Algebras defined by Lyndon words and Artin-Schelter regularity Tatiana Gateva-Ivanova

MPIM, Bonn \& American University in Bulgaria

Advances in Group Theory and Applications (AGTA'19) June 25-28, 2019 - Lecce, Italy

Artin-Schelter regular algebras

Def. A connected graded algebra $A=\bigoplus_{i \geq 0} A_{i}$, is Artin-Schelter regular (or AS regular) if

Artin-Schelter regular algebras

Def. A connected graded algebra $A=\bigoplus_{i \geq 0} A_{i}$, is Artin-Schelter regular (or AS regular) if
(i) A has finite global dimension d, that is, each graded A-module has a free resolution of length at most d.

Artin-Schelter regular algebras

Def. A connected graded algebra $A=\bigoplus_{i \geq 0} A_{i}$, is Artin-Schelter regular (or AS regular) if
(i) A has finite global dimension d, that is, each graded A-module has a free resolution of length at most d.
(ii) A has finite Gelfand-Kirillov dimension, meaning that the integer-valued function $i \mapsto \operatorname{dim}_{K} A_{i}$ is bounded by a polynomial in i.

Artin-Schelter regular algebras

Def. A connected graded algebra $A=\bigoplus_{i \geq 0} A_{i}$, is Artin-Schelter regular (or AS regular) if
(i) A has finite global dimension d, that is, each graded A-module has a free resolution of length at most d.
(ii) A has finite Gelfand-Kirillov dimension, meaning that the integer-valued function $i \mapsto \operatorname{dim}_{K} A_{i}$ is bounded by a polynomial in i.
(iii) A is Gorenstein, that is, $E x t_{A}^{i}(K, A)=0$ for $i \neq d$ and $E x t_{A}^{d}(K, A) \cong K$.

Artin-Schelter regular algebras

Def. A connected graded algebra $A=\bigoplus_{i \geq 0} A_{i}$, is Artin-Schelter regular (or AS regular) if
(i) A has finite global dimension d, that is, each graded A-module has a free resolution of length at most d.
(ii) A has finite Gelfand-Kirillov dimension, meaning that the integer-valued function $i \mapsto \operatorname{dim}_{K} A_{i}$ is bounded by a polynomial in i.
(iii) A is Gorenstein, that is, $E x t_{A}^{i}(K, A)=0$ for $i \neq d$ and $E x t_{A}^{d}(K, A) \cong K$.
AS regular algebras were introduced and studied first in [AS, ATV1, ATV2] in 90's. The problems of classification and finding new classes of regular algebras are central for noncommutative algebraic geometry. When $d \leq 3$ all regular algebras are classified. The problem of classification is difficult and remains open even for regular algebras of $g l \mathrm{dim}=5$.

Theorem
Let $A=\boldsymbol{k}\langle X\rangle /(\Re)$ be a quantum binomial algebra, $|X|=n$ The following conditions are equivalent:
(1) A is an Artin-Schelter regular algebra, where \Re is a Gr"bner basis.
(2) A is a Yang-Baxter algebra, that is the automorphism $R=R(\Re): V^{\otimes 2} \longrightarrow V^{\otimes 2}$ is a solution of the Yang-Baxter equation.
(3) A is a binomial skew polynomial ring, with respect to some enumeration of X.
(3) The Hilbert series of A is

$$
H_{A}(z)=\frac{1}{(1-z)^{n}}
$$

Each of these conditions implies that A is Koszul and a Noetherian domain.

Definition

Let $V=\operatorname{Span}_{\mathbf{k}} X$. Let $\Re \subset \mathbf{k}\langle X\rangle$ be a set of quadratic binomials, satisfying the following conditions:
B1 Each $f \in \Re$ has the shape $f=x y-c_{y x} y^{\prime} x^{\prime}$, where $c_{x y} \in \mathbf{k}^{\times}$ and $x, y, x^{\prime}, y^{\prime} \in X$.
B2 Each monomial $x y$ of length 2 occurs at most once in \Re.
The (involutive) automorphism $R=R(\Re): V^{\otimes 2} \longrightarrow V^{\otimes 2}$ associated with \Re is defined as

$$
\begin{aligned}
& R(x \otimes y)=c_{x y} y^{\prime} \otimes x^{\prime}, \text { and } R\left(y^{\prime} \otimes x^{\prime}\right)=\left(c_{x y}\right)^{-1} x \otimes y \\
& \text { iff } x y-c_{x y} y^{\prime} x^{\prime} \in \Re . \\
& R(x \otimes y)=x \otimes y \text { iff } x y \text { does not occur in } \Re .
\end{aligned}
$$

The algebra $A=\mathbf{k}\langle X\rangle /(\Re)$ is a quantum binomial algebra if the relations are square-free and the associated quadratic set (X, r) is nondegerate. A is a Yang-Baxter algebra (Manin,1988), if the map $R=R(\Re): V^{\otimes 2} \longrightarrow V^{\otimes 2}$, is a solution of the YBE, $R^{12} R^{23} R^{12}=R^{23} R^{12} R^{23}$.

Settings: $X=\left\{x_{1}, \cdots, x_{n}\right\}$ is a finite alphabet; K is a field, W is an antichain of monomials in X^{+}

We study classes $\mathfrak{C}(X, W)$ consisting of associative graded K-algebras $A=K\langle X\rangle / I$ generated by X and with a fixed obstructions set W. Our study is related to the following (at least):

Settings: $X=\left\{x_{1}, \cdots, x_{n}\right\}$ is a finite alphabet; K is a field, W is an antichain of monomials in X^{+}

We study classes $\mathfrak{C}(X, W)$ consisting of associative graded K-algebras $A=K\langle X\rangle / I$ generated by X and with a fixed obstructions set W. Our study is related to the following (at least):
(i) A classical combinatorial problem in algebra- the study of algebraic objects presented via generators and relations.

Settings: $X=\left\{x_{1}, \cdots, x_{n}\right\}$ is a finite alphabet; K is a field, W is an antichain of monomials in X^{+}

We study classes $\mathfrak{C}(X, W)$ consisting of associative graded K-algebras $A=K\langle X\rangle / I$ generated by X and with a fixed obstructions set W. Our study is related to the following (at least):
(i) A classical combinatorial problem in algebra- the study of algebraic objects presented via generators and relations.
(ii) Main Question.

Settings: $X=\left\{x_{1}, \cdots, x_{n}\right\}$ is a finite alphabet; K is a field, W is an antichain of monomials in X^{+}

We study classes $\mathfrak{C}(X, W)$ consisting of associative graded K-algebras $A=K\langle X\rangle / I$ generated by X and with a fixed obstructions set W. Our study is related to the following (at least):
(i) A classical combinatorial problem in algebra- the study of algebraic objects presented via generators and relations.
(ii) Main Question.

When the class $\mathfrak{C}(X, W)$ contains an s.f.p. AS regular algebra?

Settings: $X=\left\{x_{1}, \cdots, x_{n}\right\}$ is a finite alphabet; K is a field, W is an antichain of monomials in X^{+}

We study classes $\mathfrak{C}(X, W)$ consisting of associative graded K-algebras $A=K\langle X\rangle / I$ generated by X and with a fixed obstructions set W. Our study is related to the following (at least):
(i) A classical combinatorial problem in algebra- the study of algebraic objects presented via generators and relations.
(ii) Main Question.

When the class $\mathfrak{C}(X, W)$ contains an s.f.p. AS regular algebra?
(iii) An Old Open Question.

Settings: $X=\left\{x_{1}, \cdots, x_{n}\right\}$ is a finite alphabet; K is a field, W is an antichain of monomials in X^{+}

We study classes $\mathfrak{C}(X, W)$ consisting of associative graded K-algebras $A=K\langle X\rangle / I$ generated by X and with a fixed obstructions set W. Our study is related to the following (at least):
(i) A classical combinatorial problem in algebra- the study of algebraic objects presented via generators and relations.
(ii) Main Question.

When the class $\mathfrak{C}(X, W)$ contains an s.f.p. AS regular algebra?
(iii) An Old Open Question.

If a finitely generated graded K-algebra A has polynomial growth, and finite global dimension d, is it true that $G K \operatorname{dim} A=d=g l \operatorname{dim} A$?

Settings: $X=\left\{x_{1}, \cdots, x_{n}\right\}$ is a finite alphabet; K is a field, W is an antichain of monomials in X^{+}

We study classes $\mathfrak{C}(X, W)$ consisting of associative graded K-algebras $A=K\langle X\rangle / I$ generated by X and with a fixed obstructions set W. Our study is related to the following (at least):
(i) A classical combinatorial problem in algebra- the study of algebraic objects presented via generators and relations.
(ii) Main Question.

When the class $\mathfrak{C}(X, W)$ contains an s.f.p. AS regular algebra?
(iii) An Old Open Question.

If a finitely generated graded K-algebra A has polynomial growth, and finite global dimension d, is it true that $G K \operatorname{dim} A=d=g l \operatorname{dim} A$?
True, whenever the monomial algebra $A_{W} \in \mathcal{C}(X, W)$ has finite global dimension, see Theorem A.

Definitions and Conventions.

Let $X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a finite alphabet. X^{*} and X^{+}denote, resp., the free monoid, and the free semigroup generated by X, $\left(X^{+}=X^{*}-\{1\}\right)$. We consider two orderings on X^{*}.

1. The lexicographic order $<$ on $X^{+}, x_{1}<x_{2}<\cdots<x_{n}$. $u<v$ iff either $v=u b, b \in X^{+}$, or

$$
u=a x b, v=a y c \text { with } x<y, x, y \in X, a, b, c \in X^{*} .
$$

Definitions and Conventions.

Let $X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a finite alphabet. X^{*} and X^{+}denote, resp., the free monoid, and the free semigroup generated by X, $\left(X^{+}=X^{*}-\{1\}\right)$. We consider two orderings on X^{*}.

1. The lexicographic order $<$ on $X^{+}, x_{1}<x_{2}<\cdots<x_{n}$. $u<v$ iff either $v=u b, b \in X^{+}$, or

$$
u=a x b, v=a y c \text { with } x<y, x, y \in X, a, b, c \in X^{*} .
$$

2. The deg-lex ordering \preceq on $X^{*}, x_{n} \prec x_{n-1} \prec \cdots \prec x_{2} \prec x_{1}$.

$$
u \prec v \text { iff }|u|<|v| \text { or }|u|=|v| \text { and } u>v .
$$

Definitions and Conventions.

Let $X=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a finite alphabet. X^{*} and X^{+}denote, resp., the free monoid, and the free semigroup generated by X, $\left(X^{+}=X^{*}-\{1\}\right)$. We consider two orderings on X^{*}.

1. The lexicographic order $<$ on $X^{+}, x_{1}<x_{2}<\cdots<x_{n}$. $u<v$ iff either $v=u b, b \in X^{+}$, or

$$
u=a x b, v=a y c \text { with } x<y, x, y \in X, a, b, c \in X^{*} .
$$

2. The deg-lex ordering \preceq on $X^{*}, x_{n} \prec x_{n-1} \prec \cdots \prec x_{2} \prec x_{1}$.

$$
u \prec v \text { iff }|u|<|v| \text { or }|u|=|v| \text { and } u>v .
$$

Conv. All Gröbner bases of (associative) ideals I in $K\langle X\rangle$ and all Lyndon-Shyrshov Lie bases of Lie ideals Jin Lie (X) will be considered with respect to " \prec "-the deg-lex well-ordering on X^{*}.
3. A p. o. \sqsubset on X^{+}is defined as:
3. A p. o. \sqsubset on X^{+}is defined as:
$a \sqsubset b \Longleftrightarrow a$ is a proper subword of b, i.e. $b=u a v,|b|>|a|$.
3. A p. o. \sqsubset on X^{+}is defined as: $a \sqsubset b \Longleftrightarrow a$ is a proper subword of b, i.e. $b=u a v,|b|>|a|$.
Def. Let $W \subseteq X^{+}$. If no two elements of W are comparable w.r.t. \sqsubset, W is called an antichain of monomials.
3. A p. o. \sqsubset on X^{+}is defined as:
$a \sqsubset b \Longleftrightarrow a$ is a proper subword of b, i.e. $b=u a v,|b|>|a|$.
Def. Let $W \subseteq X^{+}$. If no two elements of W are comparable w.r.t. \sqsubset, W is called an antichain of monomials.
Def. A word $a \in X^{*}$ is W-normal (W-standard) if $u \nsubseteq a, \forall u \in W$.

$$
\mathfrak{N}=\mathfrak{N}(W):=\left\{a \in X^{*} \mid a \text { is } W \text {-normal }\right\}
$$

The set $\mathfrak{N}(W)$ is closed under taking sub-words.
3. A p. o. \sqsubset on X^{+}is defined as: $a \sqsubset b \Longleftrightarrow a$ is a proper subword of b, i.e. $b=u a v,|b|>|a|$.
Def. Let $W \subseteq X^{+}$. If no two elements of W are comparable w.r.t. \sqsubset, W is called an antichain of monomials.
Def. A word $a \in X^{*}$ is W-normal (W-standard) if $u \nsubseteq a, \forall u \in W$.

$$
\mathfrak{N}=\mathfrak{N}(W):=\left\{a \in X^{*} \mid a \text { is } W \text {-normal }\right\} .
$$

The set $\mathfrak{N}(W)$ is closed under taking sub-words.
Def. Let I be an ideal in $K\langle X\rangle, A=K\langle X\rangle / I, \bar{I}$ the set of all highest monomials of elements of I, w.r.t. \prec. The set of obstructions $W=W(I)$ is the subset of all words in \bar{I} which are minimal w.r.t. \sqsubseteq :

$$
W(I)=\{u \in \bar{I} \mid v \sqsubseteq u, v \in \bar{I} \Longrightarrow v=u\} .
$$

W is the unique maximal antichain of monomials in \bar{I}.

Remarks

$W(I)$ depends on the ideal I, as well as, on the order \prec on X^{+}. Let $A=K\langle X\rangle / I$. The theory of Gröbner bases implies that there is an isomorphism of K-vector spaces

$$
K\langle X\rangle=\operatorname{Span}_{K} \mathfrak{N}(W) \bigoplus I, \quad A \cong \operatorname{Span}_{K} \mathfrak{N}(W)
$$

$W=W(I)$ is also called the set of obstructions for \mathfrak{N}, or the set of obstructions for A.

NB. It is known that the ideal I has unique reduced Groebner basis
$G_{0}=\left\{f_{u}=u+h_{u} \mid u \in W, \bar{h} \prec u h_{u}\right.$ in normal form $\left.\bmod G_{0}-f_{u}\right\}$,
In other words, $W=\overline{G_{0}}$.

Example. $X=\{x<y\}, W=\{x x y, x y y\}$, is an antichain of Lyndon words, the class $\mathfrak{C}(X, W)$ contains two non-isomorphic regular algebras: A, B.
(i) $A=K\langle X\rangle / I$, where

$$
\begin{array}{ll}
I=\left(f_{1}, f_{2}\right), & \begin{array}{l}
f_{1}=x^{2} y-y x^{2}, \quad \overline{f_{1}}=x x y \in W \\
\\
\mathfrak{N}=\left\{f_{1}, f_{2}\right\}
\end{array} \\
\begin{array}{l}
f_{2}=x y^{2}+y^{2} x \quad \overline{f_{2}}=x y y \in W . \\
\text { is the reduced Gröbner basis of } I \\
W= \\
\text { is the set of obstructions for } A
\end{array} \\
N=N(W)= & \{x<x y<y\} \text { is the set of Lyndon atoms } \\
\mathfrak{N}(W)= & \left\{y^{\alpha_{1}}(x y)^{\alpha_{2}} x^{\alpha_{3}} \mid \alpha_{i} \geq 0\right\} \text { the normal } K \text {-basis of } A
\end{array}
$$

Example. $X=\{x<y\}, W=\{x x y, x y y\}$, is an

 antichain of Lyndon words, the class $\mathfrak{C}(X, W)$ contains two non-isomorphic regular algebras: A, B.(i) $A=K\langle X\rangle / I$, where

$$
\begin{array}{ll}
I=\left(f_{1}, f_{2}\right), & f_{1}=x^{2} y-y x^{2}, \overline{f_{1}}=x x y \in W \\
& f_{2}=x y^{2}+y^{2} x \overline{f_{2}}=x y y \in W . \\
\mathfrak{R}=\left\{f_{1}, f_{2}\right\} & \text { is the reduced Gröbner basis of } I \\
W=\overline{\mathfrak{R}} & \text { is the set of obstructions for } A
\end{array}
$$

$N=N(W)=\{x<x y<y\}$ is the set of Lyndon atoms
$\mathfrak{N}(W)=\quad\left\{y^{\alpha_{1}}(x y)^{\alpha_{2}} x^{\alpha_{3}} \mid \alpha_{i} \geq 0\right\}$ the normal K-basis of A
$A \in \mathfrak{C}(X, W)$ is an AS-regular algebra of $g l \operatorname{dim} A=3$, type A.

The same class $\mathfrak{C}(X, W)$, with $X=\{x<y\}$, $W=\{x x y, \quad x y y\}, N=\{x<x y<y\}$
(ii) $B=K\langle x, y\rangle / I \in \mathfrak{C}(X, W)$,

$$
\begin{aligned}
& I=\left(w_{1}, w_{2}\right)=([W]) \\
& w_{1}=[x x y]=[x,[x, y]]=x x y-2 x y x+y x x ; \overline{w_{1}}=x x y \in W \\
& w_{2}=[x y y]=[[x, y], y]=x y y-2 y x y+y y x ; \overline{w_{2}}=x y y \in W . \\
& \mathfrak{R}=\left\{w_{1}, w_{2}\right\} \text { is the reduced Gröbner basis of } I
\end{aligned}
$$

W is the obstructions set for B,
$\mathfrak{N}(\mathfrak{W})=\left\{y^{\alpha_{1}}(x y)^{\alpha_{2}} x^{\alpha_{3}} \mid \alpha_{i} \geq 0\right\}$ the normal K-basis of B

The same class $\mathfrak{C}(X, W)$, with $X=\{x<y\}$, $W=\{x x y, \quad x y y\}, N=\{x<x y<y\}$
(ii) $B=K\langle x, y\rangle / I \in \mathfrak{C}(X, W)$,

$$
\begin{aligned}
& I=\left(w_{1}, w_{2}\right)=([W]) \\
& w_{1}=[x x y]=[x,[x, y]]=x x y-2 x y x+y x x ; \overline{w_{1}}=x x y \in W \\
& w_{2}=[x y y]=[[x, y], y]=x y y-2 y x y+y y x ; \overline{w_{2}}=x y y \in W . \\
& \mathfrak{R}=\left\{w_{1}, w_{2}\right\} \text { is the reduced Gröbner basis of } I
\end{aligned}
$$

$$
W \text { is the obstructions set for } B
$$

$$
\mathfrak{N}(\mathfrak{W})=\left\{y^{\alpha_{1}}(x y)^{\alpha_{2}} x^{\alpha_{3}} \mid \alpha_{i} \geq 0\right\} \text { the normal } K \text {-basis of } B
$$

$B=U \mathfrak{g}$, the enveloping algebra of the 3-dimensional Lie algebra $\mathfrak{g}=\operatorname{Lie}(x, y) /([x x y],[x y y])_{L i e}$, with a K-basis $[N]=\{x,[x, y], y\}$, hence B is AS regular.

The same class $\mathfrak{C}(X, W)$, with $X=\{x<y\}$, $W=\{x x y, \quad x y y\}, N=\{x<x y<y\}$
(ii) $B=K\langle x, y\rangle / I \in \mathfrak{C}(X, W)$,

$$
\begin{aligned}
& I=\left(w_{1}, w_{2}\right)=([W]) \\
& w_{1}=[x x y]=[x,[x, y]]=x x y-2 x y x+y x x ; \overline{w_{1}}=x x y \in W \\
& w_{2}=[x y y]=[[x, y], y]=x y y-2 y x y+y y x ; \overline{w_{2}}=x y y \in W . \\
& \mathfrak{R}=\left\{w_{1}, w_{2}\right\} \text { is the reduced Gröbner basis of } I
\end{aligned}
$$

W is the obstructions set for B,
$\mathfrak{N}(\mathfrak{W})=\left\{y^{\alpha_{1}}(x y)^{\alpha_{2}} x^{\alpha_{3}} \mid \alpha_{i} \geq 0\right\}$ the normal K-basis of B
$B=U \mathfrak{g}$, the enveloping algebra of the 3-dimensional Lie algebra $\mathfrak{g}=\operatorname{Lie}(x, y) /([x x y],[x y y])_{L i e}$, with a K-basis $[N]=\{x,[x, y], y\}$, hence B is AS regular.
$\mathfrak{g} \simeq \mathfrak{h}_{3}$, the 3-dimensional Heisenberg algebra with a K-basis x, y, t, and relations $[x, y]=t,[x, t]=0,[y, t]=0$.

First results-the general case when $A=K\langle X\rangle / I$ in $\mathfrak{C}(X, W)$ has polynomial growth and finite global dimension. We prove that

Given the class $\mathfrak{C}(X, W)$, such that the monomial algebra $A_{W}=K\langle X\rangle /(W) \in \mathfrak{C}(X, W)$ has $g l \operatorname{dim} A_{W}=d<\infty, G K \operatorname{dim} A_{W}<\infty$. Then

First results-the general case when $A=K\langle X\rangle / I$ in $\mathfrak{C}(X, W)$ has polynomial growth and finite global dimension. We prove that

Given the class $\mathfrak{C}(X, W)$, such that the monomial algebra
$A_{W}=K\langle X\rangle /(W) \in \mathfrak{C}(X, W)$ has
$g l \operatorname{dim} A_{W}=d<\infty, G K \operatorname{dim} A_{W}<\infty$. Then
Every $A \in \mathfrak{C}(X, W)$ satisfies

$$
g l . \operatorname{dim} A=G K \operatorname{dim} A=d, \quad \text { and }
$$

First results-the general case when $A=K\langle X\rangle / I$ in $\mathfrak{C}(X, W)$ has polynomial growth and finite global dimension. We prove that

Given the class $\mathfrak{C}(X, W)$, such that the monomial algebra $A_{W}=K\langle X\rangle /(W) \in \mathfrak{C}(X, W)$ has $g l \operatorname{dim} A_{W}=d<\infty, G K \operatorname{dim} A_{W}<\infty$. Then
Every $A \in \mathfrak{C}(X, W)$ satisfies

$$
g l . \operatorname{dim} A=G K \operatorname{dim} A=d, \quad \text { and }
$$

$$
|W| \leq d(d-1) / 2 .
$$

In particular, A is standard finitely presented (s.f.p.).

First results-the general case when $A=K\langle X\rangle / I$ in $\mathfrak{C}(X, W)$ has polynomial growth and finite global dimension. We prove that

Given the class $\mathfrak{C}(X, W)$, such that the monomial algebra $A_{W}=K\langle X\rangle /(W) \in \mathfrak{C}(X, W)$ has $g l \operatorname{dim} A_{W}=d<\infty, G K \operatorname{dim} A_{W}<\infty$. Then
Every $A \in \mathfrak{C}(X, W)$ satisfies

$$
\text { gl. } \operatorname{dim} A=G K \operatorname{dim} A=d, \quad \text { and }
$$

$$
|W| \leq d(d-1) / 2 .
$$

In particular, A is standard finitely presented (s.f.p.).
Remark. In general, gl. $\operatorname{dim} A \leq g l . \operatorname{dim} A_{W}$ (always) and I have examples when $g l . \operatorname{dim} A<g l . \operatorname{dim} A_{W}$. Surprisingly, when A_{W} has $g l \operatorname{dim} A_{W}=d<\infty$ and polynomial growth, the global dimension gl. $\operatorname{dim} A$ does not depend on the shape of the defining relations of A but only on the set of obstructions W.

Anick. The set of n-chains on W is defined recursively.

A (-1)-chain is the monomial 1 , a 0 -chain is any element of X, and a 1-chain is a word in W. An $(n+1)$-prechain is a word $w \in X^{+}$, which can be factored in two different ways $w=u v q=u s t$ such that $t \in W, u$ is an $n-1$ chain, $u v$ is an n-chain, and s is a proper left segment of v. An $(n+1)$-prechain is an $(n+1)$-chain if no proper left segment of it is an n-prechain. In this case the monomial q is called the tail of the n-chain w.

Theorem [Anick] Suppose $W \subset X^{+}$is an antichain of monomials. The monomial algebra $A_{W}=K\langle X\rangle /(W)$ has $g l \operatorname{dim} A_{W}=d$ iff there are no d-chains on W but there exists a $d-1$ chain on W.

Theorem I. Suppose W is an antichain in X^{+},

 s.t. there are no d-chains but there exists a $d-1$-chain on W. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$, with $G K \operatorname{dim} A<\infty$. Then:(1) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$.

Theorem I. Suppose W is an antichain in X^{+},

s.t. there are no d-chains but there exists a $d-1$-chain on W. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$, with $G K \operatorname{dim} A<\infty$. Then:
(1) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$.
(2) There exists a finite set M of normal words, "atoms", in the sense of Anick: $M=\left\{a_{1}, a_{2}, \cdots, a_{d}\right\} \subset \mathfrak{N}, X \subseteq M$, s.t.

Theorem I. Suppose W is an antichain in X^{+},

s.t. there are no d-chains but there exists a $d-1$-chain on W. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$, with $G K \operatorname{dim} A<\infty$. Then:
(1) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$.
(2) There exists a finite set M of normal words, "atoms", in the sense of Anick: $M=\left\{a_{1}, a_{2}, \cdots, a_{d}\right\} \subset \mathfrak{N}, X \subseteq M$, s.t.
(2.a) The normal K-basis \mathfrak{N} of A and its Hilbert series satisfy:

$$
\begin{aligned}
& \mathfrak{N}=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{d}^{k_{d}} \mid k_{i} \geq 0,1 \leq i \leq d\right\} \\
& H_{A}(z)=\prod_{1 \leq i \leq d}\left(1-z^{\left|a_{i}\right|}\right)^{-1}
\end{aligned}
$$

Theorem I. Suppose W is an antichain in X^{+},

s.t. there are no d-chains but there exists a $d-1$-chain on W. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$, with $G K \operatorname{dim} A<\infty$. Then:
(1) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$.
(2) There exists a finite set M of normal words, "atoms", in the sense of Anick: $M=\left\{a_{1}, a_{2}, \cdots, a_{d}\right\} \subset \mathfrak{N}, X \subseteq M$, s.t.
(2.a) The normal K-basis \mathfrak{N} of A and its Hilbert series satisfy:

$$
\begin{aligned}
& \mathfrak{N}=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{d}^{k_{d}} \mid k_{i} \geq 0,1 \leq i \leq d\right\} \\
& H_{A}(z)=\prod_{1 \leq i \leq d}\left(1-z^{\left|a_{i}\right|}\right)^{-1}
\end{aligned}
$$

(2.b) $\forall w \in W$ has the shape $w=a_{j} a_{i}, 1 \leq i<j \leq d$.

Theorem I. Suppose W is an antichain in X^{+},

s.t. there are no d-chains but there exists a $d-1$-chain on W. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$, with $G K \operatorname{dim} A<\infty$. Then:
(1) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$.
(2) There exists a finite set M of normal words, "atoms", in the sense of Anick: $M=\left\{a_{1}, a_{2}, \cdots, a_{d}\right\} \subset \mathfrak{N}, X \subseteq M$, s.t.
(2.a) The normal K-basis \mathfrak{N} of A and its Hilbert series satisfy:

$$
\begin{aligned}
& \mathfrak{N}=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{d}^{k_{d}} \mid k_{i} \geq 0,1 \leq i \leq d\right\} \\
& H_{A}(z)=\prod_{1 \leq i \leq d}\left(1-z^{\left|a_{i}\right|}\right)^{-1}
\end{aligned}
$$

(2.b) $\forall w \in W$ has the shape $w=a_{j} a_{i}, 1 \leq i<j \leq d$.
(2.c) A is s.f.f., the ideal I has a finite reduced Gröbner basis \Re, where $|\mathfrak{R}|=|W| \leq d(d-1) / 2$.

Theorem I. Suppose W is an antichain in X^{+},

s.t. there are no d-chains but there exists a $d-1$-chain on W. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$, with $G K \operatorname{dim} A<\infty$. Then:
(1) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$.
(2) There exists a finite set M of normal words, "atoms", in the sense of Anick: $M=\left\{a_{1}, a_{2}, \cdots, a_{d}\right\} \subset \mathfrak{N}, X \subseteq M$, s.t.
(2.a) The normal K-basis \mathfrak{N} of A and its Hilbert series satisfy:

$$
\begin{aligned}
& \mathfrak{N}=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{d}^{k_{d}} \mid k_{i} \geq 0,1 \leq i \leq d\right\} \\
& H_{A}(z)=\prod_{1 \leq i \leq d}\left(1-z^{\left|a_{i}\right|}\right)^{-1}
\end{aligned}
$$

(2.b) $\forall w \in W$ has the shape $w=a_{j} a_{i}, 1 \leq i<j \leq d$.
(2.c) A is s.f.f., the ideal I has a finite reduced Gröbner basis \Re, where $|\mathfrak{R}|=|W| \leq d(d-1) / 2$.

Theorem I. Suppose W is an antichain in X^{+},

s.t. there are no d-chains but there exists a $d-1$-chain on W. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$, with $G K \operatorname{dim} A<\infty$. Then:
(1) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$.
(2) There exists a finite set M of normal words, "atoms", in the sense of Anick: $M=\left\{a_{1}, a_{2}, \cdots, a_{d}\right\} \subset \mathfrak{N}, X \subseteq M$, s.t.
(2.a) The normal K-basis \mathfrak{N} of A and its Hilbert series satisfy:

$$
\begin{aligned}
& \mathfrak{N}=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{d}^{k_{d}} \mid k_{i} \geq 0,1 \leq i \leq d\right\} \\
& H_{A}(z)=\prod_{1 \leq i \leq d}\left(1-z^{\left|a_{i}\right|}\right)^{-1}
\end{aligned}
$$

(2.b) $\forall w \in W$ has the shape $w=a_{j} a_{i}, 1 \leq i<j \leq d$.
(2.c) A is s.f.f., the ideal I has a finite reduced Gröbner basis \Re, where $|\mathfrak{R}|=|W| \leq d(d-1) / 2$.
(3) FAEQ

Theorem I. Suppose W is an antichain in X^{+},

s.t. there are no d-chains but there exists a $d-1$-chain on W. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$, with $G K \operatorname{dim} A<\infty$. Then:
(1) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$.
(2) There exists a finite set M of normal words, "atoms", in the sense of Anick: $M=\left\{a_{1}, a_{2}, \cdots, a_{d}\right\} \subset \mathfrak{N}, X \subseteq M$, s.t.
(2.a) The normal K-basis \mathfrak{N} of A and its Hilbert series satisfy:
$\mathfrak{N}=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{d}^{k_{d}} \mid k_{i} \geq 0,1 \leq i \leq d\right\}$,
$H_{A}(z)=\prod_{1 \leq i \leq d}\left(1-z^{\left|a_{i}\right|}\right)^{-1}$.
(2.b) $\forall w \in W$ has the shape $w=a_{j} a_{i}, 1 \leq i<j \leq d$.
(2.c) A is s.f.f., the ideal I has a finite reduced Gröbner basis \Re, where $|\mathfrak{\Re}|=|W| \leq d(d-1) / 2$.
(3) FAEQ
(a) $|W|=d(d-1) / 2$; (b) $d=g l \operatorname{dim} A=n$; (c) A is a PBW algebra (Priddy); (d) $M=X$ and \exists possibly new, ordering of $X, X=\left\{y_{1} \leftarrow \cdots \leftarrow y_{n}\right\}$, s.t. $W=\left\{y_{j} y_{i} \mid 1 \leq i<j \leq n\right\}$.

Theorem I. Suppose W is an antichain in X^{+},

s.t. there are no d-chains but there exists a $d-1$-chain on W. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$, with $G K \operatorname{dim} A<\infty$. Then:
(1) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$.
(2) There exists a finite set M of normal words, "atoms", in the sense of Anick: $M=\left\{a_{1}, a_{2}, \cdots, a_{d}\right\} \subset \mathfrak{N}, X \subseteq M$, s.t.
(2.a) The normal K-basis \mathfrak{N} of A and its Hilbert series satisfy:
$\mathfrak{N}=\left\{a_{1}^{k_{1}} a_{2}^{k_{2}} \cdots a_{d}^{k_{d}} \mid k_{i} \geq 0,1 \leq i \leq d\right\}$,
$H_{A}(z)=\prod_{1 \leq i \leq d}\left(1-z^{\left|a_{i}\right|}\right)^{-1}$.
(2.b) $\forall w \in W$ has the shape $w=a_{j} a_{i}, 1 \leq i<j \leq d$.
(2.c) A is s.f.p., the ideal I has a finite reduced Gröbner basis \Re, where $|\mathfrak{R}|=|W| \leq d(d-1) / 2$.
(3) FAEQ
(a) $|W|=d(d-1) / 2$; (b) $d=g l \operatorname{dim} A=n$; (c) A is a PBW algebra (Priddy); (d) $M=X$ and \exists possibly new, ordering of $X, X=\left\{y_{1} \leftarrow \cdots \leftarrow y_{n}\right\}$, s.t. $W=\left\{y_{j} y_{i} \mid 1 \leq i<j \leq n\right\}$.
In this case A is Koszul.

Classes $\mathfrak{C}(X, W)$, where W is an anticahin of Lyndon words are of special interest.

A nonperiodic word $u \in X^{+}$is a Lyndon word if it is minimal (with respect to $<$) in its conjugate class

$$
u=a b, a, b \in X^{+} \Longrightarrow u<b a .
$$

L denotes the set of Lyndon words in X^{+}. By definition
$X \subset L$.
Example. $X=\{x<y\}$. The Lyndon words of length ≤ 5 are:

$$
\begin{aligned}
& x, y, x y, x x y, x y y, \\
& x x x y, x x y y, x y y y, \\
& x x y x y, x y x y y y, \quad x^{k} y^{l}, k+l=5,1 \leq k, l \leq 4 .
\end{aligned}
$$

Some Facts. (1) If $a<b$ are Lyndon words then $a b$ is a Lyndon word, so $a<a b<b$.
(2) Let $w \in L$. If $w=a b$, where b is the longest proper right segment of w with $b \in L$ then $a \in L$. This is the (right) standard factorization of w and denoted as $w=(a, b)=(a, b)_{r}$. (Used for the standard Lie bracketing of Lyndon words).

Obstructions set W, Lyndon Atoms $N=N(W)$. Duality $W \longleftrightarrow N(W)$

Definition. Given an antichain W of Lyndon words, the set of W-normal Lyndon words is denoted by $N=N(W)$, and is called a the set of Lyndon atoms corresponding to W.

$$
N=N(W)=\mathfrak{N}(W) \bigcap L
$$

We study classes $\mathfrak{C}(X, W)$ of associative graded K-algebras A generated by X and with a fixed obstructions set W consisting of Lyndon words in the alphabet X. Clearly, the monomial algebra $A_{\text {mon }}=K\langle X\rangle /(W) \in \mathfrak{C}(X, W)$. Moreover, all algebras A in $\mathfrak{C}(X, W)$ share the same PBW type K-basis \mathfrak{N}, built out of the Lyndon atoms N. In general, the set N may be infinite. N "controls" the GK dim A, and W "controls" gldim $A_{\text {mon }}$:
A has polynomial growth of degree d iff $|N|=d$, moreover $g l \operatorname{dim} A \leq g l \operatorname{dim} A_{W} \leq|W|-1$, whenever W is a finite set.

Relations between W and $N(W)$, Lyndon pairs (N, W)

Each antichain $W \subset L$ determines uniquely a set of Lyndon atoms $N=N(W) \subset L$. It satisfies

C1. $X \subseteq N$.
C2. $\forall v \in L, \forall u \in N, v \sqsubseteq u \Longrightarrow v \in N$.
C3. $u \in N \Longleftrightarrow u \in L$ and $u \notin(W)$.
Conversely, each set N of Lyndon words satisfying conditions $\mathbf{C 1}$ and $\mathbf{C 2}$ determines uniquely an antichain of Lyndon monomials $W=W(N)$, such that condition C3 holds, and N is exactly the set of Lyndon atoms corresponding to W. In this case (N, W) will be called a Lyndon pair.

Open Question 1. Is it true that if A is an (s.f.p.)
Artin-Schelter regular algebra there exists an appropriate ordering $<$ on X, so that the obstructions set W of A consists of Lyndon words?

True for the class of \mathbb{Z}^{2}-graded AS-regular algebras $A=K\left\langle x_{1}, x_{2}\right\rangle / I$ of global dimension 5.
(Floystad-Watne,2011, G.S. Zhou, D.M. Lu, 2013)

Open Question 2. Let (N, W) be a Lyndon pair in X^{+}. When the class $\mathfrak{C}(X, W)$ contains AS-regular algebras?

Some answers.

Open Question 2. Let (N, W) be a Lyndon pair in X^{+}. When the class $\mathfrak{C}(X, W)$ contains AS-regular algebras?

Some answers.
(1) If "Yes" then N is finite, $|N|=d$, hence $|W| \leq d(d-1) / 2$.

This is not sufficient.

Open Question 2. Let (N, W) be a Lyndon pair in X^{+}. When the class $\mathfrak{C}(X, W)$ contains AS-regular algebras?

Some answers.
(1) If "Yes" then N is finite, $|N|=d$, hence $|W| \leq d(d-1) / 2$.

This is not sufficient.
(2) $\mathfrak{C}(X, W)$ contains an abundance of AS-regular algebras, whenever $|W|=d(d-1) / 2$. Here $N=X, g l \operatorname{dim} A=n$ (Thm II) e.g. $n=8, \mathfrak{C}(X, W)$ contains ≥ 2400 AS-reg.alg.

Open Question 2. Let (N, W) be a Lyndon pair in X^{+}.

 When the class $\mathfrak{C}(X, W)$ contains AS-regular algebras?Some answers.
(1) If "Yes" then N is finite, $|N|=d$, hence $|W| \leq d(d-1) / 2$. This is not sufficient.
(2) $\mathfrak{C}(X, W)$ contains an abundance of AS-regular algebras, whenever $|W|=d(d-1) / 2$. Here $N=X, g l \operatorname{dim} A=n$ (Thm II) e.g. $n=8, \mathfrak{C}(X, W)$ contains ≥ 2400 AS-reg.alg.
(3) $\mathfrak{C}(X, W)$ contains at least one AS-regular algebra, whenever $|W|=(d-1), N$ is connected, here $g l \operatorname{dim} A=d$, see Thm III.

Open Question 2. Let (N, W) be a Lyndon pair in X^{+}.

 When the class $\mathfrak{C}(X, W)$ contains AS-regular algebras?Some answers.
(1) If "Yes" then N is finite, $|N|=d$, hence $|W| \leq d(d-1) / 2$. This is not sufficient.
(2) $\mathfrak{C}(X, W)$ contains an abundance of AS-regular algebras, whenever $|W|=d(d-1) / 2$. Here $N=X, g l \operatorname{dim} A=n$ (Thm II) e.g. $n=8, \mathfrak{C}(X, W)$ contains ≥ 2400 AS-reg.alg.
(3) $\mathfrak{C}(X, W)$ contains at least one AS-regular algebra, whenever $|W|=(d-1), N$ is connected, here $g l \operatorname{dim} A=d$, see Thm III.
(4) $\mathfrak{C}(X, W)$ contains an AS-regular algebra of $g l \operatorname{dim} A=|N|$, whenever $\mathfrak{g}=\operatorname{Lie}(X) /([W])$, has a K-basis $[N]$, or equivalently $[W]$ is a GS-Lie basis (this can be effectively verified). Here $A=U \mathfrak{g}$. In this case N is connected.
(5) $\mathfrak{C}\left(X, W\left(F i b_{6}\right)\right)$ contains the monomial Fibonacci -Lyndon algebra $F_{6}, G K \operatorname{dim} F_{6}=g l$. $\operatorname{dim} F_{6}=6$, but does not contain a \mathbb{Z}_{2}-graded AS-regular algebras.

Proposition 1.

- (1) There exists a one-to-one correspondence between the set \mathbb{W} of all antichains W of Lyndon words with $X \bigcap W=\varnothing$ and the set \mathbb{N} of all sets $N \subset L$ satisfying C1 and C2.

$$
\begin{array}{lll}
\phi: & \mathbb{W} \longrightarrow \mathbb{N} & W \mapsto N(W) \\
\phi^{-1}: & \mathbb{N} \longrightarrow \mathbb{W} & N \mapsto W(N) \\
& N(W(N))=N ; & W(N(W))=W
\end{array}
$$

Proposition 1.

- (1) There exists a one-to-one correspondence between the set \mathbb{W} of all antichains W of Lyndon words with $X \bigcap W=\varnothing$ and the set \mathbb{N} of all sets $N \subset L$ satisfying C1 and C2.

$$
\begin{array}{lll}
\phi: & \mathbb{W} \longrightarrow \mathbb{N} & W \mapsto N(W) \\
\phi^{-1}: & \mathbb{N} \longrightarrow \mathbb{W} & N \mapsto W(N) . \\
& N(W(N))=N ; & W(N(W))=W
\end{array}
$$

- (2) If $N \in \mathbb{N}$ is a finite set of order d, then the antichain $W=W(N)$ is also finite with $|W| \leq d(d-1) / 2$.
NB. $w \in W$ standard bracketing $w=a . b, \Longrightarrow a, b \in N, a<b$.

Proposition 1.

- (1) There exists a one-to-one correspondence between the set \mathbb{W} of all antichains W of Lyndon words with $X \bigcap W=\varnothing$ and the set \mathbb{N} of all sets $N \subset L$ satisfying C1 and C2.

$$
\begin{array}{lll}
\phi: & \mathbb{W} \longrightarrow \mathbb{N} & W \mapsto N(W) \\
\phi^{-1}: & \mathbb{N} \longrightarrow \mathbb{W} & N \mapsto W(N) \\
& N(W(N))=N ; & W(N(W))=W
\end{array}
$$

- (2) If $N \in \mathbb{N}$ is a finite set of order d, then the antichain $W=W(N)$ is also finite with $|W| \leq d(d-1) / 2$.
NB. $w \in W$ standard bracketing $w=a . b, \Longrightarrow a, b \in N, a<b$.
- (3) Each finite antichain $W \in \mathbb{W}$ determines $A_{\text {mon }}=K\langle X\rangle /(W), g l \operatorname{dim} A_{\text {mon }} \leq|W|+1$.

Proposition 1.

- (1) There exists a one-to-one correspondence between the set \mathbb{W} of all antichains W of Lyndon words with $X \bigcap W=\varnothing$ and the set \mathbb{N} of all sets $N \subset L$ satisfying C1 and $\mathbf{C} 2$.

$$
\begin{array}{lll}
\phi: & \mathbb{W} \longrightarrow \mathbb{N} & W \mapsto N(W) \\
\phi^{-1}: & \mathbb{N} \longrightarrow \mathbb{W} & N \mapsto W(N) \\
& N(W(N))=N ; & W(N(W))=W
\end{array}
$$

- (2) If $N \in \mathbb{N}$ is a finite set of order d, then the antichain $W=W(N)$ is also finite with $|W| \leq d(d-1) / 2$.
NB. $w \in W$ standard bracketing $w=a . b, \Longrightarrow a, b \in N, a<b$.
- (3) Each finite antichain $W \in \mathbb{W}$ determines $A_{\text {mon }}=K\langle X\rangle /(W), g l \operatorname{dim} A_{\text {mon }} \leq|W|+1$.
- (4) Each $N \in \mathbb{N}$ determines uniquely $A_{\text {mon }}=K\langle X\rangle /(W)$, with def. relations $W=W(N)$ and Lyndon atoms N.

$$
G K \operatorname{dim} A_{m o n}=d \Longleftrightarrow|N|=d
$$

Suppose $N=\left\{l_{1}<l_{2}<l_{3} \cdots<l_{d}\right\}$ is a set of Lyndon words closed under taking Lyndon subwords. $m=\max \left\{\left|l_{i}\right| \mid 1 \leq i \leq d\right\}$

We say that N is connected if

$$
N \bigcap L_{s} \neq \varnothing, \quad \forall s \leq m
$$

This is a necessary condition for " $\mathfrak{S}(X, W)$ contains the enveloping algebra $U=U \mathfrak{g}$ of a Lie algebra \mathfrak{g} ".

Lemma. Suppose (N, W) is a Lyndon pair. If the class $\mathfrak{S}(X, W)$ contains the enveloping algebra $U=U \mathfrak{g}$ of a Lie algebra \mathfrak{g} then N is a connected set of Lyndon atoms, and $[N]$ is a K-basis for \mathfrak{g}.

Theorem II. Let $W \subset X^{+}$be an antichain of monomials,

 let N be the set of normal Lyndon word, $N=\mathfrak{N} \cap L$ is not necessarily finite.(1) W is an anticain of Lyndon words iff the set of normal words $\mathfrak{N}=\mathfrak{N}(W)$ has the shape

$$
\mathfrak{N}=\left\{l_{1}^{k_{1}} l_{2}^{k_{2}} \cdots l_{s}^{k_{s}} \mid l_{1}>\cdots>l_{s} \in N, s \geq 1, k_{i} \geq 0,1 \leq i \leq s\right\}
$$

Theorem II. Let $W \subset X^{+}$be an antichain of monomials,

 let N be the set of normal Lyndon word, $N=\mathfrak{N} \cap L$ is not necessarily finite.(1) W is an anticain of Lyndon words iff the set of normal words $\mathfrak{N}=\mathfrak{N}(W)$ has the shape

$$
\mathfrak{N}=\left\{l_{1}^{k_{1}} l_{2}^{k_{2}} \cdots l_{s}^{k_{s}} \mid l_{1}>\cdots>l_{s} \in N, s \geq 1, k_{i} \geq 0,1 \leq i \leq s\right\}
$$

Suppose that W is an antichain of Lyndon words, so
(N, W) is a Lyndon pair. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$. Then

Theorem II. Let $W \subset X^{+}$be an antichain of monomials,

 let N be the set of normal Lyndon word, $N=\mathfrak{N} \cap L$ is not necessarily finite.(1) W is an anticain of Lyndon words iff the set of normal words $\mathfrak{N}=\mathfrak{N}(W)$ has the shape
$\mathfrak{N}=\left\{l_{1}^{k_{1}} l_{2}^{k_{2}} \cdots l_{s}^{k_{s}} \mid l_{1}>\cdots>l_{s} \in N, s \geq 1, k_{i} \geq 0,1 \leq i \leq s\right\}$,
Suppose that W is an antichain of Lyndon words, so (N, W) is a Lyndon pair. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$. Then
(2) $G K \operatorname{dim} A=d \Longleftrightarrow|N|=d, N=\left\{l_{1}>l_{2}>\cdots>l_{d}\right\}$. In this case the following conditions hold.

Theorem II. Let $W \subset X^{+}$be an antichain of monomials,

 let N be the set of normal Lyndon word, $N=\mathfrak{N} \cap L$ is not necessarily finite.(1) W is an anticain of Lyndon words iff the set of normal words $\mathfrak{N}=\mathfrak{N}(W)$ has the shape
$\mathfrak{N}=\left\{l_{1}^{k_{1}} l_{2}^{k_{2}} \cdots l_{s}^{k_{s}} \mid l_{1}>\cdots>l_{s} \in N, s \geq 1, k_{i} \geq 0,1 \leq i \leq s\right\}$,
Suppose that W is an antichain of Lyndon words, so
(N, W) is a Lyndon pair. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$. Then
(2) $G K \operatorname{dim} A=d \Longleftrightarrow|N|=d, N=\left\{l_{1}>l_{2}>\cdots>l_{d}\right\}$.

In this case the following conditions hold.
(2.a) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$;

Theorem II. Let $W \subset X^{+}$be an antichain of monomials,

 let N be the set of normal Lyndon word, $N=\mathfrak{N} \cap L$ is not necessarily finite.(1) W is an anticain of Lyndon words iff the set of normal words $\mathfrak{N}=\mathfrak{N}(W)$ has the shape
$\mathfrak{N}=\left\{l_{1}^{k_{1}} l_{2}^{k_{2}} \cdots l_{s}^{k_{s}} \mid l_{1}>\cdots>l_{s} \in N, s \geq 1, k_{i} \geq 0,1 \leq i \leq s\right\}$,
Suppose that W is an antichain of Lyndon words, so
(N, W) is a Lyndon pair. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$. Then
(2) $G K \operatorname{dim} A=d \Longleftrightarrow|N|=d, N=\left\{l_{1}>l_{2}>\cdots>l_{d}\right\}$.

In this case the following conditions hold.
(2.a) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$;
(2.b) $H_{A}(t)=\prod_{1 \leq i \leq d} 1 /\left(1-t^{\left|l_{i}\right|}\right)$;

Theorem II. Let $W \subset X^{+}$be an antichain of monomials,

 let N be the set of normal Lyndon word, $N=\mathfrak{N} \cap L$ is not necessarily finite.(1) W is an anticain of Lyndon words iff the set of normal words $\mathfrak{N}=\mathfrak{N}(W)$ has the shape

$$
\mathfrak{N}=\left\{l_{1}^{k_{1}} l_{2}^{k_{2}} \cdots l_{s}^{k_{s}} \mid l_{1}>\cdots>l_{s} \in N, s \geq 1, k_{i} \geq 0,1 \leq i \leq s\right\}
$$

Suppose that W is an antichain of Lyndon words, so (N, W) is a Lyndon pair. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$. Then
(2) $G K \operatorname{dim} A=d \Longleftrightarrow|N|=d, N=\left\{l_{1}>l_{2}>\cdots>l_{d}\right\}$. In this case the following conditions hold.
(2.a) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$;
(2.b) $H_{A}(t)=\prod_{1 \leq i \leq d} 1 /\left(1-t^{\left|l_{i}\right|}\right)$;
(2.c) A is s.f.p. with $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.

Theorem II. Let $W \subset X^{+}$be an antichain of monomials,

 let N be the set of normal Lyndon word, $N=\mathfrak{N} \cap L$ is not necessarily finite.(1) W is an anticain of Lyndon words iff the set of normal words $\mathfrak{N}=\mathfrak{N}(W)$ has the shape

$$
\mathfrak{N}=\left\{l_{1}^{k_{1}} l_{2}^{k_{2}} \cdots l_{s}^{k_{s}} \mid l_{1}>\cdots>l_{s} \in N, s \geq 1, k_{i} \geq 0,1 \leq i \leq s\right\}
$$

Suppose that W is an antichain of Lyndon words, so (N, W) is a Lyndon pair. Let $A=K\langle X\rangle / I \in \mathfrak{C}(X, W)$. Then
(2) $G K \operatorname{dim} A=d \Longleftrightarrow|N|=d, N=\left\{l_{1}>l_{2}>\cdots>l_{d}\right\}$. In this case the following conditions hold.
(2.a) $g l \operatorname{dim} A=d=G K \operatorname{dim} A$;
(2.b) $H_{A}(t)=\prod_{1 \leq i \leq d} 1 /\left(1-t^{\left|l_{i}\right|}\right)$;
(2.c) A is s.f.p. with $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(3) $\mathfrak{C}(X, W)$ contains AS regular algebras, whenever

$$
|W|=\frac{d(d-1)}{2}, \text { or }|W|=d-1, \text { and } N \text { is connected. }
$$

Proposition 2.

Suppose $\mathfrak{g}=\operatorname{Lie}(X) / J$ is a Lie algebra, $U=U \mathfrak{g}=K\langle X\rangle / I$. Let W be the set of obstructions for U, let $A_{W}=K\langle X\rangle /(W)$, $\mathfrak{N}=\mathfrak{N}(I), N=N(W)=\mathfrak{N} \cap L$.
(1) (N, W) is a Lyndon pair, N is connected. A_{W} is a monomial algebra defined by Lyndon words, in the sense of GIF.

Proposition 2.

Suppose $\mathfrak{g}=\operatorname{Lie}(X) / J$ is a Lie algebra, $U=U \mathfrak{g}=K\langle X\rangle / I$. Let
W be the set of obstructions for U, let $A_{W}=K\langle X\rangle /(W)$,
$\mathfrak{N}=\mathfrak{N}(I), N=N(W)=\mathfrak{N} \cap L$.
(1) (N, W) is a Lyndon pair, N is connected. A_{W} is a monomial algebra defined by Lyndon words, in the sense of GIF.
(2) Assume that J is generated by homogeneous Lie elements, so U is canonically graded. Then U, and A_{W} are in the class $\mathfrak{C}(X, W)$. FAEQ.

Proposition 2.

Suppose $\mathfrak{g}=\operatorname{Lie}(X) / J$ is a Lie algebra, $U=U \mathfrak{g}=K\langle X\rangle / I$. Let
W be the set of obstructions for U, let $A_{W}=K\langle X\rangle /(W)$,
$\mathfrak{N}=\mathfrak{N}(I), N=N(W)=\mathfrak{N} \cap L$.
(1) (N, W) is a Lyndon pair, N is connected. A_{W} is a monomial algebra defined by Lyndon words, in the sense of GIF.
(2) Assume that J is generated by homogeneous Lie elements, so U is canonically graded. Then U, and A_{W} are in the class $\mathfrak{C}(X, W)$. FAEQ.
(a) $U=U \mathfrak{g}$ is an Artin-Schelter regular algebra.

Proposition 2.

Suppose $\mathfrak{g}=\operatorname{Lie}(X) / J$ is a Lie algebra, $U=U \mathfrak{g}=K\langle X\rangle / I$. Let
W be the set of obstructions for U, let $A_{W}=K\langle X\rangle /(W)$,
$\mathfrak{N}=\mathfrak{N}(I), N=N(W)=\mathfrak{N} \cap L$.
(1) (N, W) is a Lyndon pair, N is connected. A_{W} is a monomial algebra defined by Lyndon words, in the sense of GIF.
(2) Assume that J is generated by homogeneous Lie elements, so U is canonically graded. Then U, and A_{W} are in the class $\mathfrak{C}(X, W)$. FAEQ.
(a) $U=U \mathfrak{g}$ is an Artin-Schelter regular algebra.
(b) The algebra U has polynomial growth.

Proposition 2.

Suppose $\mathfrak{g}=\operatorname{Lie}(X) / J$ is a Lie algebra, $U=U \mathfrak{g}=K\langle X\rangle / I$. Let
W be the set of obstructions for U, let $A_{W}=K\langle X\rangle /(W)$,
$\mathfrak{N}=\mathfrak{N}(I), N=N(W)=\mathfrak{N} \cap L$.
(1) (N, W) is a Lyndon pair, N is connected. A_{W} is a monomial algebra defined by Lyndon words, in the sense of GIF.
(2) Assume that J is generated by homogeneous Lie elements, so U is canonically graded. Then U, and A_{W} are in the class $\mathfrak{C}(X, W)$. FAEQ.
(a) $U=U \mathfrak{g}$ is an Artin-Schelter regular algebra.
(b) The algebra U has polynomial growth.
(c) The Lie algebra \mathfrak{g} is finite dimensional.

Proposition 2.

Suppose $\mathfrak{g}=\operatorname{Lie}(X) / J$ is a Lie algebra, $U=U \mathfrak{g}=K\langle X\rangle / I$. Let
W be the set of obstructions for U, let $A_{W}=K\langle X\rangle /(W)$,
$\mathfrak{N}=\mathfrak{N}(I), N=N(W)=\mathfrak{N} \cap L$.
(1) (N, W) is a Lyndon pair, N is connected. A_{W} is a monomial algebra defined by Lyndon words, in the sense of GIF.
(2) Assume that J is generated by homogeneous Lie elements, so U is canonically graded. Then U, and A_{W} are in the class $\mathfrak{C}(X, W)$. FAEQ.
(a) $U=U \mathfrak{g}$ is an Artin-Schelter regular algebra.
(b) The algebra U has polynomial growth.
(c) The Lie algebra \mathfrak{g} is finite dimensional.
(d) The set of Lyndon atoms N is finite.

Proposition 2.

Suppose $\mathfrak{g}=\operatorname{Lie}(X) / J$ is a Lie algebra, $U=U \mathfrak{g}=K\langle X\rangle / I$. Let
W be the set of obstructions for U, let $A_{W}=K\langle X\rangle /(W)$,
$\mathfrak{N}=\mathfrak{N}(I), N=N(W)=\mathfrak{N} \cap L$.
(1) (N, W) is a Lyndon pair, N is connected. A_{W} is a monomial algebra defined by Lyndon words, in the sense of GIF.
(2) Assume that J is generated by homogeneous Lie elements, so U is canonically graded. Then U, and A_{W} are in the class $\mathfrak{C}(X, W)$. FAEQ.
(a) $U=U \mathfrak{g}$ is an Artin-Schelter regular algebra.
(b) The algebra U has polynomial growth.
(c) The Lie algebra \mathfrak{g} is finite dimensional.
(d) The set of Lyndon atoms N is finite.
(3) Each of these equiv. conditions implies that U is s.f.p., and

$$
\begin{gathered}
d-1 \leq|W| \leq d(d-1) / 2, \text { where } d=|N| \\
\operatorname{gldim}(U)=G K \operatorname{dim}(U)=\operatorname{dim}_{K} \mathfrak{g}=|N|=d
\end{gathered}
$$

Theorem III.

Let (N, W) be a Lyndon pair, $|N|=d$, so $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(1) FAEQ:

Theorem III.

Let (N, W) be a Lyndon pair, $|N|=d$, so $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(1) FAEQ:
(i) $|W|=d-1$ and N is a connected set of Lyndon atoms;

Theorem III.

Let (N, W) be a Lyndon pair, $|N|=d$, so $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(1) FAEQ:
(i) $|W|=d-1$ and N is a connected set of Lyndon atoms;
(ii) $X=\{x<y\}$, and (up to isomorph. of mon. algebras A_{W}):

$$
N=\left\{x<x y<x y^{2}<\cdots<x y^{d-2}<y\right\} ;
$$

Theorem III.

Let (N, W) be a Lyndon pair, $|N|=d$, so $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(1) FAEQ:
(i) $|W|=d-1$ and N is a connected set of Lyndon atoms;
(ii) $X=\{x<y\}$, and (up to isomorph. of mon. algebras A_{W}):
$N=\left\{x<x y<x y^{2}<\cdots<x y^{d-2}<y\right\} ;$
(iii) $X=\{x<y\}, \quad W=\left\{x y^{i} x y^{i+1} \mid 0 \leq i \leq d-3\right\} \cup\left\{x y^{d-1}\right\}$.

Theorem III.

Let (N, W) be a Lyndon pair, $|N|=d$, so $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(1) FAEQ:
(i) $|W|=d-1$ and N is a connected set of Lyndon atoms;
(ii) $X=\{x<y\}$, and (up to isomorph. of mon. algebras A_{W}): $N=\left\{x<x y<x y^{2}<\cdots<x y^{d-2}<y\right\} ;$
(iii) $X=\{x<y\}, \quad W=\left\{x y^{i} x y^{i+1} \mid 0 \leq i \leq d-3\right\} \cup\left\{x y^{d-1}\right\}$. $\mathfrak{C}(X, W)$ contains $U=U \mathcal{L}_{d-1}$, where \mathcal{L}_{d-1} is the filiform Lie algebra of dim. d and nilpotency class $d-1 . U$ is an AS-regular algebra with $g l \operatorname{dim} U=d$.

Theorem III.

Let (N, W) be a Lyndon pair, $|N|=d$, so $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(1) FAEQ:
(i) $|W|=d-1$ and N is a connected set of Lyndon atoms;
(ii) $X=\{x<y\}$, and (up to isomorph. of mon. algebras A_{W}): $N=\left\{x<x y<x y^{2}<\cdots<x y^{d-2}<y\right\} ;$
(iii) $X=\{x<y\}, \quad W=\left\{x y^{i} x y^{i+1} \mid 0 \leq i \leq d-3\right\} \cup\left\{x y^{d-1}\right\}$. $\mathfrak{C}(X, W)$ contains $U=U \mathcal{L}_{d-1}$, where \mathcal{L}_{d-1} is the filiform Lie algebra of dim. d and nilpotency class $d-1 . U$ is an AS-regular algebra with $g l \operatorname{dim} U=d$.
(2) FAEQ

Theorem III.

Let (N, W) be a Lyndon pair, $|N|=d$, so $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(1) FAEQ:
(i) $|W|=d-1$ and N is a connected set of Lyndon atoms;
(ii) $X=\{x<y\}$, and (up to isomorph. of mon. algebras A_{W}):
$N=\left\{x<x y<x y^{2}<\cdots<x y^{d-2}<y\right\} ;$
(iii) $X=\{x<y\}, \quad W=\left\{x y^{i} x y^{i+1} \mid 0 \leq i \leq d-3\right\} \cup\left\{x y^{d-1}\right\}$.
$\mathfrak{C}(X, W)$ contains $U=U \mathcal{L}_{d-1}$, where \mathcal{L}_{d-1} is the filiform Lie algebra of dim. d and nilpotency class $d-1 . U$ is an AS-regular algebra with $g l \operatorname{dim} U=d$.
(2) FAEQ
(i) $|W|=d(d-1) / 2$;

Theorem III.

Let (N, W) be a Lyndon pair, $|N|=d$, so $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(1) FAEQ:
(i) $|W|=d-1$ and N is a connected set of Lyndon atoms;
(ii) $X=\{x<y\}$, and (up to isomorph. of mon. algebras A_{W}):
$N=\left\{x<x y<x y^{2}<\cdots<x y^{d-2}<y\right\} ;$
(iii) $X=\{x<y\}, \quad W=\left\{x y^{i} x y^{i+1} \mid 0 \leq i \leq d-3\right\} \cup\left\{x y^{d-1}\right\}$. $\mathfrak{C}(X, W)$ contains $U=U \mathcal{L}_{d-1}$, where \mathcal{L}_{d-1} is the filiform Lie algebra of dim. d and nilpotency class $d-1 . U$ is an AS-regular algebra with $g l \operatorname{dim} U=d$.
(2) FAEQ
(i) $|W|=d(d-1) / 2$;
(ii) $W=\left\{x_{i} x_{j} \mid 1 \leq i<j \leq d\right\}$;

Theorem III.

Let (N, W) be a Lyndon pair, $|N|=d$, so $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(1) FAEQ:
(i) $|W|=d-1$ and N is a connected set of Lyndon atoms;
(ii) $X=\{x<y\}$, and (up to isomorph. of mon. algebras A_{W}):
$N=\left\{x<x y<x y^{2}<\cdots<x y^{d-2}<y\right\} ;$
(iii) $X=\{x<y\}, \quad W=\left\{x y^{i} x y^{i+1} \mid 0 \leq i \leq d-3\right\} \cup\left\{x y^{d-1}\right\}$. $\mathfrak{C}(X, W)$ contains $U=U \mathcal{L}_{d-1}$, where \mathcal{L}_{d-1} is the filiform Lie algebra of dim. d and nilpotency class $d-1 . U$ is an AS-regular algebra with $g l \operatorname{dim} U=d$.
(2) FAEQ
(i) $|W|=d(d-1) / 2$;
(ii) $W=\left\{x_{i} x_{j} \mid 1 \leq i<j \leq d\right\}$;
(iii) $N=X$, so $d=n$.

Theorem III.

Let (N, W) be a Lyndon pair, $|N|=d$, so $d-1 \leq|W| \leq \frac{d(d-1)}{2}$.
(1) FAEQ:
(i) $|W|=d-1$ and N is a connected set of Lyndon atoms;
(ii) $X=\{x<y\}$, and (up to isomorph. of mon. algebras A_{W}): $N=\left\{x<x y<x y^{2}<\cdots<x y^{d-2}<y\right\} ;$
(iii) $X=\{x<y\}, \quad W=\left\{x y^{i} x y^{i+1} \mid 0 \leq i \leq d-3\right\} \cup\left\{x y^{d-1}\right\}$. $\mathfrak{C}(X, W)$ contains $U=U \mathcal{L}_{d-1}$, where \mathcal{L}_{d-1} is the filiform Lie algebra of dim. d and nilpotency class $d-1 . U$ is an AS-regular algebra with $g l \operatorname{dim} U=d$.
(2) FAEQ
(i) $|W|=d(d-1) / 2$;
(ii) $W=\left\{x_{i} x_{j} \mid 1 \leq i<j \leq d\right\}$;
(iii) $N=X$, so $d=n$.
$\mathfrak{C}(X, W)$ contains an abundance of (non isomorphic) PBW AS regular algebras: each of them is a skew polynomial ring with square-free binomial relations (GI), and defines a solution of the YBE.

Monomial Lie algebras

Let W be an antichain of Lyndon words, let $J=([W])_{L i e}$ be the Lie ideal
generated by $[W]=\{[w] \mid w \in W\}$ in $\operatorname{Lie}(X)$. The Lie algebra $\mathfrak{g}=\operatorname{Lie}(X) / J$ is called a monomial Lie algebra defined by Lyndon words, or shortly, a monomial Lie algebra. We call \mathfrak{g} a a standard monomial Lie algebra and denote it by \mathfrak{g}_{W} if $[W]$ is a Gröbner-Shirshov basis of the Lie ideal J. In this case $U \mathfrak{g} \in \mathfrak{C}(X, W)$.

Theorem IV

$X=\{x<y\},\left(N_{s}, W_{s}\right)$ is a Lyndon pair in $X^{+} . J_{s}=\left(\left[W_{s}\right]\right)_{\text {Lie }}$ $\mathfrak{g}_{s}=\operatorname{Lie}(X) / J_{s}, I_{s}$ is the two-sided ideal $I_{s}=\left(\left[W_{s}\right]_{a s s}\right)$ in $K\langle X\rangle$, so $U_{s}=U \mathfrak{g}_{s}=K\langle X\rangle / I_{s}$ is the enveloping of \mathfrak{g}_{s}.

Theorem IV

$X=\{x<y\},\left(N_{s}, W_{s}\right)$ is a Lyndon pair in $X^{+} . J_{s}=\left(\left[W_{s}\right]\right)_{\text {Lie }}$
$\mathfrak{g}_{s}=\operatorname{Lie}(X) / J_{s}, I_{s}$ is the two-sided ideal $I_{s}=\left(\left[W_{s}\right]_{a s s}\right)$ in $K\langle X\rangle$, so $U_{s}=U \mathfrak{g}_{s}=K\langle X\rangle / I_{s}$ is the enveloping of \mathfrak{g}_{s}.
(1) Let $|N|=6$. Then

Theorem IV

$X=\{x<y\},\left(N_{s}, W_{s}\right)$ is a Lyndon pair in $X^{+} . J_{s}=\left(\left[W_{s}\right]\right)_{\text {Lie }}$
$\mathfrak{g}_{s}=\operatorname{Lie}(X) / J_{s}, I_{s}$ is the two-sided ideal $I_{s}=\left(\left[W_{s}\right]_{\text {ass }}\right)$ in $K\langle X\rangle$, so $U_{s}=U \mathfrak{g}_{s}=K\langle X\rangle / I_{s}$ is the enveloping of \mathfrak{g}_{s}.
(1) Let $|N|=6$. Then
(a) There are eight Lyndon pairs $\left(N_{j}, W_{j}\right), 1 \leq j \leq 8$, up to isomorphism of monomial algebras A_{W}.

Theorem IV

$X=\{x<y\},\left(N_{s}, W_{s}\right)$ is a Lyndon pair in $X^{+} . J_{s}=\left(\left[W_{s}\right]\right)_{\text {Lie }}$
$\mathfrak{g}_{s}=\operatorname{Lie}(X) / J_{s}, I_{s}$ is the two-sided ideal $I_{s}=\left(\left[W_{s}\right]_{a s s}\right)$ in $K\langle X\rangle$,
so $U_{s}=U \mathfrak{g}_{s}=K\langle X\rangle / I_{s}$ is the enveloping of \mathfrak{g}_{s}.
(1) Let $|N|=6$. Then
(a) There are eight Lyndon pairs $\left(N_{j}, W_{j}\right), 1 \leq j \leq 8$, up to isomorphism of monomial algebras A_{W}.
(b) For each $j, 1 \leq j \leq 4, U_{j}$ is an AS regular algebra of $g l \operatorname{dim} U_{j}=6, U_{j} \in \mathfrak{C}\left(X, W_{j}\right)$.

Theorem IV

$X=\{x<y\},\left(N_{s}, W_{s}\right)$ is a Lyndon pair in $X^{+} . J_{s}=\left(\left[W_{s}\right]\right)_{\text {Lie }}$
$\mathfrak{g}_{s}=\operatorname{Lie}(X) / J_{s}, I_{s}$ is the two-sided ideal $I_{s}=\left(\left[W_{s}\right]_{a s s}\right)$ in $K\langle X\rangle$,
so $U_{s}=U \mathfrak{g}_{s}=K\langle X\rangle / I_{s}$ is the enveloping of \mathfrak{g}_{s}.
(1) Let $|N|=6$. Then
(a) There are eight Lyndon pairs $\left(N_{j}, W_{j}\right), 1 \leq j \leq 8$, up to isomorphism of monomial algebras A_{W}.
(b) For each $j, 1 \leq j \leq 4, U_{j}$ is an AS regular algebra of $g l \operatorname{dim} U_{j}=6, U_{j} \in \mathfrak{C}\left(X, W_{j}\right)$.
(c) For $5 \leq j \leq 8$ the algebra U_{j} is an AS regular algebra of $g l \operatorname{dim} U_{i} \leq 5$, in particular U_{i} is not in $\mathfrak{C}\left(X, W_{i}\right)$.

Theorem IV

$X=\{x<y\},\left(N_{s}, W_{s}\right)$ is a Lyndon pair in $X^{+} . J_{s}=\left(\left[W_{s}\right]\right)_{\text {Lie }}$
$\mathfrak{g}_{s}=\operatorname{Lie}(X) / J_{s}, I_{s}$ is the two-sided ideal $I_{s}=\left(\left[W_{s}\right]_{a s s}\right)$ in $K\langle X\rangle$,
so $U_{s}=U \mathfrak{g}_{s}=K\langle X\rangle / I_{s}$ is the enveloping of \mathfrak{g}_{s}.
(1) Let $|N|=6$. Then
(a) There are eight Lyndon pairs $\left(N_{j}, W_{j}\right), 1 \leq j \leq 8$, up to isomorphism of monomial algebras A_{W}.
(b) For each $j, 1 \leq j \leq 4, U_{j}$ is an AS regular algebra of $g l \operatorname{dim} U_{j}=6, U_{j} \in \mathfrak{C}\left(X, W_{j}\right)$.
(c) For $5 \leq j \leq 8$ the algebra U_{j} is an AS regular algebra of $g l \operatorname{dim} U_{i} \leq 5$, in particular U_{i} is not in $\mathfrak{C}\left(X, W_{i}\right)$.
(2) $|N|=7$. Then

Theorem IV

$X=\{x<y\},\left(N_{s}, W_{s}\right)$ is a Lyndon pair in $X^{+} . J_{s}=\left(\left[W_{s}\right]\right)_{\text {Lie }}$
$\mathfrak{g}_{s}=\operatorname{Lie}(X) / J_{s}, I_{s}$ is the two-sided ideal $I_{s}=\left(\left[W_{s}\right]_{a s s}\right)$ in $K\langle X\rangle$,
so $U_{s}=U \mathfrak{g}_{s}=K\langle X\rangle / I_{s}$ is the enveloping of \mathfrak{g}_{s}.
(1) Let $|N|=6$. Then
(a) There are eight Lyndon pairs $\left(N_{j}, W_{j}\right), 1 \leq j \leq 8$, up to isomorphism of monomial algebras A_{W}.
(b) For each $j, 1 \leq j \leq 4, U_{j}$ is an AS regular algebra of $g l \operatorname{dim} U_{j}=6, U_{j} \in \mathfrak{C}\left(X, W_{j}\right)$.
(c) For $5 \leq j \leq 8$ the algebra U_{j} is an AS regular algebra of $g l \operatorname{dim} U_{i} \leq 5$, in particular U_{i} is not in $\mathfrak{C}\left(X, W_{i}\right)$.
(2) $|N|=7$. Then
(a) There are 30 Lyndon pairs $\left(N_{i}, W_{i}\right), 1 \leq i \leq 30$, up to isomorphism of monomial algebras A_{W}.

Theorem IV

$X=\{x<y\},\left(N_{s}, W_{s}\right)$ is a Lyndon pair in $X^{+} . J_{s}=\left(\left[W_{s}\right]\right)_{\text {Lie }}$
$\mathfrak{g}_{s}=\operatorname{Lie}(X) / J_{s}, I_{s}$ is the two-sided ideal $I_{s}=\left(\left[W_{s}\right]_{a s s}\right)$ in $K\langle X\rangle$,
so $U_{s}=U \mathfrak{g}_{s}=K\langle X\rangle / I_{s}$ is the enveloping of \mathfrak{g}_{s}.
(1) Let $|N|=6$. Then
(a) There are eight Lyndon pairs $\left(N_{j}, W_{j}\right), 1 \leq j \leq 8$, up to isomorphism of monomial algebras A_{W}.
(b) For each $j, 1 \leq j \leq 4, U_{j}$ is an AS regular algebra of $g l \operatorname{dim} U_{j}=6, U_{j} \in \mathfrak{C}\left(X, W_{j}\right)$.
(c) For $5 \leq j \leq 8$ the algebra U_{j} is an AS regular algebra of $g l \operatorname{dim} U_{i} \leq 5$, in particular U_{i} is not in $\mathfrak{C}\left(X, W_{i}\right)$.
(2) $|N|=7$. Then
(a) There are 30 Lyndon pairs $\left(N_{i}, W_{i}\right), 1 \leq i \leq 30$, up to isomorphism of monomial algebras A_{W}.
(b) For each $i, 1 \leq i \leq 9, U_{i}=K\langle X\rangle /\left(\left[W_{i}\right]_{\text {ass }}\right)$ is an AS regular algebra, $g l \operatorname{dim} U_{i}=7, U_{i} \in \mathfrak{C}\left(X, W_{(i)}\right)$.

Theorem IV

$X=\{x<y\},\left(N_{s}, W_{s}\right)$ is a Lyndon pair in $X^{+} . J_{s}=\left(\left[W_{s}\right]\right)_{\text {Lie }}$
$\mathfrak{g}_{s}=\operatorname{Lie}(X) / J_{s}, I_{s}$ is the two-sided ideal $I_{s}=\left(\left[W_{s}\right]_{a s s}\right)$ in $K\langle X\rangle$,
so $U_{s}=U \mathfrak{g}_{s}=K\langle X\rangle / I_{s}$ is the enveloping of \mathfrak{g}_{s}.
(1) Let $|N|=6$. Then
(a) There are eight Lyndon pairs $\left(N_{j}, W_{j}\right), 1 \leq j \leq 8$, up to isomorphism of monomial algebras A_{W}.
(b) For each $j, 1 \leq j \leq 4, U_{j}$ is an AS regular algebra of $g l \operatorname{dim} U_{j}=6, U_{j} \in \mathfrak{C}\left(X, W_{j}\right)$.
(c) For $5 \leq j \leq 8$ the algebra U_{j} is an AS regular algebra of $g l \operatorname{dim} U_{i} \leq 5$, in particular U_{i} is not in $\mathfrak{C}\left(X, W_{i}\right)$.
(2) $|N|=7$. Then
(a) There are 30 Lyndon pairs $\left(N_{i}, W_{i}\right), 1 \leq i \leq 30$, up to isomorphism of monomial algebras A_{W}.
(b) For each $i, 1 \leq i \leq 9, U_{i}=K\langle X\rangle /\left(\left[W_{i}\right]_{\text {ass }}\right)$ is an AS regular algebra, $g l \operatorname{dim} U_{i}=7, U_{i} \in \mathfrak{C}\left(X, W_{(i)}\right)$.
(c) Each class $\mathfrak{C}\left(X, W_{i}\right), 12 \leq i \leq 30$ does not contain any AS regular algebra U presented as an enveloping $U=U \mathfrak{g}$ of a Lie algebra.

Theorem IV

$X=\{x<y\},\left(N_{s}, W_{s}\right)$ is a Lyndon pair in $X^{+} . J_{s}=\left(\left[W_{s}\right]\right)_{\text {Lie }}$
$\mathfrak{g}_{s}=\operatorname{Lie}(X) / J_{s}, I_{s}$ is the two-sided ideal $I_{s}=\left(\left[W_{s}\right]_{a s s}\right)$ in $K\langle X\rangle$,
so $U_{s}=U \mathfrak{g}_{s}=K\langle X\rangle / I_{s}$ is the enveloping of \mathfrak{g}_{s}.
(1) Let $|N|=6$. Then
(a) There are eight Lyndon pairs $\left(N_{j}, W_{j}\right), 1 \leq j \leq 8$, up to isomorphism of monomial algebras A_{W}.
(b) For each $j, 1 \leq j \leq 4, U_{j}$ is an AS regular algebra of $g l \operatorname{dim} U_{j}=6, U_{j} \in \mathfrak{C}\left(X, W_{j}\right)$.
(c) For $5 \leq j \leq 8$ the algebra U_{j} is an AS regular algebra of $g l \operatorname{dim} U_{i} \leq 5$, in particular U_{i} is not in $\mathfrak{C}\left(X, W_{i}\right)$.
(2) $|N|=7$. Then
(a) There are 30 Lyndon pairs $\left(N_{i}, W_{i}\right), 1 \leq i \leq 30$, up to isomorphism of monomial algebras A_{W}.
(b) For each $i, 1 \leq i \leq 9, U_{i}=K\langle X\rangle /\left(\left[W_{i}\right]_{\text {ass }}\right)$ is an AS regular algebra, $g l \operatorname{dim} U_{i}=7, U_{i} \in \mathfrak{C}\left(X, W_{(i)}\right)$.
(c) Each class $\mathfrak{C}\left(X, W_{i}\right), 12 \leq i \leq 30$ does not contain any AS regular algebra U presented as an enveloping $U=U \mathfrak{g}$ of a Lie algebra.

Monomial Lie algebras of dimension 6

- $\mathfrak{g} \in \mathfrak{N}_{4}$

$$
\begin{array}{llc}
\text { (6.4.1) } & N & x<x^{3} y<x^{2} y<x y<x y^{2}<y \\
& W & x^{4} y, x^{3} y x^{2} y, x^{2} y x y, x y x y^{2}, x y^{3} \\
\text { (6.4.2) } & N & x<x^{2} y<x^{2} y^{2}<x y<x y^{2}<y \\
& W & x^{3} y, x^{2} y x^{2} y^{2}, x^{2} y^{2} x y, x y x y^{2} x y^{3}
\end{array}
$$

Monomial Lie algebras of dimension 6

- $\mathfrak{g} \in \mathfrak{N}_{4}$

$$
\begin{array}{llc}
\text { (6.4.1) } & N & x<x^{3} y<x^{2} y<x y<x y^{2}<y \\
& W & x^{4} y, x^{3} y x^{2} y, x^{2} y x y, x y x y^{2}, x y^{3} \\
\text { (6.4.2) } & N & x<x^{2} y<x^{2} y^{2}<x y<x y^{2}<y \\
& W & x^{3} y, x^{2} y x^{2} y^{2}, x^{2} y^{2} x y, x y x y^{2} x y^{3}
\end{array}
$$

- $\mathfrak{g} \in \mathfrak{N}_{5}$, Filiform Lie algebras of dimension 6 .

$$
\begin{array}{lll}
\text { (6.5.3) } & N & x<x y<x y^{2}<x y^{3}<x y^{4}<y \\
& W & x y^{i} x y^{i+1}, 0 \leq i \leq 3, x y^{5} \\
\text { (6.5.4) } & N & x<x y<x y x y^{2}<x y^{2}<x y^{3}<y \\
& W & x^{2} y, x y x y x y^{2}, x y x y^{2} x y^{2}, x y^{2} x y^{3}, x y^{4}
\end{array}
$$

Each of the remaining classes $\mathfrak{C}(X, W)$ does not contain enveloping of a Lie algebra.

(6.5.5)
(6.7.6)
(6.7.7)
(6.7.8)

N $x<x^{2} y<x^{2} y x y<x y<x y^{2}<y$
W $x^{3} y, x^{2} y^{2},\left(x^{2} y\right)^{2} x y, x^{2} y(x y)^{2}, x y x y^{2}, x y^{3}$
$N \quad x<x^{3} y<x^{3} y x^{2} y<x^{2} y<x y<y$
W $x^{4} y,\left(x^{3} y\right)^{2} x^{2} y, x^{3} y\left(x^{2} y\right)^{2}, x^{2} y x y, x y^{2}$
$N \quad x<x^{2} y<x^{2} y x y<x^{2} y x y x y<x y<y$
$W x^{3} y,\left(x^{2} y\right)^{2} x y,\left(x^{2} y x y\right)^{2} x y, x^{2} y(x y)^{3}, x y^{2}$
$N \quad F_{6} x<x y<x y x y^{2}<x y x y^{2} x y^{2}<x y^{2}<y$
W $x^{2} y, x y x y x y^{2}, x y x y^{2} x y\left(x y^{2}\right)^{2}, x y\left(x y^{2}\right)^{3}, x y^{3}$
Fibonacci algebra

Standard Monomial Lie algebras of dimension 7; [W] is a GS basis only for N_{1} through N_{9}
(7.4.1) $\quad N_{1}=\left\{x<x^{3} y<x^{2} y<x^{2} y^{2}<x y<x y^{2}<y\right\}, m=4$;
(7.4.2) $\quad N_{2}=\left\{x<x^{3} y<x^{2} y<x y<x y^{2}<x y^{3}<y\right\}, m=4$
(7.4.3) $\quad N_{3}=\left\{x<x^{2} y<x^{2} y^{2}<x y<x y^{2}<x y^{3}<y\right\}, m=4$
(7.5.4) $\quad N_{4}=\left\{x<x y<x y x y^{2}<x y^{2}<x y^{3}<x y^{4}<y\right\}, m=5$
(7.5.5) $\quad N_{5}=\left\{x<x^{2} y<x y<x y^{2}<x y^{3}<x y^{4}<y\right\}, m=5$
(7.5.6) $\quad N_{6}=\left\{x<x^{2} y<x y<x y x y y<x y^{2}<x y^{3}<y\right\}, m=5$
(7.5.7) $\quad N_{7}=\left\{x<x^{2} y<x^{2} y x y<x^{2} y^{2}<x y<x y^{2}<y\right\}, m=5$
(7.5.8) $\quad N_{8}=\left\{x<x^{2} y<x^{2} y^{2}<x y<x y x y^{2}<x y^{2}<y\right\}, m=5$
(7.6.9) $\quad N_{9}=\left\{x<x y<x y^{2}<x y^{3}<x y^{4}<x y^{5}<y\right\}, m=6$
$W_{9}=\left\{x y^{i} x y^{i+1}, 0 \leq i \leq 4\right\} \cup\left\{x y^{6}\right\}$
(7.5.10)* $N=\left\{x<x^{2} y<x^{2} y x y<x y<x y^{2}<x y^{3}<y\right\}$
(7.5.11)* $N=\left\{x<x^{3} y<x^{2} y<x y<x y x y^{2}<x y^{2}<y\right\}$
(7.6.12)* $N=\left\{x<x y<x y x y^{2}<x y x y^{3}<x y^{2}<x y^{3}<y\right\}$
(7.5.13) $\quad N=\left\{x<x^{2} y<x^{2} y x y<x y<x y x y^{2}<x y^{2}<y\right\}$
(7.6.14) $\quad N=\left\{x<x^{2} y<x^{2} y^{2}<x^{2} y^{2} x y<x y<x y^{2}<y\right\}$
(7.7.15) $\quad N=\left\{x<x y<x y^{2}<x y^{2} x y^{3}<x y^{3}<x y^{4}<y\right\}$
(7.7.16) $\quad N=\left\{x<x y<x y x y^{2}<x y^{2}<\left(x y^{2}\right)\left(x y^{3}\right)<x y^{3}<y\right\}$
(7.7.17) $\quad N=\left\{x<x^{2} y<x y<x y^{2}<\left(x y^{2}\right)\left(x y^{3}\right)<x y^{3}<y\right\}$
(7.7.18) $\quad N=\left\{x<x y<(x y)\left(x y x y^{2}\right)<x y x y^{2}<x y^{2}<x y^{3}<y\right\}$
(7.7.19) $\quad N=\left\{x<x^{2} y<\left(x^{2} y\right)\left(x^{2} y^{2}\right)<x^{2} y^{2}<x y<x y^{2}<y\right\}$
(7.7.20) $\quad N=\left\{x<x^{2} y<x y<x y\left(x y x y^{2}\right)<x y x y^{2}<x y^{2}<y\right\}$
(7.8.21) $\quad N=\left\{x<x^{2} y<x y<x y x y^{2}<\left(x y x y^{2}\right)\left(x y^{2}\right)<x y^{2}<y\right\}$
(7.8.22) $\quad N=\left\{x<x y<x y x y^{2}<\left(x y x y^{2}\right)\left(x y^{2}\right)<x y^{2}<x y^{3}<y\right\}$
(7.8.23) $\quad N=\left\{x<x y<x y x y x y^{2}<x y x y^{2}<x y x y^{2} x y^{2}<x y^{2}<y\right\}$
(7.9.24) $\quad N=\left\{x<x y<x y^{2}<x y^{3}<\left(x y^{3}\right)\left(x y^{4}\right)<x y^{4}<y\right\}$
(7.9.25) $\quad N=\left\{x<x y<x y x y x y x y^{2}<x y x y x y^{2}<x y x y^{2}<x y^{2}<y\right\}$
(7.10.26) $N=\left\{x<x y<x y^{2}<x y^{2} x y^{2} x y^{3}<x y^{2} x y^{3}<x y^{3}<y\right\}$
(7.11.27) $N=\left\{x<x y<x y^{2}<x y^{2} x y^{3}<\left(x y^{2} x y^{3}\right)\left(x y^{3}\right)<x y^{3}<y\right\}$
(7.11.28) $N=\left\{x, x y, x y x y^{2}, x y x y^{2} x y^{2}, x y x y^{2} x y^{2} x y^{2}, x y^{2}<y\right\}$
(7.12.29) $\quad N=\left\{x, x y, x y x y x y^{2}, x y x y x y^{2} x y x y^{2}, x y x y^{2}, x y^{2}<y\right\}$
(7.13.30) $\quad N_{F_{7}}=\{x, y, x y, x y y, x y x y y, x y x y y x y y, x y x y y x y x y y x y y\}$.

