SKEW LATTICES AND SET-THEORETIC SOLUTIONS OF THE YANG-BAXTER EQUATION

(joint work with Karin Cvetko-Vah)

Charlotte Verwimp
Advances in Group Theory and Applications June 25-28, 2019, Lecce

VRIJE
UNIVERSITEIT
BRUSSEL

SET-THEORETIC SOLUTIONS

Definition

A set-theoretic solution of the Yang-Baxter equation is a pair (X, r) such that X is a non-empty set and
$r: X \times X \rightarrow X \times X:(x, y) \mapsto\left(\sigma_{x}(y), \gamma_{y}(x)\right)$ is a map where

$$
\left(r \times i d_{X}\right) \circ\left(i d_{x} \times r\right) \circ\left(r \times i d_{x}\right)=\left(i d_{x} \times r\right) \circ\left(r \times i d_{x}\right) \circ\left(i d_{x} \times r\right)
$$

SET-THEORETIC SOLUTIONS

Definition

A set-theoretic solution of the Yang-Baxter equation is a pair (X, r) such that X is a non-empty set and $r: X \times X \rightarrow X \times X:(x, y) \mapsto\left(\sigma_{x}(y), \gamma_{y}(x)\right)$ is a map where
$\left(r \times i d_{X}\right) \circ\left(i d_{X} \times r\right) \circ\left(r \times i d_{X}\right)=\left(i d_{X} \times r\right) \circ\left(r \times i d_{X}\right) \circ\left(i d_{X} \times r\right)$.

- Left non-degenerate: σ_{x} is bijective, for all $x \in X$

SET-THEORETIC SOLUTIONS

Definition

A set-theoretic solution of the Yang-Baxter equation is a pair (X, r) such that X is a non-empty set and $r: X \times X \rightarrow X \times X:(x, y) \mapsto\left(\sigma_{x}(y), \gamma_{y}(x)\right)$ is a map where
$\left(r \times i d_{X}\right) \circ\left(i d_{X} \times r\right) \circ\left(r \times i d_{X}\right)=\left(i d_{X} \times r\right) \circ\left(r \times i d_{X}\right) \circ\left(i d_{X} \times r\right)$.

- Left non-degenerate: σ_{x} is bijective, for all $x \in X$
- Right non-degenerate: γ_{x} is bijective, for all $x \in X$

SET-THEORETIC SOLUTIONS

Definition

A set-theoretic solution of the Yang-Baxter equation is a pair (X, r) such that X is a non-empty set and $r: X \times X \rightarrow X \times X:(x, y) \mapsto\left(\sigma_{x}(y), \gamma_{y}(x)\right)$ is a map where
$\left(r \times i d_{X}\right) \circ\left(i d_{X} \times r\right) \circ\left(r \times i d_{X}\right)=\left(i d_{X} \times r\right) \circ\left(r \times i d_{X}\right) \circ\left(i d_{X} \times r\right)$.

- Left non-degenerate: σ_{x} is bijective, for all $x \in X$
- Right non-degenerate: γ_{x} is bijective, for all $x \in X$
- Involutive: $r^{2}=i d_{x^{2}}$

SET-THEORETIC SOLUTIONS

Definition

A set-theoretic solution of the Yang-Baxter equation is a pair (X, r) such that X is a non-empty set and $r: X \times X \rightarrow X \times X:(x, y) \mapsto\left(\sigma_{x}(y), \gamma_{y}(x)\right)$ is a map where
$\left(r \times i d_{X}\right) \circ\left(i d_{X} \times r\right) \circ\left(r \times i d_{X}\right)=\left(i d_{X} \times r\right) \circ\left(r \times i d_{X}\right) \circ\left(i d_{X} \times r\right)$.

- Left non-degenerate: σ_{x} is bijective, for all $x \in X$
- Right non-degenerate: γ_{x} is bijective, for all $x \in X$
- Involutive: $r^{2}=i d_{x^{2}}$
- Idempotent: $r^{2}=r$

SET-THEORETIC SOLUTIONS

Definition

A set-theoretic solution of the Yang-Baxter equation is a pair (X, r) such that X is a non-empty set and $r: X \times X \rightarrow X \times X:(x, y) \mapsto\left(\sigma_{x}(y), \gamma_{y}(x)\right)$ is a map where
$\left(r \times i d_{X}\right) \circ\left(i d_{X} \times r\right) \circ\left(r \times i d_{X}\right)=\left(i d_{X} \times r\right) \circ\left(r \times i d_{X}\right) \circ\left(i d_{X} \times r\right)$.

- Left non-degenerate: σ_{X} is bijective, for all $x \in X$
- Right non-degenerate: γ_{x} is bijective, for all $x \in X$
- Involutive: $r^{2}=i d_{x^{2}}$
- Idempotent: $r^{2}=r$
- Cubic: $r^{3}=r$

SKEW LATTICES

Definition

A skew lattice (SL) is a set S endowed with a pair of idempotent and associative operations \wedge and \vee which satisfy the absorption laws

$$
x \wedge(x \vee y)=x=x \vee(x \wedge y) \text { and }(x \wedge y) \vee y=y=(x \vee y) \wedge y .
$$

Notation: (S, \wedge, \vee)

SKEW LATTICES

Definition

A skew lattice (SL) is a set S endowed with a pair of idempotent and associative operations \wedge and \vee which satisfy the absorption laws

$$
x \wedge(x \vee y)=x=x \vee(x \wedge y) \text { and }(x \wedge y) \vee y=y=(x \vee y) \wedge y .
$$

Notation: (S, \wedge, \vee)

Examples

- Lattices

SKEW LATTICES

Definition

A skew lattice (SL) is a set S endowed with a pair of idempotent and associative operations \wedge and \vee which satisfy the absorption laws

$$
x \wedge(x \vee y)=x=x \vee(x \wedge y) \text { and }(x \wedge y) \vee y=y=(x \vee y) \wedge y .
$$

Notation: (S, \wedge, \vee)

Examples

- Lattices
- $(\{0,1,2\}, \wedge, \vee)$, where

\wedge	0	1	2	\vee	0	1	2
0	0	0	0		0	0	1
2							
1	0	1	1		1	1	1
2							
2	0	2	2		2	2	1

STRONG DISTRIBUTIVE SOLUTIONS

Definition

A skew lattice (S, \wedge, \vee) is called a strong distributive solution of the Yang-Baxter equation if (S, r) is a set-theoretic solution of the Yang-Baxter equation, where

$$
r: S \times S \rightarrow S \times S:(x, y) \mapsto(x \wedge y, x \vee y)
$$

Remark: (S, r) is cubic

STRONG DISTRIBUTIVE SOLUTIONS

\{Strongly and co-strongly distributive SL\}
$+A$
\{Strong distributive solution\}
$+A$
\{Distributive and cancellative SL\}

STRONG DISTRIBUTIVE SOLUTIONS

\{Strongly and co-strongly distributive SL\}
$+A$
\{Strong distributive solution\}
$+A$
\{Distributive and cancellative SL\}
Strongly distributive: $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

$$
(x \vee y) \wedge z=(x \wedge z) \vee(y \wedge z)
$$

STRONG DISTRIBUTIVE SOLUTIONS

\{Strongly and co-strongly distributive SL\}
$+1$
\{Strong distributive solution\}
$+A$
\{Distributive and cancellative SL\}
Strongly distributive: $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

$$
(x \vee y) \wedge z=(x \wedge z) \vee(y \wedge z)
$$

Co-strongly distributive: $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$

$$
(x \wedge y) \vee z=(x \vee z) \wedge(y \vee z)
$$

STRONG DISTRIBUTIVE SOLUTIONS

\{Strongly and co-strongly distributive SL\}
$1+$
\{Strong distributive solution\}
$+1$
\{Distributive and cancellative SL\}
Strongly distributive: $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

$$
(x \vee y) \wedge z=(x \wedge z) \vee(y \wedge z)
$$

Co-strongly distributive: $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$

$$
(x \wedge y) \vee z=(x \vee z) \wedge(y \vee z)
$$

Distributive: $x \wedge(y \vee z) \wedge x=(x \wedge y \wedge x) \vee(x \wedge z \wedge x)$

$$
x \vee(y \wedge z) \vee x=(x \vee y \vee x) \wedge(x \vee z \vee x)
$$

STRONG DISTRIBUTIVE SOLUTIONS

\{Strongly and co-strongly distributive SL\}
$1+$
\{Strong distributive solution\}
$+\infty$
\{Distributive and cancellative SL\}
Strongly distributive: $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$

$$
(x \vee y) \wedge z=(x \wedge z) \vee(y \wedge z)
$$

Co-strongly distributive: $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$

$$
(x \wedge y) \vee z=(x \vee z) \wedge(y \vee z)
$$

Distributive: $x \wedge(y \vee z) \wedge x=(x \wedge y \wedge x) \vee(x \wedge z \wedge x)$

$$
x \vee(y \wedge z) \vee x=(x \vee y \vee x) \wedge(x \vee z \vee x)
$$

Cancellative: $x \vee y=x \vee z$ and $x \wedge y=x \wedge z \Rightarrow y=z$

$$
x \vee z=y \vee z \text { and } x \wedge z=y \wedge z \Rightarrow x=y
$$

LEFT AND RIGHT DISTRIBUTIVE SOLUTIONS

Definition

A skew lattice (S, \wedge, \vee) is called a left (resp. right) distributive solution of the Yang-Baxter equation if (S, r) is a set-theoretic solution of the Yang-Baxter equation, where

$$
r: S \times S \rightarrow S \times S:(x, y) \mapsto(x \wedge y, y \vee x) \quad(r e s p .(y \wedge x, x \vee y))
$$

Remark: (S, r) is idempotent

LEFT AND RIGHT DISTRIBUTIVE SOLUTIONS

\{Left cancellative and distributive SL\}
$=$
\{Left distributive solution\}
\{Right cancellative and distributive SL\} $=$
\{Right distributive solution\}

LEFT AND RIGHT DISTRIBUTIVE SOLUTIONS

\{Left cancellative and distributive SL\}
$=$
\{Left distributive solution\}
\{Right cancellative and distributive SL\} $=$
\{Right distributive solution\}
Left cancellative: $x \vee y=x \vee z$ and $x \wedge y=x \wedge z \Rightarrow y=z$

LEFT AND RIGHT DISTRIBUTIVE SOLUTIONS

\{Left cancellative and distributive SL\}
$=$
\{Left distributive solution\}
\{Right cancellative and distributive SL\} $=$
\{Right distributive solution\}
Left cancellative: $x \vee y=x \vee z$ and $x \wedge y=x \wedge z \Rightarrow y=z$ Right cancellative: $x \vee z=y \vee z$ and $x \wedge z=y \wedge z \Rightarrow x=y$

LEFT AND RIGHT DISTRIBUTIVE SOLUTIONS

\{Left cancellative and distributive SL\}

$$
=
$$

\{Left distributive solution\}
\{Right cancellative and distributive SL\}

$$
=
$$

\{Right distributive solution\}
Left cancellative: $x \vee y=x \vee z$ and $x \wedge y=x \wedge z \Rightarrow y=z$ Right cancellative: $x \vee z=y \vee z$ and $x \wedge z=y \wedge z \Rightarrow x=y$
Distributive: $x \wedge(y \vee z) \wedge x=(x \wedge y \wedge x) \vee(x \wedge z \wedge x)$
$x \vee(y \wedge z) \vee x=(x \vee y \vee x) \wedge(x \vee z \vee x)$

WEAK DISTRIBUTIVE SOLUTIONS

Definition

A skew lattice (S, \wedge, \vee) is called a weak distributive solution of the Yang-Baxter equation if (S, r) is a set-theoretic solution of the Yang-Baxter equation, where

$$
r: S \times S \rightarrow S \times S:(x, y) \mapsto(x \wedge y \wedge x, x \vee y \vee x)
$$

Remark: (S, r) is idempotent

WEAK DISTRIBUTIVE SOLUTIONS

\{Simply cancellative, distributive and lower symmetric SL\} $=$
\{Weak distributive solution\}

WEAK DISTRIBUTIVE SOLUTIONS

\{Simply cancellative, distributive and lower symmetric SL\} $=$
\{Weak distributive solution\}
Simply cancellative: $x \vee y \vee x=x \vee z \vee x$ and
$x \wedge y \wedge x=x \wedge z \wedge x \Rightarrow y=z$

WEAK DISTRIBUTIVE SOLUTIONS

\{Simply cancellative, distributive and lower symmetric SL\} $=$
\{Weak distributive solution \}
Simply cancellative: $x \vee y \vee x=x \vee z \vee x$ and
$x \wedge y \wedge x=x \wedge z \wedge x \Rightarrow y=z$
Distributive: $x \wedge(y \vee z) \wedge x=(x \wedge y \wedge x) \vee(x \wedge z \wedge x)$

$$
x \vee(y \wedge z) \vee x=(x \vee y \vee x) \wedge(x \vee z \vee x)
$$

WEAK DISTRIBUTIVE SOLUTIONS

\{Simply cancellative, distributive and lower symmetric SL\} $=$
\{Weak distributive solution\}
Simply cancellative: $x \vee y \vee x=x \vee z \vee x$ and
$x \wedge y \wedge x=x \wedge z \wedge x \Rightarrow y=z$
Distributive: $x \wedge(y \vee z) \wedge x=(x \wedge y \wedge x) \vee(x \wedge z \wedge x)$

$$
x \vee(y \wedge z) \vee x=(x \vee y \vee x) \wedge(x \vee z \vee x)
$$

Lower symmetric: $x \vee y=y \vee x \Rightarrow x \wedge y=y \wedge x$

SOLUTIONS FROM GENERAL SKEW LATTICES

Proposition

Let (S, \wedge, \vee) be a skew lattice. Then, (S, r) is an idempotent set-theoretic solution of the Yang-Baxter equation, where

$$
r: S \times S \rightarrow S \times S:(x, y) \mapsto((x \wedge y) \vee x, y)
$$

SOLUTIONS FROM GENERAL SKEW LATTICES

Proposition

Let (S, \wedge, \vee) be a skew lattice. Then, (S, r) is an idempotent set-theoretic solution of the Yang-Baxter equation, where

$$
r: S \times S \rightarrow S \times S:(x, y) \mapsto((x \wedge y) \vee x, y)
$$

Corollary

Let (S, \wedge, \vee) be a skew lattice. The map $r(x, y)=(x\lfloor y\rfloor, y)$ is an idempotent set-theoretic solution of the Yang-Baxter equation.
$x\lfloor y\rfloor:=(y \wedge x \wedge y) \vee x \vee(y \wedge x \wedge y)$ lower update of x by y

Strongly and co-strongly distributive SL
\downarrow
Strong distributive solution
\downarrow
Cancellative, distributive SL

Strongly and co-strongly distributive SL

\downarrow
Cancellative, distributive SL

Left cancellative, distributive SL =
Left distributive solution

Strongly and co-strongly distributive SL
\downarrow
Strong distributive solution
\downarrow
Cancellative, distributive SL

Left cancellative, distributive SL $=$
Left distributive solution

Right cancellative, distributive SL =
Right distributive solution

Strongly and co-strongly distributive SL
\downarrow
Strong distributive solution
\downarrow
Cancellative, distributive SL

Left cancellative, distributive SL $=$
Left distributive solution

Right cancellative, distributive SL =
Right distributive solution

$$
\begin{aligned}
& \text { Simply cancellative, distributive, lower symmetric SL } \\
& \text { Weak distributive solution }
\end{aligned}
$$

Strongly and co-strongly distributive SL

\downarrow
Strong distributive solution
\downarrow
Cancellative, distributive SL

```
Left cancellative, distributive SL
    =
    Left distributive solution
```


Right cancellative, distributive SL =
Right distributive solution

QUESTION

Can we use skew lattices to generalize the notions of braces and cycle sets?

CONSTRUCTION

Proposition

Let (I, \leq) be a totally ordered set, $\left\{A_{i} \mid i \in I\right\}$ a family of pairwise disjoint sets and $S=\cup_{i \in I} A_{i}$. For any $i, j \in I, x \in A_{i}$ and $y \in A_{j}$ define

$$
x \wedge y=\left\{\begin{array}{ll}
x & \text { if } i<j \\
y & \text { if } j \leq i
\end{array}, \quad x \vee y=\left\{\begin{array}{ll}
y & \text { if } i<j \\
x & \text { if } j \leq i
\end{array} .\right.\right.
$$

Then, (S, \wedge, \vee) is a cancellative and distributive skew lattice.

Thank you for your attention!

