\left(a b, \theta_{a}(b)\right)$ and $t(u, v)=\left(u v, \theta_{u}(v)\right)$ solutions on S and T, respectively. Let $\alpha: T \rightarrow S^{S}$ and $\beta: S \rightarrow T^{T}$ be two maps, and set

$$
\forall u \in T \quad \alpha_{u}:=\alpha(u), \quad \forall a \in S \quad \beta_{a}:=\beta(a)
$$

If the following conditions are satisfied

$$
\begin{aligned}
& \alpha_{v}\left(a \alpha_{u}(b)\right)=\alpha_{v}(a) \alpha_{\beta_{a}(v) u}(b) \\
& \beta_{c}\left(\beta_{b}(u) v\right)=\beta_{b \alpha_{v}(c)}(u) \beta_{c}(v) \\
& \theta_{a \alpha_{u}(b)}=\alpha_{\theta_{\beta_{b}(u)}(v)} \theta_{a \alpha_{u}(b)} \\
& \theta_{a} \alpha_{u}=\theta_{\alpha_{v}(a)} \alpha_{\beta_{a}(v) u} \\
& \beta_{\theta_{a \alpha_{u}(b)}} \alpha_{\beta_{b}(u) v}(c) \\
& \theta_{\beta_{b}(u)}(v)=\theta_{\beta_{b \alpha_{v}(c)}(u)} \beta_{c}(v)
\end{aligned}
$$

for all $a, b, c \in S$ and $u, v \in T$, then we call (s, t, α, β) a matched quadruple.

Matched product of solutions - II

The first two conditions

$$
\begin{aligned}
& \alpha_{v}\left(a \alpha_{u}(b)\right)=\alpha_{v}(a) \alpha_{\beta_{a}(v) u}(b) \\
& \beta_{c}\left(\beta_{b}(u) v\right)=\beta_{b \alpha_{v}(c)}(u) \beta_{c}(v)
\end{aligned}
$$

ensure that $S \times T$ endowed with the operation defined by

$$
(a, u)(b, v)=\left(a \alpha_{u}(b), \beta_{b}(u) v\right)
$$

is a semigroup, called the matched product of S and T, and we denote it by $S \bowtie T$.

Theorem (Catino, Stefanelli, M. , work in progress)
Let S and T be two semigroups, and (s, t, α, β) a matched quadruple. Then, the map $s \bowtie t:(S \times T)^{2} \rightarrow(S \times T)^{2}$ defined by
for all $(a, u),(b, v) \in S \times T$, is a solution on $S \bowtie T$

Matched product of solutions - II

The first two conditions

$$
\begin{aligned}
& \alpha_{v}\left(a \alpha_{u}(b)\right)=\alpha_{v}(a) \alpha_{\beta_{a}(v) u}(b) \\
& \beta_{c}\left(\beta_{b}(u) v\right)=\beta_{b \alpha_{v}(c)}(u) \beta_{c}(v)
\end{aligned}
$$

ensure that $S \times T$ endowed with the operation defined by

$$
(a, u)(b, v)=\left(a \alpha_{u}(b), \beta_{b}(u) v\right)
$$

is a semigroup, called the matched product of S and T, and we denote it by $S \bowtie T$.

Theorem (Catino, Stefanelli, M., work in progress)
Let S and T be two semigroups, and (s, t, α, β) a matched quadruple. Then, the map $s \bowtie t:(S \times T)^{2} \rightarrow(S \times T)^{2}$ defined by

$$
s \bowtie t(a, u ; b, v)=\left(a \alpha_{u}(b), \beta_{b}(u) v ; \theta_{a} \alpha_{u}(b), \theta_{\beta_{b}(u)}(v)\right)
$$

for all $(a, u),(b, v) \in S \times T$, is a solution on $S \bowtie T$.

Matched product of solutions - II

The first two conditions

$$
\begin{aligned}
& \alpha_{v}\left(a \alpha_{u}(b)\right)=\alpha_{v}(a) \alpha_{\beta_{a}(v) u}(b) \\
& \beta_{c}\left(\beta_{b}(u) v\right)=\beta_{b \alpha_{v}(c)}(u) \beta_{c}(v)
\end{aligned}
$$

ensure that $S \times T$ endowed with the operation defined by

$$
(a, u)(b, v)=\left(a \alpha_{u}(b), \beta_{b}(u) v\right)
$$

is a semigroup, called the matched product of S and T, and we denote it by $S \bowtie T$.

Theorem (Catino, Stefanelli, M., work in progress)
Let S and T be two semigroups, and (s, t, α, β) a matched quadruple. Then, the map $s \bowtie t:(S \times T)^{2} \rightarrow(S \times T)^{2}$ defined by

$$
s \bowtie t(a, u ; b, v)=\left(a \alpha_{u}(b), \beta_{b}(u) v ; \theta_{a} \alpha_{u}(b), \theta_{\beta_{b}(u)}(v)\right),
$$

for all $(a, u),(b, v) \in S \times T$, is a solution on $S \bowtie T$.

Matched product of solutions - II

The first two conditions

$$
\begin{aligned}
& \alpha_{v}\left(a \alpha_{u}(b)\right)=\alpha_{v}(a) \alpha_{\beta_{a}(v) u}(b) \\
& \beta_{c}\left(\beta_{b}(u) v\right)=\beta_{b \alpha_{v}(c)}(u) \beta_{c}(v)
\end{aligned}
$$

ensure that $S \times T$ endowed with the operation defined by

$$
(a, u)(b, v)=\left(a \alpha_{u}(b), \beta_{b}(u) v\right)
$$

is a semigroup, called the matched product of S and T, and we denote it by $S \bowtie T$.

Theorem (Catino, Stefanelli, M., work in progress)
Let S and T be two semigroups, and (s, t, α, β) a matched quadruple. Then, the map $s \bowtie t:(S \times T)^{2} \rightarrow(S \times T)^{2}$ defined by

$$
s \bowtie t(a, u ; b, v)=\left(a \alpha_{u}(b), \beta_{b}(u) v ; \theta_{a} \alpha_{u}(b), \theta_{\beta_{b}(u)}(v)\right)
$$

for all $(a, u),(b, v) \in S \times T$, is a solution on $S \bowtie T$.

Remark

In addition, if S and T are monoids with identity 1_{S} and 1_{T} respectively, we have to require the following conditions

$$
\begin{array}{ll}
& \alpha_{1_{T}}=\mathrm{id}_{S}, \\
& \beta_{\mathbf{1}_{S}}=\mathrm{id}_{T}, \\
\forall a \in S \quad & \beta_{a}\left(1_{T}\right)=1_{T}, \\
\forall u \in T \quad & \alpha_{u}\left(1_{S}\right)=1_{S}
\end{array}
$$

so that $S \bowtie T$ is a monoid with identity $\left(1_{S}, 1_{T}\right)$.
In this case, if (s, t, α, β) is a matched quadruple, conditions become easier:

Remark

In addition, if S and T are monoids with identity 1_{S} and 1_{T} respectively, we have to require the following conditions

$$
\begin{array}{ll}
& \alpha_{1_{T}}=\mathrm{id}_{S}, \\
& \beta_{\mathbf{1}_{S}}=\mathrm{id}_{T}, \\
\forall a \in S \quad & \beta_{a}\left(1_{T}\right)=1_{T}, \\
\forall u \in T & \alpha_{u}\left(1_{S}\right)=1_{S}
\end{array}
$$

so that $S \bowtie T$ is a monoid with identity $\left(1_{S}, 1_{T}\right)$.
In this case, if (s, t, α, β) is a matched quadruple, conditions become easier:

$$
\begin{aligned}
& \theta_{a}=\alpha_{\theta_{u}(v)} \theta_{a}=\theta_{\alpha_{v}(a)} \alpha_{\beta_{a}(v)} \\
& \beta_{\theta_{a} \alpha_{u v}(b)} \theta_{u}(v)=\theta_{\beta_{\alpha_{v}(b)}(u)} \beta_{b}(v)
\end{aligned}
$$

An example

Let us consider

- S a semigroup, $\gamma \in \operatorname{End}(S), \gamma^{2}=\gamma$, and $s(a, b)=(a b, \gamma(b))$ a solution on S;
$\alpha_{u}=\gamma_{;}$for every $u \in T$;
$\Rightarrow \beta_{a}=\mathrm{id}$, for every $a \in S$.
Then; (s, t, α, β) is a matched quadruple and so the map $s \bowtie t(a, u ; b, v)=(a \gamma(b), u v ; \gamma(b), v)$
is a solution on the semigroup $S \bowtie, T$

An example

Let us consider

- S a semigroup, $\gamma \in \operatorname{End}(S), \gamma^{2}=\gamma$, and $s(a, b)=(a b, \gamma(b))$ a solution on S;
- T a semigroup and $t(u, v)=(u v, v)$ a solution on T;
* $\alpha_{u}=\gamma_{;}$for every $u \in T$;
$\beta_{a}=$ id , for every $a \in S$
Then, (s, t, α, β) is a matched quadruple and so the map $s \bowtie t(a, u ; b, v)=(a \gamma(b), u v ; \gamma(b), v)$ is a solution on the semigroup $S \bowtie, T$

An example

Let us consider

- S a semigroup, $\gamma \in \operatorname{End}(S), \gamma^{2}=\gamma$, and $s(a, b)=(a b, \gamma(b))$ a solution on S;
- T a semigroup and $t(u, v)=(u v, v)$ a solution on T;
- $\alpha_{u}=\gamma$, for every $u \in T$;
- $\beta_{a}=$ id T, for every $a \in S$

Then; (s, t, α, β) is a matched quadruple and so the map
is a solution on the semigroup $S \bowtie . T$.

An example

Let us consider

- S a semigroup, $\gamma \in \operatorname{End}(S), \gamma^{2}=\gamma$, and $s(a, b)=(a b, \gamma(b))$ a solution on S;
- T a semigroup and $t(u, v)=(u v, v)$ a solution on T;
- $\alpha_{u}=\gamma$, for every $u \in T$;
- $\beta_{a}=\mathrm{id}{ }_{T}$, for every $a \in S$.

Then; (s, t, α, β) is a matched quadruple and so the map
is a solution on the semigroup $S \bowtie . T$.

An example

Let us consider

- S a semigroup, $\gamma \in \operatorname{End}(S), \gamma^{2}=\gamma$, and $s(a, b)=(a b, \gamma(b))$ a solution on S;
- T a semigroup and $t(u, v)=(u v, v)$ a solution on T;
- $\alpha_{u}=\gamma$, for every $u \in T$;
- $\beta_{a}=\mathrm{id}_{T}$, for every $a \in S$.

Then, (s, t, α, β) is a matched quadruple and so the map

$$
s \bowtie t(a, u ; b, v)=(a \gamma(b), u v ; \gamma(b), v)
$$

is a solution on the semigroup $S \bowtie T$.

Work in progress

A link between the pentagon equation and the Yang-Baxter equation

Tomorrow at Paola Stefanelli's talk

Thanks for your attention!

