A Random Walk through the Theory of Soluble Groups A talk prepared for AGTA 2019 Lecce

Peter Kropholler

University of Southampton

June 25, 2019

Peter Kropholler A Random Walk through the Theory of Soluble Groups

corridor

classes of groups

Peter Kropholler

A Random Walk through the Theory of Soluble Groups

quasicyclic groups

For a prime *p* the *quasicyclic group* $C_{p^{\infty}}$ is the group of *p*-power roots of unity in \mathbb{C} . The exponential map $\mathbb{C} \to \mathbb{C}^{\times}$ given by $z \mapsto e^{2\pi i z}$ is a surjective group homomorphism with kernel \mathbb{Z} . By restricting to the subring $\mathbb{Z}\left[\frac{1}{p}\right]$ we can view quasicylic groups additively as well as multiplicatively.

ring	s.e.s.	isomorphism
$\mathbb C$	$\mathbb{Z}\rightarrowtail\mathbb{C}\twoheadrightarrow\mathbb{C}^{\times}$	$\mathbb{C}/\mathbb{Z}\cong\mathbb{C}^{ imes}$
$\mathbb R$	$\mathbb{Z} ightarrow \mathbb{R} woheadrightarrow oldsymbol{S}^1$	$\mathbb{R}/\mathbb{Z}\cong S^1$
$\mathbb{Z}\left[\frac{1}{p}\right]$	$\mathbb{Z} \rightarrowtail \mathbb{Z}\left[rac{1}{p} ight] woheadrightarrow C_{p^{\infty}}$	$\mathbb{Z}\left[\frac{1}{p}\right]/\mathbb{Z}\cong C_{p^{\infty}}$

• The quasicyclic groups are 'dual' to the infinite cyclic group.

- The quasicyclic groups are 'dual' to the infinite cyclic group.
- $C_{p^{\infty}}$ satisfies min, while \mathbb{Z} satisfies max.

chain conditions

- The quasicyclic groups are 'dual' to the infinite cyclic group.
- $C_{p^{\infty}}$ satisfies min, while \mathbb{Z} satisfies max.
- The virtually soluble groups with min are finite extensions of direct products of finitely many quasicyclic groups: they are called Černikov groups.

chain conditions

- The quasicyclic groups are 'dual' to the infinite cyclic group.
- $C_{p^{\infty}}$ satisfies min, while \mathbb{Z} satisfies max.
- The virtually soluble groups with min are finite extensions of direct products of finitely many quasicyclic groups: they are called Černikov groups.
- The virtually soluble groups with max are polycyclic-by-finite.

Reinhold Baer used the term *minimax* for those **abelian** groups *A* which have a subgroup *B* such that

- *B* is finitely generated (and so has the maximal condition on subgroups)
- *A*/*B* has the minimal condition on subgroups (and so is a direct sum of finitely many quasicylic groups and a finite group).

Reinhold Baer used the term *minimax* for those **abelian** groups *A* which have a subgroup *B* such that

- *B* is finitely generated (and so has the maximal condition on subgroups)
- A/B has the minimal condition on subgroups (and so is a direct sum of finitely many quasicylic groups and a finite group).

Example

If $\alpha \in \mathbb{C}$ is an algebraic number then $\mathbb{Z}[\alpha]^+$ is minimax.

Example (... an explicit example ...)

abelian minimax groups

Reinhold Baer used the term *minimax* for those **abelian** groups *A* which have a subgroup *B* such that

- *B* is finitely generated (and so has the maximal condition on subgroups)
- A/B has the minimal condition on subgroups (and so is a direct sum of finitely many quasicylic groups and a finite group).

Example

If $\alpha \in \mathbb{C}$ is an algebraic number then $\mathbb{Z}[\alpha]^+$ is minimax.

Example (... an explicit example ...)

$$\mathbb{Z}^2 \rightarrowtail \mathbb{Z}\left[\frac{1}{4+7i}\right]^+ \twoheadrightarrow C_{5^{\infty}} \oplus C_{13^{\infty}}.$$

polyminimax groups

I define a group G to be *polyminimax* if there is a series

 $1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$

in which the factors G_i/G_{i-1} are cyclic or quasicyclic or finite.

polyminimax groups

I define a group G to be *polyminimax* if there is a series

 $1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$

in which the factors G_i/G_{i-1} are cyclic or quasicyclic or finite. This definition needs to be reconciled with Reinhold Baer's original terminology "Polyminimaxgruppe" ... I define a group G to be *polyminimax* if there is a series

 $1 = G_0 \lhd G_1 \lhd \ldots \lhd G_n = G$

in which the factors G_i/G_{i-1} are cyclic or quasicyclic or finite. This definition needs to be reconciled with Reinhold Baer's original terminology "Polyminimaxgruppe" and with Derek Robinson's generally accepted terminology

"minimax group".

In this lecture:

polyminimax means polyminimax in the sense of Kropholler.

Minimax Fire Extinguisher

art deco gate of the original minimax factory

Peter Kropholler A Random Walk through the Theory of Soluble Groups

Let G be a polyminimax group and let

$$1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$$

be a cyclic–quasicyclic–finite series that is witness to that. The following are invariants of *G*, independent of the choice of ‡.

• The Hirsch length h(G) counts the number of infinite cyclic factors in \ddagger .

Let G be a polyminimax group and let

$$1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$$

- The Hirsch length h(G) counts the number of infinite cyclic factors in \ddagger .
- $h^*(G)$ counts the number of infinite factors.

Let G be a polyminimax group and let

$$1 = G_0 \lhd G_1 \lhd \ldots \lhd G_n = G$$

- The Hirsch length h(G) counts the number of infinite cyclic factors in \ddagger .
- $h^*(G)$ counts the number of infinite factors.
- For a prime p, the number $\mu_p(G)$ of factors isomorphic to $C_{p^{\infty}}$.

Let G be a polyminimax group and let

$$1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G \qquad \ddagger$$

- The Hirsch length h(G) counts the number of infinite cyclic factors in \ddagger .
- $h^*(G)$ counts the number of infinite factors.
- For a prime p, the number $\mu_p(G)$ of factors isomorphic to $C_{p^{\infty}}$.
- The set $\pi(G)$ of primes p for which $\mu_p(G) \neq 0$.

Let G be a polyminimax group and let

$$1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G \qquad \ddagger$$

- The Hirsch length h(G) counts the number of infinite cyclic factors in \ddagger .
- $h^*(G)$ counts the number of infinite factors.
- For a prime p, the number $\mu_p(G)$ of factors isomorphic to $C_{p^{\infty}}$.
- The set $\pi(G)$ of primes p for which $\mu_p(G) \neq 0$.

$$h^*(G) = h(G) + \sum_{p \text{ prime}} \mu_p(G).$$

Let G be a polyminimax group and let

$$1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G \qquad \ddagger$$

be a cyclic–quasicyclic–finite series that is witness to that. The following are invariants of *G*, independent of the choice of ‡.

- The Hirsch length h(G) counts the number of infinite cyclic factors in \ddagger .
- $h^*(G)$ counts the number of infinite factors.
- For a prime p, the number $\mu_p(G)$ of factors isomorphic to $C_{p^{\infty}}$.
- The set $\pi(G)$ of primes p for which $\mu_p(G) \neq 0$.

$$h^*(G) = h(G) + \sum_{p \text{ prime}} \mu_p(G).$$

A π -polyminimax group is a polyminimax group G such that $\pi(G) \subseteq \pi$.

From Baer's paper

Polyminimaxgruppen, Math. Annalen 175, 1–43 (1968).

Besitzt eine abelsche Gruppe A eine Untergruppe U, von deren Untergruppen die Maximalbedingung und von deren Obergruppen die Minimalbedingung erfüllt wird, so heißt A Minimaxgruppe....

Besitzt eine Gruppe G eine endliche Kette von Untergruppen N_i mit den Eigenshaften:

 $1 = N_0$, N_i ist ein Normalteiler von N_{i+1} mit [abelscher] Minimaxlaktorgruppe N_{i+1}/N_i , $N_n = G$, so heiße G Polyminimaxoruppe; ...

Notice that Baer emphasises the restriction to abelian factor groups. Robinson employed a much more general use for the term *minimax*, including all group that are *poly(max or min)*.

the alternative definitions

Theorem

Let G be a group. Then the following are equivalent.

- 1 *G* is a polyminimax group in Kropholler's sense.
- *G* is virtually polyminimax in Baer's sense.
- G is virtually soluble minimax in Robinson's sense.

Theorem (An Instance of the Tits Alternative, Tits 1972) Let *G* be a finitely generated subgroup of $GL_n(\mathbb{Q})$. Then either *G* is polyminimax or *G* has a subgroup that is free on 2 generators.

examples

Upper triangular matrices provide a source of polyminimax groups.

If π is a set of primes and *n* is a π -number then the group of upper triangular matrices with entries from $\mathbb{Z}\left[\frac{1}{n}\right]$ is π -polyminimax. It is also nilpotent-by-abelian.

Theorem

All polyminimax groups are nilpotent-by-abelian-by-finite.

Abel's Groups

For each prime *p*, Herbert Abels' sequence of *p*-polyminimax groups:

$$H_{n} = \left\{ \begin{pmatrix} 1 & * & * & \dots & * & * \\ 0 & * & * & \dots & * & * \\ 0 & 0 & * & \dots & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & * & * \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix} \in \operatorname{GL}_{n+2} \left(\mathbb{Z} \left[\frac{1}{p} \right] \right) \right\}$$

Theorem

 H_n is of type FP_n but not of type FP_{n+1}.

Abels' groups have centre isomorphic to $\mathbb{Z}\left[\frac{1}{p}\right]$ and so can be used to construct groups of type FP_n with a quasicyclic subgroup for arbitrarily large *n*.

For each prime *p* the standard restricted wreath product

 $L_p := \mathbb{Z}/p\mathbb{Z} \wr \mathbb{Z}$

is known as a *lamplighter group*.

Theorem (The Kropholler Alternative, Kropholler 1984) Let G be a finitely generated soluble group. Then G is polyminimax if and only if G has no lamplighter sections. For each prime *p* the standard restricted wreath product

 $L_p := \mathbb{Z}/p\mathbb{Z} \wr \mathbb{Z}$

is known as a *lamplighter group*.

Theorem (The Kropholler Alternative, Kropholler 1984) Let G be a finitely generated soluble group. Then G is polyminimax if and only if G has no lamplighter sections.

"Minimax extinguishes the lamplighter" — Yves de Cornulier, 2016.

Theorem (Kropholler 1984)

Finitely generated polyminimax groups are boundedly generated.

Corollary

If $A \rightarrow G \rightarrow Q$ is a group extension in which G is finitely generated, Q is polyminimax, and A is abelian, and if G has no lamplighter sections, then for any field k, the kQ-module $A \otimes k$ is locally finite dimensional.

To establish Kropholler's Alternative it becomes important to understand how the cohomology functor $H^2(Q, \cdot)$ commutes or fails to commute with direct limit (filtered colimits). In general, finitely generated polyminimax groups need not be of type FP₂.

Open Question

Are all boundedly generated soluble groups necessarily polyminimax?

homological finiteness conditions

Theorem (Kropholler 1986; K–Martínez-Pérez–Nucinkis 2009)

Let G be a virtually soluble group. Then the following are equivalent:

- $hd(G) = cd(G) < \infty$.
- *G* is of type FP.
- I G is a duality group.
- 4 G is torsion-free and constructible.
- 5 G admits a finite classiying space for proper actions.

Theorem (Kropholler 1993; K–Martínez-Pérez–Nucinkis 2009) Let G be an elemenatary amenable group of type FP_{∞} . Then G is polyminimax, virtually torsion-free, and admits a cocompact classifying space for proper actions.

Theorem (Stammbach, 1970)

Let k be a field of characteristic zero and let G be a soluble group. Then $hd_k(G) = h(G)$.

Theorem (Stammbach, 1970)

Let k be a field of characteristic zero and let G be a soluble group. Then $hd_k(G) = h(G)$.

Using Stammbach's methods it can be shown that for an arbitrary non-zero commutative ring k and soluble group G then the following are equivalent:

- $\operatorname{hd}_k(G) < \infty$.
- $h(G) < \infty$ and G has no k-torsion.

Theorem (Stammbach, 1970)

Let k be a field of characteristic zero and let G be a soluble group. Then $hd_k(G) = h(G)$.

Using Stammbach's methods it can be shown that for an arbitrary non-zero commutative ring k and soluble group G then the following are equivalent:

- $\operatorname{hd}_k(G) < \infty$.
- $h(G) < \infty$ and G has no k-torsion.

Note

Hirsch length can be given meaning for arbitrary soluble groups and more generally for elementary amenable groups.

Theorem (Stammbach, 1970)

Let k be a field of characteristic zero and let G be a soluble group. Then $hd_k(G) = h(G)$.

Using Stammbach's methods it can be shown that for an arbitrary non-zero commutative ring k and soluble group G then the following are equivalent:

- $\operatorname{hd}_k(G) < \infty$.
- $h(G) < \infty$ and G has no k-torsion.

Note

Hirsch length can be given meaning for arbitrary soluble groups and more generally for elementary amenable groups.

Theorem (Kropholler–Martínez-Pérez, 2021) Let k be a non-zero commutative ring and let G be a soluble group. If $hd_k(G) < \infty$ then $hd_k(G) = h(G)$.

Theorem

Let G be a polyminimax group. Then the finite residual of G is a direct sum of finitely many quasicyclic groups.

Theorem

Let G be a polyminimax group. Then the following are equivalent:

- 1 G is residually finite.
- 2 G is virtually torsion-free.
- In the second second
- 4 G is \mathbb{Q} -linear.

Let *G* be a group. A finitely supported probability density function μ on *G* is an element of the real group ring $\mathbb{R}G$ whose coefficients lie in the interval [0, 1] and with augmentation equal to 1.

Example (Tossing a fair coin)

Let G be an infinite cyclic group generated by x and consider

$$\mu := \frac{1}{2}x^{-1} + \frac{1}{2}x.$$

After *n* tosses, the probability that #Heads - #Tails = m is equal to the coefficient of x^m in

$$\mu^{n} = \left(\frac{1}{2}x^{-1} + \frac{1}{2}x\right)^{n} = \frac{1}{2^{n}}\sum_{j=0}^{n} \binom{n}{j}x^{n-2j}.$$

return probabilities

In the coin toss, the number of head and tails can be equal if n = 2m is even. The return probability is then given by

$$\frac{1}{2^{2m}}\binom{2m}{m}.$$

We can estimate this by using Stirling's formula $n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$.

$$\frac{1}{2^{2m}}\binom{2m}{m}\sim \frac{1}{\sqrt{\pi m}}.$$

Theorem (Kesten, 1959)

Let G be a finitely generated group with a finitely symmetric probability measure μ which support generates G. Then the return probability decays exponentially if and only if G is non-amenable.

So ... to find unusual behviour of return probabilities we might look at the class of amenable groups ... and soluble groups are amenable.

Theorem (Kropholler–Lorensen, 2019)

Let G be a finitely generated polyminimax group. Then there is a surjective group homomorphism $G^* \to G$ where G^* is torsion-free and polyminimax.

Theorem (Pittet–Saloff-Coste 2003, Kropholler–Lorensen 2019) Let *G* be a polyminimax group that is generated by a finite set *X*. Assume that $1 \in X = X^{-1}$. Then

 $P_{G,S}(n) \succeq \exp(n^{1/3}).$

Peter Kropholler A Random Walk through the Theory of Soluble Groups