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⊕

i≥0 Ai, is Artin-Schelter
regular (or AS regular) if

(i) A has finite global dimension d, that is, each graded
A-module has a free resolution of length at most d.

(ii) A has finite Gelfand-Kirillov dimension, meaning that the
integer-valued function i 7→ dimK Ai is bounded by a
polynomial in i.

(iii) A is Gorenstein, that is, Exti
A(K, A) = 0 for i 6= d and

Extd
A(K, A) ∼= K.

AS regular algebras were introduced and studied first in
[AS, ATV1, ATV2] in 90’s. The problems of classification
and finding new classes of regular algebras are central for
noncommutative algebraic geometry. When d ≤ 3 all
regular algebras are classified. The problem of
classification is difficult and remains open even for regular
algebras of gl dim = 5.



Theorem
Let A = k〈X〉/(ℜ) be a quantum binomial algebra, |X| = n
The following conditions are equivalent:

(1) A is an Artin-Schelter regular algebra, where ℜ is a Gr¨bner
basis.

(2) A is a Yang-Baxter algebra, that is the automorphism
R = R(ℜ) : V⊗2 −→ V⊗2 is a solution of the Yang-Baxter
equation.

(3) A is a binomial skew polynomial ring, with respect to some
enumeration of X.

(3) The Hilbert series of A is

HA(z) =
1

(1− z)n
.

Each of these conditions implies that A is Koszul and a Noetherian
domain.



Definition
Let V = SpankX. Let ℜ ⊂ k〈X〉 be a set of quadratic binomials,
satisfying the following conditions:

B1 Each f ∈ ℜ has the shape f = xy− cyxy′x′, where cxy ∈ k×

and x, y, x′, y′ ∈ X.

B2 Each monomial xy of length 2 occurs at most once in ℜ.

The (involutive) automorphism R = R(ℜ) : V⊗2 −→ V⊗2

associated with ℜ is defined as

R(x⊗ y) = cxyy′ ⊗ x′, and R(y′ ⊗ x′) = (cxy)−1x⊗ y
iff xy− cxyy′x′ ∈ ℜ.

R(x⊗ y) = x⊗ y iff xy does not occur in ℜ.

The algebra A = k〈X〉/(ℜ) is a quantum binomial algebra if the
relations are square-free and the associated quadratic set (X, r) is
nondegerate. A is a Yang-Baxter algebra (Manin,1988), if the map
R = R(ℜ) : V⊗2 −→ V⊗2, is a solution of the YBE,
R12R23R12 = R23R12R23.
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We study classes C(X, W) consisting of associative graded
K-algebras A = K〈X〉/I generated by X and with a fixed
obstructions set W. Our study is related to the following
(at least):

(i) A classical combinatorial problem in algebra- the study of
algebraic objects presented via generators and relations.

(ii) Main Question.

When the class C(X, W) contains an s.f.p. AS regular
algebra?

(iii) An Old Open Question.

If a finitely generated graded K-algebra A has polynomial
growth, and finite global dimension d, is it true that
GK dim A = d = gl dim A ?

True, whenever the monomial algebra AW ∈ C(X, W) has
finite global dimension, see Theorem A.
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u < v iff either v = ub, b ∈ X+, or

u = axb, v = ayc with x < y, x, y ∈ X, a, b, c ∈ X∗.

2. The deg-lex ordering � on X∗, xn ≺ xn−1 ≺ · · · ≺ x2 ≺ x1 .

u ≺ v iff |u| < |v| or |u| = |v| and u > v.

Conv. All Gröbner bases of (associative) ideals I in K〈X〉 and all
Lyndon-Shyrshov Lie bases of Lie ideals J in Lie(X) will be
considered with respect to ”≺ ”-the deg-lex well-ordering
on X∗.
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Def. A word a ∈ X∗ is W-normal (W-standard) if u * a, ∀u ∈ W.

N = N(W) := {a ∈ X∗ | a is W-normal}.

The set N(W) is closed under taking sub-words.

Def. Let I be an ideal in K〈X〉, A = K〈X〉/I, I the set of all
highest monomials of elements of I, w.r.t. ≺. The set of
obstructions W = W(I) is the subset of all words in I which
are minimal w.r.t. ⊑:

W(I) = {u ∈ I | v ⊑ u, v ∈ I =⇒ v = u}.

W is the unique maximal antichain of monomials in I.



Remarks

W(I) depends on the ideal I, as well as, on the order ≺ on X+.
Let A = K〈X〉/I. The theory of Gröbner bases implies that there
is an isomorphism of K-vector spaces

K〈X〉 = SpanKN(W)
⊕

I, A ∼= SpanKN(W).

W = W(I) is also called the set of obstructions for N, or the set of
obstructions for A.

NB. It is known that the ideal I has unique reduced Groebner basis

G0 = {fu = u+ hu | u ∈ W, h ≺ u hu in normal form mod G0− fu},

In other words, W = G0.
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W = R is the set of obstructions for A

N = N(W) = {x < xy < y} is the set of Lyndon atoms

N(W) = {yα1(xy)α2 xα3 | αi ≥ 0} the normal K-basis of A

A ∈ C(X, W) is an AS-regular algebra of gl dim A = 3, type

A.
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R = {w1, w2} is the reduced Gröbner basis of I
W is the obstructions set for B,
N(W) = {yα1(xy)α2 xα3 | αi ≥ 0} the normal K-basis of B

B = Ug, the enveloping algebra of the 3-dimensional Lie
algebra g = Lie(x, y)/([xxy], [xyy])Lie , with a K-basis
[N] = {x, [x, y], y}, hence B is AS regular.

g ≃ h3, the 3-dimensional Heisenberg algebra with a K-basis
x, y, t, and relations [x, y] = t, [x, t] = 0, [y, t] = 0.



First results-the general case when A = K〈X〉/I in

C(X, W) has polynomial growth and finite global
dimension. We prove that

Given the class C(X, W), such that the monomial algebra
AW = K〈X〉/(W) ∈ C(X, W) has
gl dim AW = d < ∞, GK dim AW < ∞. Then



First results-the general case when A = K〈X〉/I in

C(X, W) has polynomial growth and finite global
dimension. We prove that

Given the class C(X, W), such that the monomial algebra
AW = K〈X〉/(W) ∈ C(X, W) has
gl dim AW = d < ∞, GK dim AW < ∞. Then
Every A ∈ C(X, W) satisfies

gl. dim A = GK dim A = d, and



First results-the general case when A = K〈X〉/I in

C(X, W) has polynomial growth and finite global
dimension. We prove that

Given the class C(X, W), such that the monomial algebra
AW = K〈X〉/(W) ∈ C(X, W) has
gl dim AW = d < ∞, GK dim AW < ∞. Then
Every A ∈ C(X, W) satisfies

gl. dim A = GK dim A = d, and

|W| ≤ d(d− 1)/2.

In particular, A is standard finitely presented (s.f.p.).



First results-the general case when A = K〈X〉/I in

C(X, W) has polynomial growth and finite global
dimension. We prove that

Given the class C(X, W), such that the monomial algebra
AW = K〈X〉/(W) ∈ C(X, W) has
gl dim AW = d < ∞, GK dim AW < ∞. Then
Every A ∈ C(X, W) satisfies

gl. dim A = GK dim A = d, and

|W| ≤ d(d− 1)/2.

In particular, A is standard finitely presented (s.f.p.).
Remark. In general, gl. dim A ≤ gl. dim AW (always) and I
have examples when gl. dim A < gl. dim AW. Surprisingly,
when AW has gl dim AW = d < ∞ and polynomial growth,
the global dimension gl. dim A does not depend on the shape
of the defining relations of A but only on the set of obstructions
W.



Anick. The set of n-chains on W is defined recursively.

A (−1)-chain is the monomial 1, a 0-chain is any element of X,
and a 1-chain is a word in W. An (n + 1)-prechain is a word
w ∈ X+, which can be factored in two different ways
w = uvq = ust such that t ∈ W, u is an n− 1 chain, uv is an
n-chain, and s is a proper left segment of v. An (n + 1)-prechain
is an (n + 1)-chain if no proper left segment of it is an
n-prechain. In this case the monomial q is called the tail of the
n-chain w.

Theorem [Anick] Suppose W ⊂ X+ is an antichain of
monomials. The monomial algebra AW = K〈X〉/(W) has
gl dim AW = d iff there are no d-chains on W but there exists a
d− 1 chain on W.
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(a) |W| = d(d− 1)/2; (b) d = gl dim A = n; (c) A is a PBW
algebra (Priddy); (d) M = X and ∃ possibly new, ordering
of X, X = {y1 ← · · · ← yn}, s.t. W = {yjyi | 1 ≤ i < j ≤ n}.
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(2) There exists a finite set M of normal words, ”atoms”, in the
sense of Anick: M = {a1, a2, · · · , ad} ⊂ N, X ⊆ M, s.t.

(2.a) The normal K-basis N of A and its Hilbert series satisfy:

N = {ak1
1 ak2

2 · · · a
kd

d | ki ≥ 0, 1 ≤ i ≤ d},

HA(z) = ∏1≤i≤d(1− z|ai|)−1.

(2.b) ∀w ∈ W has the shape w = ajai, 1 ≤ i < j ≤ d.

(2.c) A is s.f.p., the ideal I has a finite reduced Gröbner basis R,
where |R| = |W| ≤ d(d− 1)/2.

(3) FAEQ

(a) |W| = d(d− 1)/2; (b) d = gl dim A = n; (c) A is a PBW
algebra (Priddy); (d) M = X and ∃ possibly new, ordering
of X, X = {y1 ← · · · ← yn}, s.t. W = {yjyi | 1 ≤ i < j ≤ n}.

In this case A is Koszul.



Classes C(X, W), where W is an anticahin of Lyndon words are
of special interest.



A nonperiodic word u ∈ X+ is a Lyndon word if it is

minimal (with respect to <) in its conjugate class

u = ab, a, b ∈ X+ =⇒ u < ba.

L denotes the set of Lyndon words in X+. By definition

X ⊂ L.
Example. X = {x < y}. The Lyndon words of length ≤ 5 are:

x, y, xy, xxy, xyy,
xxxy, xxyy, xyyy,

xxyxy, xyxyyy, xkyl, k + l = 5, 1 ≤ k, l ≤ 4.

Some Facts. (1) If a < b are Lyndon words then ab is a Lyndon
word, so a < ab < b.
(2) Let w ∈ L. If w = ab, where b is the longest proper right
segment of w with b ∈ L then a ∈ L. This is the (right) standard
factorization of w and denoted as w = (a, b) = (a, b)r.(Used for
the standard Lie bracketing of Lyndon words).



Obstructions set W, Lyndon Atoms N = N(W). Duality
W ←→ N(W)

Definition. Given an antichain W of Lyndon words, the set of
W-normal Lyndon words is denoted by N = N(W), and is called
a the set of Lyndon atoms corresponding to W.

N = N(W) = N(W)
⋂

L.

We study classes C(X, W) of associative graded K-algebras A
generated by X and with a fixed obstructions set W consisting
of Lyndon words in the alphabet X. Clearly, the monomial algebra
Amon = K〈X〉/(W) ∈ C(X, W). Moreover, all algebras A in
C(X, W) share the same PBW type K-basis N, built out of the
Lyndon atoms N. In general, the set N may be infinite. N
”controls” the GK dim A, and W ”controls” gl dim Amon:
A has polynomial growth of degree d iff |N| = d, moreover
gl dim A ≤ gl dim AW ≤ |W| − 1, whenever W is a finite set.



Relations between W and N(W), Lyndon pairs (N, W)

Each antichain W ⊂ L determines uniquely a set of Lyndon
atoms N = N(W) ⊂ L. It satisfies

C1. X ⊆ N.
C2. ∀v ∈ L, ∀u ∈ N, v ⊑ u =⇒ v ∈ N.
C3. u ∈ N ⇐⇒ u ∈ L and u /∈ (W).

Conversely, each set N of Lyndon words satisfying conditions
C1 and C2 determines uniquely an antichain of Lyndon
monomials W = W(N), such that condition C3 holds, and N is
exactly the set of Lyndon atoms corresponding to W.
In this case (N, W) will be called a Lyndon pair.



Open Question 1. Is it true that if A is an (s.f.p.)

Artin-Schelter regular algebra there exists an appropriate
ordering < on X, so that the obstructions set W of A
consists of Lyndon words?

True for the class of Z
2-graded AS-regular algebras

A = K〈x1, x2〉/I of global dimension 5.
(Floystad-Watne,2011, G.S. Zhou, D.M. Lu, 2013)
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(1) If ”Yes” then N is finite, |N| = d, hence |W| ≤ d(d− 1)/2.
This is not sufficient.

(2) C(X, W) contains an abundance of AS-regular algebras,
whenever |W| = d(d− 1)/2. Here N = X, gl dim A = n
(Thm II) e.g. n = 8, C(X, W) contains ≥ 2400 AS-reg.alg.

(3) C(X, W) contains at least one AS-regular algebra,
whenever |W| = (d− 1), N is connected, here gl dim A = d,
see Thm III.

(4) C(X, W) contains an AS-regular algebra of gl dim A = |N|,
whenever g = Lie(X)/([W]), has a K-basis [N], or
equivalently [W] is a GS-Lie basis (this can be effectively
verified). Here A = Ug. In this case N is connected.



(5) C(X, W(Fib6)) contains the monomial Fibonacci -Lyndon
algebra F6, GK dim F6 = gl. dim F6 = 6, but does not
contain a Z2-graded AS-regular algebras.
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set W of all antichains W of Lyndon words with
X

⋂
W = ∅ and the set N of all sets N ⊂ L satisfying C1

and C2.

φ : W −→ N W 7→ N(W)
φ−1 : N −→W N 7→ W(N).

N(W(N)) = N; W(N(W)) = W
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◮ (1) There exists a one-to-one correspondence between the

set W of all antichains W of Lyndon words with
X

⋂
W = ∅ and the set N of all sets N ⊂ L satisfying C1

and C2.

φ : W −→ N W 7→ N(W)
φ−1 : N −→W N 7→ W(N).

N(W(N)) = N; W(N(W)) = W

◮ (2) If N ∈N is a finite set of order d, then the antichain
W = W(N) is also finite with |W| ≤ d(d− 1)/2.

NB. w ∈ W standard bracketing w = a.b,=⇒ a, b ∈ N, a < b.

◮ (3) Each finite antichain W ∈W determines
Amon = K〈X〉/(W), gl dim Amon ≤ |W|+ 1.

◮ (4) Each N ∈ N determines uniquely Amon = K〈X〉/(W),
with def. relations W = W(N) and Lyndon atoms N.

GK dim Amon = d⇐⇒ |N| = d.



Suppose N = {l1 < l2 < l3 · · · < ld} is a set of Lyndon

words closed under taking Lyndon subwords.
m = max{|li| | 1 ≤ i ≤ d}

We say that N is connected if

N
⋂

Ls 6= ∅, ∀s ≤ m.

This is a necessary condition for ”S(X, W) contains the
enveloping algebra U = Ug of a Lie algebra g”.

Lemma. Suppose (N, W) is a Lyndon pair. If the class S(X, W)
contains the enveloping algebra U = Ug of a Lie algebra g then
N is a connected set of Lyndon atoms, and [N] is a K-basis for g.



Theorem II. Let W ⊂ X+ be an antichain of monomials,
let N be the set of normal Lyndon word, N = N

⋂
L is not

necessarily finite.

(1) W is an anticain of Lyndon words iff the set of normal
words N = N(W) has the shape

N = {lk1
1 lk2

2 · · · l
ks
s | l1 > · · · > ls ∈ N, s ≥ 1, ki ≥ 0, 1 ≤ i ≤ s},
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Theorem II. Let W ⊂ X+ be an antichain of monomials,
let N be the set of normal Lyndon word, N = N

⋂
L is not

necessarily finite.

(1) W is an anticain of Lyndon words iff the set of normal
words N = N(W) has the shape

N = {lk1
1 lk2

2 · · · l
ks
s | l1 > · · · > ls ∈ N, s ≥ 1, ki ≥ 0, 1 ≤ i ≤ s},

Suppose that W is an antichain of Lyndon words, so
(N, W) is a Lyndon pair. Let A = K〈X〉/I ∈ C(X, W). Then

(2) GK dim A = d ⇐⇒ |N| = d, N = {l1 > l2 > · · · > ld}.
In this case the following conditions hold.

(2.a) gl dim A = d = GK dim A;

(2.b) HA(t) = ∏1≤i≤d 1/(1− t|li|);

(2.c) A is s.f.p. with d− 1 ≤ |W| ≤ d(d−1)
2 .

(3) C(X, W) contains AS regular algebras, whenever

|W| =
d(d− 1)

2
, or |W| = d− 1, and N is connected.
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Suppose g = Lie(X)/J is a Lie algebra, U = Ug = K〈X〉/I. Let
W be the set of obstructions for U, let AW = K〈X〉/(W),
N = N(I), N = N(W) = N

⋂
L.

(1) (N, W) is a Lyndon pair, N is connected. AW is a monomial
algebra defined by Lyndon words, in the sense of GIF.
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Suppose g = Lie(X)/J is a Lie algebra, U = Ug = K〈X〉/I. Let
W be the set of obstructions for U, let AW = K〈X〉/(W),
N = N(I), N = N(W) = N

⋂
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(1) (N, W) is a Lyndon pair, N is connected. AW is a monomial
algebra defined by Lyndon words, in the sense of GIF.

(2) Assume that J is generated by homogeneous Lie elements,
so U is canonically graded. Then U, and AW are in the class
C(X, W). FAEQ.

(a) U = Ug is an Artin-Schelter regular algebra.
(b) The algebra U has polynomial growth.
(c) The Lie algebra g is finite dimensional.
(d) The set of Lyndon atoms N is finite.

(3) Each of these equiv. conditions implies that U is s.f.p., and

d− 1 ≤ |W| ≤ d(d− 1)/2, where d = |N|,

gldim(U) = GK dim(U) = dimK g = |N| = d.
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C(X, W) contains U = ULd−1, where Ld−1 is the filiform
Lie algebra of dim. d and nilpotency class d− 1. U is an
AS-regular algebra with gl dim U = d.

(2) FAEQ

(i) |W| = d(d− 1)/2;

(ii) W = {xixj | 1 ≤ i < j ≤ d};

(iii) N = X, so d = n.

C(X, W) contains an abundance of (non isomorphic) PBW
AS regular algebras: each of them is a skew polynomial
ring with square-free binomial relations (GI), and defines a
solution of the YBE.



Monomial Lie algebras

Let W be an antichain of Lyndon words, let J = ([W])Lie be the
Lie ideal
generated by [W] = {[w] | w ∈ W} in Lie(X). The Lie algebra
g = Lie(X)/J is called a monomial Lie algebra defined by Lyndon
words, or shortly, a monomial Lie algebra. We call g a a standard
monomial Lie algebra and denote it by gW if [W] is a
Gröbner-Shirshov basis of the Lie ideal J. In this case
Ug ∈ C(X, W).
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Theorem IV
X = {x < y}, (Ns, Ws) is a Lyndon pair in X+. Js = ([Ws])Lie

gs = Lie(X)/Js, Is is the two-sided ideal Is = ([Ws]ass) in K〈X〉,
so Us = Ugs = K〈X〉/Is is the enveloping of gs.

(1) Let |N| = 6. Then
(a) There are eight Lyndon pairs (Nj, Wj), 1 ≤ j ≤ 8, up to

isomorphism of monomial algebras AW.
(b) For each j, 1 ≤ j ≤ 4, Uj is an AS regular algebra of

gl dim Uj = 6, Uj ∈ C(X, Wj).
(c) For 5 ≤ j ≤ 8 the algebra Uj is an AS regular algebra of

gl dim Ui ≤ 5, in particular Ui is not in C(X, Wi).
(2) |N| = 7. Then
(a) There are 30 Lyndon pairs (Ni, Wi), 1 ≤ i ≤ 30, up to

isomorphism of monomial algebras AW.
(b) For each i, 1 ≤ i ≤ 9, Ui = K〈X〉/([Wi]ass) is an AS regular

algebra, gl dim Ui = 7, Ui ∈ C(X, W(i)).
(c) Each class C(X, Wi), 12 ≤ i ≤ 30 does not contain any AS

regular algebra U presented as an enveloping U = Ug of a
Lie algebra.
For 10 ≤ i ≤ 30 U is a finitely presented AS regular
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Monomial Lie algebras of dimension 6

◮ g ∈ N4

(6.4.1) N x < x3y < x2y < xy < xy2
< y

W x4y, x3yx2y, x2yxy, xyxy2, xy3

(6.4.2) N x < x2y < x2y2
< xy < xy2

< y
W x3y, x2yx2y2, x2y2xy, xyxy2 xy3

◮ g ∈ N5, Filiform Lie algebras of dimension 6.

(6.5.3) N x < xy < xy2
< xy3

< xy4
< y

W xyixyi+1, 0 ≤ i ≤ 3, xy5

(6.5.4) N x < xy < xyxy2
< xy2

< xy3
< y

W x2y, xyxyxy2, xyxy2xy2, xy2xy3, xy4



Each of the remaining classes C(X, W) does not contain

enveloping of a Lie algebra.

(6.5.5) N x < x2y < x2yxy < xy < xy2
< y

W x3y, x2y2, (x2y)2xy, x2y(xy)2, xyxy2, xy3

(6.7.6) N x < x3y < x3yx2y < x2y < xy < y
W x4y, (x3y)2x2y, x3y(x2y)2, x2yxy, xy2

(6.7.7) N x < x2y < x2yxy < x2yxyxy < xy < y
W x3y, (x2y)2xy, (x2yxy)2xy, x2y(xy)3, xy2

(6.7.8) N F6 x < xy < xyxy2
< xyxy2xy2

< xy2
< y

W x2y, xyxyxy2, xyxy2xy(xy2)2, xy(xy2)3, xy3

Fibonacci algebra



Standard Monomial Lie algebras of dimension 7;[W] is a

GS basis only for N1 through N9

(7.4.1) N1 = {x < x3y < x2y < x2y2
< xy < xy2

< y}, m = 4;
(7.4.2) N2 = {x < x3y < x2y < xy < xy2

< xy3
< y}, m = 4

(7.4.3) N3 = {x < x2y < x2y2
< xy < xy2

< xy3
< y}, m = 4

(7.5.4) N4 = {x < xy < xyxy2
< xy2

< xy3
< xy4

< y}, m = 5
(7.5.5) N5 = {x < x2y < xy < xy2

< xy3
< xy4

< y}, m = 5
(7.5.6) N6 = {x < x2y < xy < xyxyy < xy2

< xy3
< y}, m = 5

(7.5.7) N7 = {x < x2y < x2yxy < x2y2
< xy < xy2

< y}, m = 5
(7.5.8) N8 = {x < x2y < x2y2

< xy < xyxy2
< xy2

< y}, m = 5
(7.6.9) N9 = {x < xy < xy2

< xy3
< xy4

< xy5
< y}, m = 6

W9 = {xyixyi+1, 0 ≤ i ≤ 4}
⋃
{xy6}

(7.5.10)∗ N = {x < x2y < x2yxy < xy < xy2
< xy3

< y}
(7.5.11)∗ N = {x < x3y < x2y < xy < xyxy2

< xy2
< y}

(7.6.12)∗ N = {x < xy < xyxy2
< xyxy3

< xy2
< xy3

< y}



(7.5.13) N = {x < x2y < x2yxy < xy < xyxy2
< xy2

< y}
(7.6.14) N = {x < x2y < x2y2

< x2y2xy < xy < xy2
< y}

(7.7.15) N = {x < xy < xy2
< xy2xy3

< xy3
< xy4

< y}
(7.7.16) N = {x < xy < xyxy2

< xy2
< (xy2)(xy3) < xy3

< y}
(7.7.17) N = {x < x2y < xy < xy2

< (xy2)(xy3) < xy3
< y}

(7.7.18) N = {x < xy < (xy)(xyxy2) < xyxy2
< xy2

< xy3
< y}

(7.7.19) N = {x < x2y < (x2y)(x2y2) < x2y2
< xy < xy2

< y}
(7.7.20) N = {x < x2y < xy < xy(xyxy2) < xyxy2

< xy2
< y}

(7.8.21) N = {x < x2y < xy < xyxy2
< (xyxy2)(xy2) < xy2

< y}
(7.8.22) N = {x < xy < xyxy2

< (xyxy2)(xy2) < xy2
< xy3

< y}
(7.8.23) N = {x < xy < xyxyxy2

< xyxy2
< xyxy2xy2

< xy2
< y}

(7.9.24) N = {x < xy < xy2
< xy3

< (xy3)(xy4) < xy4
< y}

(7.9.25) N = {x < xy < xyxyxyxy2
< xyxyxy2

< xyxy2
< xy2

< y}
(7.10.26) N = {x < xy < xy2

< xy2xy2xy3
< xy2xy3

< xy3
< y}

(7.11.27) N = {x < xy < xy2
< xy2xy3

< (xy2xy3)(xy3) < xy3
< y}

(7.11.28) N = {x, xy, xyxy2 , xyxy2xy2, xyxy2xy2xy2, xy2
< y}

(7.12.29) N = {x, xy, xyxyxy2 , xyxyxy2xyxy2, xyxy2, xy2
< y}

(7.13.30) NF7
= {x, y, xy, xyy, xyxyy, xyxyyxyy, xyxyyxyxyyxyy}.


