

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

Marco Castelli

Università del Salento

Lecce, June 26 2019

(日) (同) (三) (三)

UniSalento

Marco Castelli

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition

A set-theoretic solution of the Yang-Baxter equation on a set X is a pair (X, r), where the map $r : X \times X \to X \times X$ is such that

 $r_1r_2r_1 = r_2r_1r_2$,

イロト イヨト イヨト イヨト

UniSalento

where $r_1 := r \times id_X$ and $r_2 := id_X \times r$.

Problem (Drinfield, 1992)

Finding all set-theoretic solutions of the Yang-Baxter equation.

Marco Castelli

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition

A set-theoretic solution of the Yang-Baxter equation on a set X is a pair (X, r), where the map $r : X \times X \to X \times X$ is such that

$$r_1r_2r_1 = r_2r_1r_2$$
,

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

UniSalento

where $r_1 := r \times id_X$ and $r_2 := id_X \times r$.

Problem (Drinfield, 1992)

Finding all set-theoretic solutions of the Yang-Baxter equation.

Marco Castelli

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets **Convention**: if X is a set and $r : X \times X \to X \times X$, we will denote by $\lambda_x(y)$ (resp. $\rho_x(y)$) the projection on the first component (resp. on the second component) of r(x, y) (resp. of r(y, x)).

イロト イヨト イヨト イヨト

UniSalento

Definitior

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

3) square-free if r(x, x) = (x, x) for every $x \in X$.

Marco Castelli

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets **Convention**: if X is a set and $r : X \times X \to X \times X$, we will denote by $\lambda_x(y)$ (resp. $\rho_x(y)$) the projection on the first component (resp. on the second component) of r(x, y) (resp. of r(y, x)).

イロト イヨト イヨト イヨト

UniSalento

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called:

1) involutive if $r^2 = id_{X \times X}$;

2) *non-degenerate* if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

3) square-free if r(x,x) = (x,x) for every $x \in X$.

Marco Castelli

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets **Convention**: if X is a set and $r : X \times X \to X \times X$, we will denote by $\lambda_x(y)$ (resp. $\rho_x(y)$) the projection on the first component (resp. on the second component) of r(x, y) (resp. of r(y, x)).

イロト イヨト イヨト イヨト

UniSalento

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

3) square-free if r(x,x) = (x,x) for every $x \in X$.

Marco Castelli

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets **Convention**: if X is a set and $r : X \times X \to X \times X$, we will denote by $\lambda_x(y)$ (resp. $\rho_x(y)$) the projection on the first component (resp. on the second component) of r(x, y) (resp. of r(y, x)).

UniSalento

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

B) square-free if r(x,x) = (x,x) for every $x \in X$.

Marco Castelli

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets **Convention**: if X is a set and $r : X \times X \to X \times X$, we will denote by $\lambda_x(y)$ (resp. $\rho_x(y)$) the projection on the first component (resp. on the second component) of r(x, y) (resp. of r(y, x)).

<ロ> (日) (日) (日) (日) (日)

UniSalento

Definition

A set-theoretic solution of the Yang-Baxter equation $r: X \times X \to X \times X$, $(x, y) \to (\lambda_x(y), \rho_y(x))$ is called: 1) *involutive* if $r^2 = id_{X \times X}$;

2) non-degenerate if $\lambda_x, \rho_x \in Sym(X)$ for every $x \in X$;

3) square-free if
$$r(x, x) = (x, x)$$
 for every $x \in X$.

Marco Castelli

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Example

Let X be a non-empty set and $r: X \times X \to X \times X$ the function given by r(x, y) := (y, x) for all $x, y \in X$. Then the pair (X, r) is an involutive non-degenerate square-free set-theoretic solution.

Convention: From now on, by a solution we mean a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation.

UniSalento

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NIVERSITA EL SALENTO On involutive square-free

set-theoretic solutions of the Yang-Baxter equation

Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Set-theoretic solutions of the Yang-Baxter equation

Example

Let X be a non-empty set and $r: X \times X \to X \times X$ the function given by r(x, y) := (y, x) for all $x, y \in X$. Then the pair (X, r) is an involutive non-degenerate square-free set-theoretic solution.

Convention: From now on, by a solution we mean a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation.

UniSalento

(日) (同) (三) (三)

Left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition (Rump, 2005)

A pair (X, \cdot) is said a *left cycle set* if X is a non-empty set and \cdot a binary operation on X such that

- 1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;
- 2) the left multiplication $\sigma_x : X \longrightarrow X$, $y \longmapsto x \cdot y$ is bijective for every $x \in X$.

イロト イヨト イヨト イヨト

UniSalento

Moreover, (X, \cdot) is called *non-degenerate* if the map $q: X \to X, x \mapsto x \cdot x$ is bijective and *square-free* if $q = id_X$.

Marco Castelli

Left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition (Rump, 2005)

A pair (X, \cdot) is said a *left cycle set* if X is a non-empty set and \cdot a binary operation on X such that

1)
$$(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$$
 for all $x, y, z \in X$;

2) the left multiplication $\sigma_x : X \longrightarrow X$, $y \longmapsto x \cdot y$ is bijective for every $x \in X$.

イロト イヨト イヨト イヨト

UniSalento

Moreover, (X, \cdot) is called *non-degenerate* if the map $\mathfrak{q}: X \to X, x \mapsto x \cdot x$ is bijective and *square-free* if $\mathfrak{q} = id_X$.

Marco Castelli

Standard permutations groups

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition

If (X, \cdot) is a left cycle set, we will denote by $\mathcal{G}(X)$ the subgroup of Sym(X) generated by the set $\{\sigma_x | x \in X\}$ and we will call it associated permutation group.

Definition

If (X, \cdot) is a left cycle set, we will denote by Aut(X) the subgroup of Sym(X) generated by the automorphisms of (X, \cdot) , where an element α of Sym(X) is an automorphism if $\alpha(x) \cdot \alpha(y) = \alpha(x \cdot y)$ for all $x, y \in X$.

Marco Castelli

▲□▶ < @ ▶ < 별 ▶ < 별 ▶ < 별 ▶ < 별
UniSalento

Standard permutations groups

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition

If (X, \cdot) is a left cycle set, we will denote by $\mathcal{G}(X)$ the subgroup of Sym(X) generated by the set $\{\sigma_x | x \in X\}$ and we will call it associated permutation group.

Definition

If (X, \cdot) is a left cycle set, we will denote by Aut(X) the subgroup of Sym(X) generated by the automorphisms of (X, \cdot) , where an element α of Sym(X) is an automorphism if $\alpha(x) \cdot \alpha(y) = \alpha(x \cdot y)$ for all $x, y \in X$.

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

Left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Example

Let X be the set $\{1, 2, 3\}$ and \cdot the binary operation on X given by $\sigma_1 = \sigma_2 := id_X$ and $\sigma_3 := (1 \ 2)$. Then (X, \cdot) is a square-free left cycle set. Moreover, $\mathcal{G}(X) = Aut(X) = \langle (1 \ 2) \rangle$.

Marco Castelli

UniSalento

イロト イヨト イヨト

Left cycle sets and solutions

Theorem (Rump, 2005)

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets If (X, \cdot) is a non-degenerate left cycle set then the pair (X, r), where $r(x, y) := (\sigma_x^{-1}(y), \sigma_x^{-1}(y) \cdot x)$

for all $x, y \in X$, is a solution and it is called associated solution. Conversely, if (X, r) is a solution, where $r(x, y) := (\lambda_x(y), \rho_y(x))$, then the pair (X, \cdot) is a non-degenerate left cycle set, where the operation is given by

$$x \cdot y := \lambda_x^{-1}(y)$$

イロト イヨト イヨト イヨト

UniSalento

for all $x, y \in X$. The left cycle set (X, \cdot) is called associated left cycle set.

Marco Castelli

Left cycle sets and solutions

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Theorem (Rump, 2005)

If (X, \cdot) is a non-degenerate left cycle set then the pair (X, r), where $r(x, y) := (\sigma_{x}^{-1}(y), \sigma_{x}^{-1}(y) \cdot x)$

for all $x, y \in X$, is a solution and it is called **associated solution**. Conversely, if (X, r) is a solution, where $r(x, y) := (\lambda_x(y), \rho_y(x))$, then the pair (X, \cdot) is a non-degenerate left cycle set, where the operation is given by

$$x \cdot y := \lambda_x^{-1}(y)$$

UniSalento

for all $x, y \in X$. The left cycle set (X, \cdot) is called associated left cycle set.

Marco Castelli

General construction of left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Proposition (Etingof, Schedler, Soloviev, 1999)

Let $(X, \cdot), (Y, \cdot')$ be left cycle sets and $\alpha : Y \longrightarrow Aut(X)$ such that $\alpha(a \cdot b)\alpha(a) = \alpha(b \cdot a)\alpha(b)$ for every $a, b \in Y$. Then the pair $(X \cup_{\alpha} Y, \circ)$ given by

$$x \circ y := \begin{cases} x \cdot y & \text{if } x, y \in X \\ x \cdot' y & \text{if } x, y \in Y \\ y & \text{if } x \in X, y \in Y \\ \alpha(x)(y) & \text{if } y \in X, x \in Y \end{cases}$$

is a left cycle set and we will call it the **one-sided extension** of X by (Y, α) .

UniSalento

Marco Castelli

Abelian extensions of left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Proposition (Lebed and Vendramin, 2017)

Let X be a non-degenerate left cycle set, S an abelian group, $s_0 \in S \setminus \{0\}$ and \cdot the binary operation on $X \times S$ given by

$$(x,s) \cdot (y,t) := \begin{cases} (x \cdot y,t) & \text{if } x = y \\ (x \cdot y,t+s_0) & \text{if } x \neq y \end{cases}$$

Then $(X \times S, \cdot)$ is a non-degenerate square-free left cycle set and it is said to be **abelian extension** of X by S.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

UniSalento

Marco Castelli

Retraction of left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition (Etingof, Schedler, Soloviev, 1999)

Let (X, \cdot) be a left cycle set and \sim the relation on X given by

 $x \sim y : \Leftrightarrow \sigma_x = \sigma_y.$

Then \sim is a congruence of (X, \cdot) called the **retract relation** of X.

Convention: from now on, if X is a left cycle set, we will indicate by $\sigma(X)$ the algebraic structure $(X / \sim, \cdot)$.

<ロ> (日) (日) (日) (日) (日)

UniSalento

Theorem (Etingof, Schedler, Soloviev, 1999)

Let X be a non-degenerate left cycle set. Then $\sigma(X)$ is a non-degenerate left cycle set.

Marco Castelli

Retraction of left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets Definition (Etingof, Schedler, Soloviev, 1999)

Let (X, \cdot) be a left cycle set and \sim the relation on X given by

 $x \sim y : \Leftrightarrow \sigma_x = \sigma_y.$

Then \sim is a congruence of (X, \cdot) called the **retract relation** of X.

Convention: from now on, if X is a left cycle set, we will indicate by $\sigma(X)$ the algebraic structure $(X/\sim, \cdot)$.

イロト イヨト イヨト イヨト

UniSalento

Theorem (Etingof, Schedler, Soloviev, 1999)

Let X be a non-degenerate left cycle set. Then $\sigma(X)$ is a non-degenerate left cycle set.

Marco Castelli

Retraction of left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets Definition (Etingof, Schedler, Soloviev, 1999)

Let (X, \cdot) be a left cycle set and \sim the relation on X given by

 $x \sim y : \Leftrightarrow \sigma_x = \sigma_y.$

Then \sim is a congruence of (X, \cdot) called the **retract relation** of X.

Convention: from now on, if X is a left cycle set, we will indicate by $\sigma(X)$ the algebraic structure $(X/\sim, \cdot)$.

イロト イヨト イヨト イヨト

UniSalento

Theorem (Etingof, Schedler, Soloviev, 1999)

Let X be a non-degenerate left cycle set. Then $\sigma(X)$ is a non-degenerate left cycle set.

Marco Castelli

Multipermutational left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition

A non-degenerate left cycle set (X, \cdot) is called *multipermutational of level* m (and we will write mpl(X) = m), if m is the minimal non-negative integer such that $\sigma^m(X)$ has cardinality one, where

$$\sigma^0(X) := X$$
 and $\sigma^n(X) := \sigma(\sigma^{n-1}(X))$, for $n \ge 1$.

Example

Let $X := \{1, 2, 3\}$ be the left cycle set of size 3 given by $\sigma_1 = \sigma_2 := id_X$ and $\sigma_3 := (1 \ 2)$. Then (X, \cdot) is a left cycle set of level 2: indeed, $\sigma^1(X)$ is the trivial left cycle set of size 2 and $|\sigma^2(X)| = 1$.

Marco Castelli

UniSalento

イロト イヨト イヨト イヨト

Multipermutational left cycle sets

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition

A non-degenerate left cycle set (X, \cdot) is called *multipermutational of level* m (and we will write mpl(X) = m), if m is the minimal non-negative integer such that $\sigma^m(X)$ has cardinality one, where

$$\sigma^0(X) := X$$
 and $\sigma^n(X) := \sigma(\sigma^{n-1}(X))$, for $n \ge 1$.

Example

Let $X := \{1, 2, 3\}$ be the left cycle set of size 3 given by $\sigma_1 = \sigma_2 := id_X$ and $\sigma_3 := (1 \ 2)$. Then (X, \cdot) is a left cycle set of level 2: indeed, $\sigma^1(X)$ is the trivial left cycle set of size 2 and $|\sigma^2(X)| = 1$.

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

Question

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition (Gateva-Ivanova and Cameron, 2011)

For each positive integer m denote by N_m the minimal integer so that there exists a square-free multipermutational left cycle set X_m of order $|X_m| = N_m$, and with $mpl(X_m) = m$.

Question (Gateva-Ivanova and Cameron, 2011)

How does N_m depend on m?

They showed that $N_m \leq 2^{m-1} + 1$ for every $m \in \mathbb{N}$ and they noted that equality holds for $m \in \{1, 2, 3\}$.

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

Question

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition (Gateva-Ivanova and Cameron, 2011)

For each positive integer *m* denote by N_m the minimal integer so that there exists a square-free multipermutational left cycle set X_m of order $|X_m| = N_m$, and with $mpl(X_m) = m$.

Question (Gateva-Ivanova and Cameron, 2011)

How does N_m depend on m?

They showed that $N_m \leq 2^{m-1} + 1$ for every $m \in \mathbb{N}$ and they noted that equality holds for $m \in \{1, 2, 3\}$.

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets In 2017 Lebed and Vendramin, inspecting the left cycle sets of small size, showed that $N_4 = 6$ and $N_5 = 8$.

Proposition (Lebed and Vendramin, 2017)

Let m be a natural number greater than 5. Then

 $N_m \leq 2^{m-2}.$

イロト イヨト イヨト イヨト

UniSalento

Marco Castelli

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets In 2017 Lebed and Vendramin, inspecting the left cycle sets of small size, showed that $N_4 = 6$ and $N_5 = 8$.

Proposition (Lebed and Vendramin, 2017)

Let m be a natural number greater than 5. Then

$$N_m \leq 2^{m-2}$$

Marco Castelli

UniSalento

(日) (同) (三) (三)

Retraction map of order n

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition (Gateva-Ivanova and Cameron, 2011)

If X is a left cycle set and n a natural number, we indicate by $\sigma_{[n]}$ the epimorphism from X to $\sigma^n(X)$ defined inductively by

$$\sigma_{[0]}(x) := x \qquad \sigma_{[n]}(x) := \sigma_{\sigma_{[n-1]}(x)}$$

for all $n \in \mathbb{N}$ and $x \in X$. We will call the function $\sigma_{[n]}$ the **retraction** of order *n*.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

UniSalento

Marco Castelli

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition (C., Catino, Pinto, 2019)

We indicate by \overline{N}_k the cardinality of the minimal square-free left cycle set X of level k having an automorphism α such that there exists $x \in X$ with $\sigma_{[k-1]}(x) \neq \sigma_{[k-1]}(\alpha(x))$.

Example

Let $X := \{a, b\}$ be the left cycle of level 1 given by $\sigma_a = \sigma_b := id_X$ and put $\alpha := (a b)$. Then, $\alpha \in Aut(X)$ and $\sigma_{[0]}(a) \neq \sigma_{[0]}(\alpha(a))$, therefore $\overline{N}_1 = 2$.

We know that $\bar{N}_2 = 4$, $\bar{N}_3 = 6$, $\bar{N}_4 = 8$ and $\bar{N}_5 \leq 10$.

▲□▶ < @ ▶ < 별 ▶ < 별 ▶ < 별 ▶ < 별
UniSalento

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition (C., Catino, Pinto, 2019)

We indicate by \overline{N}_k the cardinality of the minimal square-free left cycle set X of level k having an automorphism α such that there exists $x \in X$ with $\sigma_{[k-1]}(x) \neq \sigma_{[k-1]}(\alpha(x))$.

Example

Let $X := \{a, b\}$ be the left cycle of level 1 given by $\sigma_a = \sigma_b := id_X$ and put $\alpha := (a \ b)$. Then, $\alpha \in Aut(X)$ and $\sigma_{[0]}(a) \neq \sigma_{[0]}(\alpha(a))$, therefore $\overline{N}_1 = 2$.

UniSalento

We know that $ar{N}_2=$ 4, $ar{N}_3=$ 6, $ar{N}_4=$ 8 and $ar{N}_5\leq$ 10.

Marco Castelli

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Definition (C., Catino, Pinto, 2019)

We indicate by \overline{N}_k the cardinality of the minimal square-free left cycle set X of level k having an automorphism α such that there exists $x \in X$ with $\sigma_{[k-1]}(x) \neq \sigma_{[k-1]}(\alpha(x))$.

Example

Let $X := \{a, b\}$ be the left cycle of level 1 given by $\sigma_a = \sigma_b := id_X$ and put $\alpha := (a \ b)$. Then, $\alpha \in Aut(X)$ and $\sigma_{[0]}(a) \neq \sigma_{[0]}(\alpha(a))$, therefore $\overline{N}_1 = 2$.

UniSalento

We know that $ar{N}_2=$ 4, $ar{N}_3=$ 6, $ar{N}_4=$ 8 and $ar{N}_5\leq$ 10.

Marco Castelli

Main result

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Theorem (C., Catino, Pinto, 2019)

The inequality

$$N_m \leq \bar{N}_k \cdot 2^{m-k-1} + 1$$

holds for every k < m.

Since $ar{N}_5 \leq 10$, it follows that the inequality

$$N_m \le 2^{m-2} - 6 \cdot 2^{m-6} + 1$$

イロト イヨト イヨト イヨト

UniSalento

holds for every natural number *m* greater than 5.

Marco Castelli

Main result

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Theorem (C., Catino, Pinto, 2019)

The inequality

$$N_m \leq \bar{N}_k \cdot 2^{m-k-1} + 1$$

holds for every k < m.

Since $\bar{N}_5 \leq 10$, it follows that the inequality

$$N_m \le 2^{m-2} - 6 \cdot 2^{m-6} + 1$$

イロト イヨト イヨト イヨト

UniSalento

holds for every natural number m greater than 5.

Marco Castelli

Key-Lemmas

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Lemma (Gateva-Ivanova and Cameron, 2011)

Let X be a square-free left cycle set of multipermutational level n. Then, the fiber $\sigma_{[n-1]}^{-1}(x)$ is $\mathcal{G}(X)$ -invariant for every $x \in X$.

emma (C., Catino, Pinto, 2019)

If $X \times S$ is an abelian extension of X by S, then every $\alpha \in Aut(X)$ induces an element $\overline{\alpha} \in Aut(X \times S)$.

Lemma (C., Catino, Pinto, 2019)

Let X be a square-free left cycle set of multipermutational level n having an automorphism α such that there exists $x \in X$ with $\sigma_{[n-1]}(x) \neq \sigma_{[n-1]}(\alpha(x))$. Then there exist a one-sided extension $Z := X \cup \{z\}$ such that mpl(Z) = mpl(X) + 1 = n + 1.

UniSalento

Key-Lemmas

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Lemma (Gateva-Ivanova and Cameron, 2011)

Let X be a square-free left cycle set of multipermutational level n. Then, the fiber $\sigma_{[n-1]}^{-1}(x)$ is $\mathcal{G}(X)$ -invariant for every $x \in X$.

Lemma (C., Catino, Pinto, 2019)

If $X \times S$ is an abelian extension of X by S, then every $\alpha \in Aut(X)$ induces an element $\overline{\alpha} \in Aut(X \times S)$.

Lemma (C., Catino, Pinto, 2019)

Let X be a square-free left cycle set of multipermutational level n having an automorphism α such that there exists $x \in X$ with $\sigma_{[n-1]}(x) \neq \sigma_{[n-1]}(\alpha(x))$. Then there exist a one-sided extension $Z := X \cup \{z\}$ such that mpl(Z) = mpl(X) + 1 = n + 1.

UniSalento

Key-Lemmas

On involutive square-free set-theoretic solutions of the Yang-Baxter equation

> Marco Castelli

Basic definitions and results

Retractable square-free left cycle sets

Lemma (Gateva-Ivanova and Cameron, 2011)

Let X be a square-free left cycle set of multipermutational level n. Then, the fiber $\sigma_{[n-1]}^{-1}(x)$ is $\mathcal{G}(X)$ -invariant for every $x \in X$.

Lemma (C., Catino, Pinto, 2019)

If $X \times S$ is an abelian extension of X by S, then every $\alpha \in Aut(X)$ induces an element $\overline{\alpha} \in Aut(X \times S)$.

Lemma (C., Catino, Pinto, 2019)

Let X be a square-free left cycle set of multipermutational level n having an automorphism α such that there exists $x \in X$ with $\sigma_{[n-1]}(x) \neq \sigma_{[n-1]}(\alpha(x))$. Then there exist a one-sided extension $Z := X \cup \{z\}$ such that mpl(Z) = mpl(X) + 1 = n + 1.

イロト イヨト イヨト イヨト

> Marco Castelli

Basic definition and results

Retractable square-free left cycle sets

THANKS FOR YOUR ATTENTION!

Marco Castelli

UniSalento

э

<ロ> (日) (日) (日) (日) (日)