Varieties of superalgebras with superinvolution

Antonio loppolo

University of Palermo
Department of Mathematics and Computer Science

Advances in Group Theory and Applications
September 5-8, 2017, Lecce

Antonio loppolo Varieties of superalgebras with superinvolution



e Preliminaries
@ Algebras with polynomial identities
@ Superalgebras with superinvolution
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Algebras with polynomial identities
Superalgebras with superinvolution

Polynomial identities

@ F a field of characteristic zero.

e X ={xq,x2,...} a countable set of non-commuting variables.

F(X) is the free algebra on X over F.

Definition

Let A be an associative F-algebra. Then f = f(x1,...,xn) € F(X)
is a polynomial identity of A, and we write f = 0, if, for all
ai,...,an € A f(ai,...,an) =0.
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Algebras with polynomial identities
Superalgebras with superinvolution

Polynomial identities

@ F a field of characteristic zero.

e X ={xq,x2,...} a countable set of non-commuting variables.

F(X) is the free algebra on X over F.

Definition

Let A be an associative F-algebra. Then f = f(x1,...,xn) € F(X)
is a polynomial identity of A, and we write f = 0, if, for all
ai,...,an € A f(ai,...,an) =0.

Any commutative algebra C is a Pl-algebra since [x1, x2] =0 on C.
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Superalgebras with superinvolution

The codimension sequence

o ld(A)={f e F(X):f=0o0n A}.
@ P, =span {xg(1)~--xo(,.,) | o€ Sn}.

Definition

The n-th codimension of A is the non-negative integer

P

Cn(A) = dImF m
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Algebras with polynomial identities
Superalgebras with superinvolution

The codimension sequence

o ld(A)={f e F(X):f=0o0n A}.
@ P, =span {xg(1)~--xo(,.,) | o€ Sn}.

Definition

The n-th codimension of A is the non-negative integer

P

Cn(A) = dlm,: m

For any Pl-algebra A, the codimension sequence c,(A),
n=1,2,..., is exponentially bounded.
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Varieties of algebras

We denote by V = var(A) the variety of algebras generated by A.

A variety V has

@ polynomial growth if ¢,(V) is polynomially bounded;

Antonio loppolo Varieties of superalgebras with superinvolution



Preliminaries Algebras with polynomial identities

Superalgebras with superinvolution

Varieties of algebras

We denote by V = var(A) the variety of algebras generated by A.

A variety V has

@ polynomial growth if ¢,(V) is polynomially bounded;

@ almost polynomial growth if ¢,(V), n=1,2,..., is not
polynomially bounded but any proper subvariety of V has
polynomial growth.
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A theorem of Kemer

Let

o G=(l,e,e,... | eje = —ejej) be the infinite dimensional
Grassmann algebra over F,
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Superalgebras with superinvolution

A theorem of Kemer

Let

o G=(l,e,e,... | eje = —ejej) be the infinite dimensional
Grassmann algebra over F,

@ UT;,(F) be the algebra of 2 x 2 upper-triangular matrices.
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Preliminaries Algebras with polynomial identities

Superalgebras with superinvolution

A theorem of Kemer

Let

o G=(l,e,e,... | eje = —ejej) be the infinite dimensional
Grassmann algebra over F,

@ UT;,(F) be the algebra of 2 x 2 upper-triangular matrices.

A variety V has polynomial growth if and only if G, UT, ¢ V.
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Superalgebras

An algebra A is a superalgebra (Z»-graded algebra) if
A= Ay D Ay, with
@ ApAo + A1A1 C Ao,
o ApA1 + A1Ag C Ay

Any algebra A become a superalgebra with trivial grading by
setting Ag=Ae A =0.
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Algebras with polynomial identities

Superalgebras with superinvolution

Superalgebras

An algebra A is a superalgebra (Z»-graded algebra) if
A= Ay D Ay, with
@ ApAo + A1A1 C Ao,
o ApA1 + A1Ag C Ay

Any algebra A become a superalgebra with trivial grading by
setting Ag=Ae A =0.

Example

Given an n-tuple (gi1,...,8n) € Z35, it is possible to define a
Zy-grading on M,(F), called elementary, by setting

M,(F); = spanr {ej | gi+g =i}, i=0,1

v
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Definition
A superinvolution * on A is a linear map * : A — A such that:
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Superalgebras with superinvolution

Definition

A superinvolution * on A is a linear map * : A — A such that:
1. AfCA;,i=0,1,
2. (a*)* = a, forall a € A,
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Superalgebras with superinvolution

Definition

A superinvolution * on A is a linear map * : A — A such that:
1. AfCA;,i=0,1,
2. (a*)* = a, forall a € A,
3. (ab)* = (—1)Plblp*a* a, b e Ay U A;.

In characteristic zero,

A=Al @A, ®Af &AL, where for i = 0,1,
o Al ={ac A;:a" = a};
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Superalgebras with superinvolution

Superalgebras with superinvolution

Definition

A superinvolution * on A is a linear map * : A — A such that:
1. AfCA;,i=0,1,
2. (a*)* = a, forall a € A,
3. (ab)* = (—1)Plblp*a* a, b e Ay U A;.

In characteristic zero,

A=Al @A, ®Af &AL, where for i = 0,1,
o Al ={ac A;:a" = a};
o A- ={ac A :a" = —a}.
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Preliminaries q " .
Algebras with polynomial identities

Superalgebras with superinvolution

Identities of x-algebras

Let F(X) be the free algebra on X over F. If we write X = Y U Z,
then F(Y U Z) has a natural structure of superalgebra

F(YUZ)=Fyd Fi.

The free algebra with superinvolution F(Y U Z,x) is generated by
symmetric and skew elements of homogeneous degree 0 and 1,

F(YUZ,*>:F(yf,yl_,zf,zl_,y;,yz_,z;,22_,...).
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Superalgebras with superinvolution

Identities of x-algebras

Let F(X) be the free algebra on X over F. If we write X = Y U Z,
then F(Y U Z) has a natural structure of superalgebra

F(YUZ)=Fyd Fi.

The free algebra with superinvolution F(Y U Z,x) is generated by
symmetric and skew elements of homogeneous degree 0 and 1,

F(YUZ, %) = F(yf,yl_,zf,zl_,y;,yz_,z;,22_,...>.
Definition

Let £(yy sV Y s s Yms 2 sy 28021 5oy 25) @
k-polynomial of F(Y U Z,%). We say that f is a *-identity of
A=Al @A, ® A © AT if forall uf,...,uf € Aj,

A g
|
I
+
|
I

ul_,...,u,;EAa,vf,... €A1 evVy ...,V EAl,then
+ - — it + - —
fluf .. uf ug, o umvy v v, v ) =0.
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Superalgebras with superinvolution

Codimensions of a x-algebra

Let
o Id"(A)={fe F(YUZ,x) | f=0suA},

° P :span,_-{wa(l)---wg(n) | w; € {yﬁ,yi_,zi*‘,zi_}}.
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Codimensions of a x-algebra

Let
o Id"(A)={fe F(YUZ,x) | f=0suA},

° P :span,_-{wa(l)---wg(n) | w; € {yﬁ,yi_,zi*‘,zi_}}.

Definition

The n-th *-codimension of A is the non-negative integer

P*

*(A) = dimpe — "
Gl = elling Px A 1d*(A)’

n>1.
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Varieties of almost polynomial growth

A characterization of x-varieties of polynomial growth 3
7 The analogous of Kemer's theorem

The x-algebra F & F
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The x-algebra F & F

Let F & F be the 2-dimensional commutative algebra
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The x-algebra F & F

Let F & F be the 2-dimensional commutative algebra

@ trivial grading

Antonio loppolo Varieties of superalgebras with superinvolution



Varieties of almost polynomial growth

A characterization of x-varieties of polynomial growth 3 5
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The x-algebra F & F

Let F & F be the 2-dimensional commutative algebra
@ trivial grading

@ exchange superinvolution ex, given by
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A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

The x-algebra F & F

Let F & F be the 2-dimensional commutative algebra
@ trivial grading

@ exchange superinvolution ex, given by

(a, b)) = (b, a).
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Varieties of almost polynomial growth

A characterization of x-varieties of polynomial growth » 5
7 The analogous of Kemer's theorem

The x-algebra F & F

Let F & F be the 2-dimensional commutative algebra
@ trivial grading

@ exchange superinvolution ex, given by

(a, b)) = (b, a).

The x-algebra F & F generates a x-variety of almost polynomial
growth.
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7 The analogous of Kemer's theorem

La x-algebra M
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A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

La x-algebra M

M = F(e11 + esa) © F(ex + e33) © F(e12) ® F(esa) C UT4(F)
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A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

La x-algebra M

M = F(e11 + esa) © F(ex + e33) © F(e12) ® F(esa) C UT4(F)

@ trivial grading
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A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

La x-algebra M

M = F(e11 + esa) © F(ex + e33) © F(e12) ® F(esa) C UT4(F)

@ trivial grading

o reflection superinvolution o,

Antonio loppolo Varieties of superalgebras with superinvolution



Varieties of almost polynomial growth

A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

La x-algebra M

M = F(e11 + esa) © F(ex + e33) © F(e12) ® F(esa) C UT4(F)

@ trivial grading
o reflection superinvolution o, given for
a=a(er + ea) + B(ex + e33) + ve2 + desa € M, by
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A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

La x-algebra M

M = F(e11 + esa) © F(ex + e33) © F(e12) ® F(esa) C UT4(F)

@ trivial grading
o reflection superinvolution o, given for
a = afer1 + eqs) + B(exn + e33) + verx + desqs € M, by
a® = afe11 + ess) + (e + e33) + dern + yes.
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A characterization of x-varieties of polynomial growth » 5
7 The analogous of Kemer's theorem

La x-algebra M

M = F(e11 + esa) © F(ex + e33) © F(e12) ® F(esa) C UT4(F)

@ trivial grading
o reflection superinvolution o, given for
a = afer1 + eqs) + B(exn + e33) + verx + desqs € M, by
a® = afe11 + ess) + (e + e33) + dern + yes.

The x-algebra M generates a x-variety of almost polynomial
growth.
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7 The analogous of Kemer's theorem

The x-algebra M=“P
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A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

The x-algebra M=“P

We denote by M*“P the algebra M with
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A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

The x-algebra M=“P

We denote by M*“P the algebra M with

@ elementary grading given by
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Varieties of almost polynomial growth

A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

The x-algebra M=“P

We denote by M*“P the algebra M with
@ elementary grading given by (0,1,0,1).
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A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

The x-algebra M=“P

We denote by M*“P the algebra M with
@ elementary grading given by (0,1,0,1).

M = F(ei1+ean) D F(eo+es3), M™ = F(ern)® F(esa).
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A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

The x-algebra M=“P

We denote by M*“P the algebra M with
@ elementary grading given by (0,1,0,1).

M = F(ei1+ean) D F(eo+es3), M™ = F(ern)® F(esa).

@ reflection superinvolution o.
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A characterization of x-varieties of polynomial growth 3 5
7 The analogous of Kemer's theorem

The x-algebra M=“P

We denote by M*“P the algebra M with
@ elementary grading given by (0,1,0,1).

M = F(ei1+ean) D F(eo+es3), M™ = F(ern)® F(esa).

@ reflection superinvolution o.

The x-algebra M*"P generates a x-variety of almost polynomial
growth.
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Varieties of almost polynomial growth

A characterization of sx-varieties of polynomial growth .
poly g The analogous of Kemer's theorem

Finite dimensional case

Let V = var*(A) be a x-variety generated by a finite dimensional
x-algebra over a field F of characteristic zero. Then V has
polynomial growth if and only if M, M*"P F & F & V.
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Finite dimensional case

Let V = var*(A) be a x-variety generated by a finite dimensional
x-algebra over a field F of characteristic zero. Then V has
polynomial growth if and only if M, M*"P F & F & V.

As a consequence:
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A characterization of sx-varieties of polynomial growth .
poly g The analogous of Kemer's theorem

Finite dimensional case

Let V = var*(A) be a x-variety generated by a finite dimensional
x-algebra over a field F of characteristic zero. Then V has
polynomial growth if and only if M, M*"P F & F & V.

As a consequence:

@ The algebras M, M*“P e F @ F are the only finite dimensional
x-algebras generating *-varieties of almost polynomial growth.

Antonio loppolo Varieties of superalgebras with superinvolution



Varieties of almost polynomial growth

A characterization of sx-varieties of polynomial growth .
poly g The analogous of Kemer's theorem

Finite dimensional case

Let V = var*(A) be a x-variety generated by a finite dimensional
x-algebra over a field F of characteristic zero. Then V has
polynomial growth if and only if M, M*"P F & F & V.

As a consequence:

@ The algebras M, M*“P e F @ F are the only finite dimensional
x-algebras generating *-varieties of almost polynomial growth.

e For a finite dimensional *-algebra A, ¢(A), n=1,2,...,is
polynomially bounded or growth exponentially.
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Two infinite dimensional *-algebras
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A characterization of x-varieties of polynomial grow The analogous of Kemer's theorem

Two infinite dimensional *-algebras

Let
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Varieties of almost polynomial growth

izati k-varieti ial growth )
A characterization of x-varieties of polynomial grow e relmens 6f [amars dissam

Two infinite dimensional *-algebras

Let
G = <17el7 €2,... ‘ e,'ej = _ejei>
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Varieties of almost polynomial growth

A characterization of sx-varieties of polynomial growth .
poly g The analogous of Kemer's theorem

Two infinite dimensional *-algebras

Let
G = <17el7 €2,... ‘ e,'ej = _ejei>

be the infinite dimensional Grassmann algebra with natural grading
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Varieties of almost polynomial growth

A characterization of sx-varieties of polynomial growth .
poly g The analogous of Kemer's theorem

Two infinite dimensional *-algebras

Let
G=(lee,... | eiej=—gjej)
be the infinite dimensional Grassmann algebra with natural grading

G = Gy P Gy.
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Varieties of almost polynomial growth

A characterization of sx-varieties of polynomial growth .
poly g The analogous of Kemer's theorem

Two infinite dimensional *-algebras

Let
G=(lee,... | eiej=—gjej)
be the infinite dimensional Grassmann algebra with natural grading

G = Gy P Gy.

o G" the algebra G with natural grading and superinvolution #
given by ell.i = .
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. s . Varieties of almost polynomial growth
A characterization of sx-varieties of polynomial growth o
M The analogous of Kemer's theorem

Two infinite dimensional *-algebras

Let
G = <17 €1,€2,... ‘ e,'ej = _ejei>
be the infinite dimensional Grassmann algebra with natural grading
G = Go ® Gy.

o G" the algebra G with natural grading and superinvolution #
given by e? = .
@ G*, the algebra G with natural grading and superinvolution

given by ef = —e;.
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. I N Varieties of almost polynomial growth
A characterization of sx-varieties of polynomial growth ) y
M The analogous of Kemer's theorem

Two infinite dimensional *-algebras

Let
G = <17 €1,€2,... ‘ e,'ej = _ejei>
be the infinite dimensional Grassmann algebra with natural grading
G = Go ® Gy.

o G" the algebra G with natural grading and superinvolution #
given by elt.i = .
@ G*, the algebra G with natural grading and superinvolution

given by ef = —e;.

The x-algebras G* and G* generate x-varieties of almost
polynomial growth.
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A characterization of sx-varieties of polynomial growth . :
poly g The analogous of Kemer's theorem

General case
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Varieties of almost polynomial growth

A characterization of sx-varieties of polynomial growth .
poly g The analogous of Kemer's theorem

General case

Let F be an algebraically closed field of characteristic zero and let
V be a x-variety. ThenV has polynomial growth if and only if
M, M=“P F @ F, Gt G* ¢ V.

Antonio loppolo Varieties of superalgebras with superinvolution



(F® F)
(M)
Subvarieties of var™ (M>!P)

Classification of the subvarieties Subvarieties o “(GH) and var* (G*)

Minimal varieties
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*(M)
« (M59PY

Classification of the subvarieties “(GH) and var*(G*)

Minimal varieties

Definition

A x-variety V is said minimal of polynomial growth if c(V) =~ gn*,

for some k > 1, g > 0, and for any proper subvariety, Y C V,
ci(U) =~ ¢'nt, with t < k.
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Subvarieties of var* (F & F)
Subvarieties of var™ (M)
Subvarieties of var™ (M>!P)

Classification of the subvarieties Subvarieties o “(GH) and var* (G*)

The algebras Cj
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r*(F & F)

* (M5UP)

Classification of the subvarieties ar* (G1) and var*(G*)

The algebras Cj

k—1
Let /x be the identity matrix of order k and let F; = Z € it1-
i=1
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r*(F & F)

* (M5UP)

Classification of the subvarieties ar* (G1) and var*(G*)

The algebras Cj

k—1
Let /x be the identity matrix of order k and let F; = Z € it1-

i=1
For k > 2,
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Subvarieties of var* (F & F)
Subvarieties of var™ (M)
Subvarieties o *(M>UP)

Classification of the subvarieties SulbvEriies o ver (@) Arel ver (@)

The algebras Cj

k—1
Let /x be the identity matrix of order k and let F; = Z € it1-
i=1
For k > 2,
C, = {alk + Z Oé,'E{ ’ a,q; € F} C UTy,
1<i<k
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Subvarieties of var* (F & F)
Subvarieties of (M)
Subvarieties of (M34P)

Classification of the subvarieties SulbvEriies o ver (@) Arel ver (@)

The algebras Cj

k—1
Let /x be the identity matrix of order k and let F; = Z € it1-
i=1
For k > 2,
C, = {alk + Z Oé,'E{ ’ a,q; € F} C UTy,

1<i<k

@ trivial grading
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Subvarieties of var* (F & F)
Subvarieties of (M)
Subvarieties of (M34P)

Classification of the subvarieties SulbvEriies o ver (@) Arel ver (@)

The algebras Cj

k—1
Let /x be the identity matrix of order k and let F; = Z € it1-
i=1
For k > 2,
C, = {alk + Z Oé,'E{ ’ a,q; € F} C UTy,

1<i<k

@ trivial grading

@ superinvolution * given by
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Subvarieties of var* (F & F)
Subvarieties of (M)
Subvarieties of (M34P)

Classification of the subvarieties SulbvEriies o ver (@) Arel ver (@)

The algebras Cj

k—1
Let /x be the identity matrix of order k and let F; = Z € it1-
i=1
For k > 2,
C, = {alk + Z Oé,'E{ ’ a,q; € F} C UTy,

1<i<k

@ trivial grading
@ superinvolution * given by

(e + > aiE])" =ak+ Y (1) oiF.

1<i<k 1<i<k
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Subvarieties of var* (F & F)

es of var™ (M)

Classification of the subvarieties

The algebras Cj

k—1
Let /x be the identity matrix of order k and let F; = Z € it1-
i=1
For k > 2,
C, = {alk + Z Oé,'E{ ’ a,q; € F} C UTy,

1<i<k

@ trivial grading
@ superinvolution * given by

(ah+ > aE) =al+ > (1) aE.

1<i<k 1<i<k

Cx generates a minimal variety of polynomial growth.

Antonio loppolo Varieties of superalgebras with superinvolution



Subvarieties of var* (F & F)
Subvarieties of var™ (M)
Subvarieties of var™ ( P)

Classification of the subvarieties SulbvEriies o ver (@) Arel ver (@)

Subvarieties of var*(F & F)
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Subvarieties of var* (F ¢ F)
Subvarieties of var™ (M)

Subvarieties of var™ ( P)

Subvarieties of var®(G") and var*(G*)

Classification of the subvarieties

Subvarieties of var*(F & F)
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Subvarieties of var* (F ¢ F)
Subvarieties of var™ (M)
Subvarieties of var™

Classification of the subvarieties SlvEraes G e (@) e ver (@)

Subvarieties of var*(F & F)

Let A be a x-algebra such that A € var*(F & F).
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Subvarieties of var* (F ¢ F)
Subvarieties of var™ (
Subvarieties of var™ (
Subvarieties of var™ (

Classification of the subvarieties

Subvarieties of var*(F & F)

Let A be a x-algebra such that A € var*(F @ F). Then A is
T -equivalent to one of the following algebras:
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Subvarieties of var* (F ¢ F)
Subvarieties of var™ (M)
Subvarieties of *(M3UP)

Classification of the subvarieties Subvarieties of var* (G#) and var*(G*)

Subvarieties of var*(F & F)

Let A be a x-algebra such that A € var*(F @ F). Then A is
T -equivalent to one of the following algebras:

1. F®F,
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Subvarieties of var* (F ¢ F)
Subvarieties of var™ (M)
Subvarieties of *(M3UP)

Classification of the subvarieties Subvarieties of var* (G#) and var*(G*)

Subvarieties of var*(F & F)

Let A be a x-algebra such that A € var*(F @ F). Then A is
T -equivalent to one of the following algebras:

1. F®F,
2. N,
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Subvarieties of var* (F ¢ F)
Subvarieties of var™ (M)
. . Subvarieties of *(M3UP)
Classification of the subvarieties SlvEraes G e (@) e ver (@)

Subvarieties of var*(F & F)

Let A be a x-algebra such that A € var*(F @ F). Then A is
T -equivalent to one of the following algebras:

1. F®F,
2. N,
3. CeN,
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Subvarieties of var* (F ¢ F)
Subvarieties of var™ (M)
Subvarieties of var™ (

Classification of the subvarieties Subvarieties of var* (G#) and var*(G*)

Subvarieties of var*(F & F)

Let A be a x-algebra such that A € var*(F @ F). Then A is
T -equivalent to one of the following algebras:

1. F®F,
2. N,

3. CaN,
4. ko N,
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Subvarieties of var™® >
Subvarieties of var™ (M)
Subvarieties of var™
Subvarieties of var™

Classification of the subvarieties

Subvarieties of var*(F & F)

Let A be a x-algebra such that A € var*(F @ F). Then A is
T -equivalent to one of the following algebras:

1. F&F,
2. N,

3. CeN,
4. Ck® N,

for some k > 2, where N is a nilpotent x-algebra and C is a
commutative algebras with trivial superinvolution.
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Subvarieties of var™(F & F)
Subvarieties of var™ (M)
Subvarieties of var™ (M>"P)

Classification of the subvarieties SulbvEriies o ver (@) Arel ver (@)

The algebras Ak, Ny, Uy
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Subvarieties of var™ (F @ F)
Subvarieties of var™ (M)
Subvarieties of (M3UP)

Classification of the subvarieties Subvarieties ¢ r*(GH) and var* (G*)

The algebras Ak, Ny, Uy

k—1
Let / the identity matrix and let £ = " e; 41+ €x—i2k—i+1-
i=2
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Subvarieties of var™(F & F)
Subvarieties of var™ (M)
Subvarieties o " (MUP)

Classification of the subvarieties SulbvEriies o ver (@) Arel ver (@)

The algebras Ak, Ny, Uy

k—1

Let / the identity matrix and let £ = " e; 41+ €x—i2k—i+1-
i=2

For k>2andj=1,..., k-2,
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Subv. HWFTWF‘G of var®(F & F)

Classification of the subvarieties Sy meﬂps o ver (@) Al ver (@)

The algebras Ak, Ny, Uy

Let / the identity matrix and let £ = " e; 41+ €x—i2k—i+1-
i=2
For k>2andj=1,..., k-2,
Ak = span {611 + ek 2k; E e1a,. .., e, Ck+12ky -+ ezk—l,zk}
Ni = span {/, E/, e12 — €k_1,0k, €13 - - - , €1k, Ek1,2k - - - s €2k—2,2k }

Ue = span {I, E/, €12 + €2k—12k, €13, - - - , €1ks €k1,2ks - - - » €2k—2,2k
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Subv. HWFTWF‘G of var®(F & F)

Classification of the subvarieties Subv meﬂps of var*(GH) and var* (G*)

The algebras Ak, Ny, Uy

Let / the identity matrix and let £ = " e; 41+ €x—i2k—i+1-
i=2
For k>2andj=1,..., k-2,

Ak = span {611 + ek 2k; E e1a,. .., e, Ck+12ky -+ ezk—l,zk}
Ni = span {/, E/, e12 — €k_1,0k, €13 - - - , €1k, Ek1,2k - - - s €2k—2,2k }

Ue = span {I, E/, €12 + €2k—12k, €13, - - - , €1ks €k1,2ks - - - » €2k—2,2k

@ trivial grading,
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Subv. HWFTWF‘G of var®(F & F)

Classification of the subvarieties Sy meﬂps o ver (@) Al ver (@)

The algebras Ak, Ny, Uy

Let / the identity matrix and let £ = " e; 41+ €x—i2k—i+1-
i=2
For k>2andj=1,..., k-2,
Ak = span {611 + ek 2k; E e1a,. .., e, Ck+12ky -+ ezk—l,zk}
Ni = span {/, E/, e12 — €k_1,0k, €13 - - - , €1k, Ek1,2k - - - s €2k—2,2k }

Ue = span {I, E/, €12 + €2k—12k, €13, - - - , €1ks €k1,2ks - - - » €2k—2,2k

@ trivial grading,

@ reflection superinvolution o.
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Subvarieties of var™ (F &
ieties of var™ (M)

Classification of the subvarieties

The algebras Ak, Ny, Uy

Let / the identity matrix and let £ = " e; 41+ €x—i2k—i+1-
i=2
For k>2andj=1,..., k-2,
Ak = span {611 + ek 2k; E e1a,. .., e, Ck+12ky -+ ezk—l,zk}
Ni = span {/, E/, e12 — €k_1,0k, €13 - - - , €1k, Ek1,2k - - - s €2k—2,2k }

Ue = span {I, E/, €12 + €2k—12k, €13, - - - , €1ks €k1,2ks - - - » €2k—2,2k

@ trivial grading,

@ reflection superinvolution o.

Ak, Ny, U generate minimal varieties of polynomial growth.
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Subvarieties of var™(F & F)
Subvarieties of var™ (M)
Subvarieties of var™ (M>"P)

Classification of the subvarieties SulbvEriies o ver (@) Arel ver (@)

Subvarieties of var*(M)
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Subvarieties of var™ (F @ F)
Subvarieties of var™ (M)
Subvarieties of var™ (M>"P)

Classification of the subvarieties Subvarieties of var* (G#) and var*(G*)

Subvarieties of var*(M)

Let A € var*(M) then A is T;-equivalent to one of the following
x-algebras:
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Subvarieties of var™ (F @ F)
Subvarieties of var™ (M)
Subvarieties of var™ (M>"P)

Classification of the subvarieties Subvarieties of var* (G#) and var*(G*)

Subvarieties of var*(M)

Let A € var*(M) then A is T;-equivalent to one of the following
x-algebras:

M, N, Nh @& N, U ®N, N ® U D N,

Ar®N, Nk AN, UcdA: DN, N U DA DN,

Antonio loppolo Varieties of superalgebras with superinvolution



Subvarieties of var™ (F @ F)
Subvarieties of var™ (M)
Subvarieties of var™ (M>"P)

Classification of the subvarieties Subvarieties of var* (G#) and var*(G*)

Subvarieties of var*(M)

Let A € var*(M) then A is T;-equivalent to one of the following
x-algebras:

M, N, Nh @& N, U ®N, N ® U D N,

Ar®N, Nk AN, UcdA: DN, N U DA DN,

for some k,t > 2, where N is a nilpotent *-algebra.

Antonio loppolo Varieties of superalgebras with superinvolution



Subvarieties of var™(F @ F)
Subvarieties of var™ (M)
Subvarieties of var® (M>"P)

Classification of the subvarieties Sl o Ve (@) el e (@)

The algebras AP, N;*°, U;™P
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Subvarieties of var™(F @ F)
Subvarieties of var™ (M)
Subvarieties of var® (M>"P)

Classification of the subvarieties Sl o Ve (@) el e (@)

The algebras AP, N;*°, U;™P

We denote with A;"?, N and U;"” the algebras Ay, Ny and Uy
defined before, with
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of var™ (F @ F)

=1g
Subvarieties of var® (M>"P)

Classification of the subvarieties Sl o Ve (@) el e (@)

The algebras AP, N;*°, U;™P

We denote with A;"?, N and U;"” the algebras Ay, Ny and Uy
defined before, with

@ elementary grading induced by
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of var™ (F @ F)

=1g
Subvarieties of var® (M>"P)

Classification of the subvarieties Sl o Ve (@) el e (@)

The algebras AP, N;*°, U;™P

We denote with A;"?, N and U;"” the algebras Ay, Ny and Uy
defined before, with

@ elementary grading induced by

(0,1,...,1,0,...,0,1),
—— N —
k-1 k—1
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of var®(F & F)

=1g
Subvarieties of var® (M>"P)

Classification of the subvarieties Sl o Ve (@) el e (@)

The algebras AP, N;*°, U;™P

We denote with A;"?, N and U;"” the algebras Ay, Ny and Uy
defined before, with

@ elementary grading induced by

(0,1,...,1,0,...,0,1),
—— N —
k-1 k—1

@ reflection superinvolution o.
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of var*(F @& F)
of (M)
Subvarieties of var® (M>"P)

Classification of the subvarieties Subvarieties of var*(G*) and var*(G*)

The algebras AP, N;*°, U;™P

We denote with A;"?, N and U;"” the algebras Ay, Ny and Uy
defined before, with

@ elementary grading induced by

(0,1,...,1,0,...,0,1),
—— N —

@ reflection superinvolution o.

AP NP and USYP generate minimal varieties of polynomial
k k k & y
growth.
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Subvarieties of var™(F @ F)
Subvarieties of var™ (M)
Subvarieties of var® (M>"P)

Classification of the subvarieties Sl o Ve (@) el e (@)

Subvarieties of var*(M*“P)
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Subvarieties of var™(F @ F)
Subvarieties of var™ (M)

Subvarieties of var® (M>"P)

Subvarieties of var*(G*) and var* (G*)

Classification of the subvarieties

Subvarieties of var*(M*“P)

If A € var*(M?®“P) then A is T} -equivalent to one of the following
x-algebras:

Antonio loppolo Varieties of superalgebras with superinvolution



Subvarieties of var™ (F & F)
ieties of var™ (M)
es of var™ (M*HP)
Subvarieties of var*(G*) and var* (G*)

Classification of the subvarieties

Subvarieties of var*(M*“P)

If A € var*(M?®“P) then A is T} -equivalent to one of the following
x-algebras:

M= N, C, N;** & N, UiP & N, N;"* & U™ & N,

ATPON, N POATPON, UPOAIPON, NP U oA ON,
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Subvarieties of var™(F @ F)
Subvarieties of var™ (M)

Subvar *(MmPUP)

Subvarieties of var*(G*) and var* (G*)

Classification of the subvarieties

Subvarieties of var*(M*“P)

If A € var*(M?®“P) then A is T} -equivalent to one of the following
x-algebras:

M= N, C, N;** & N, UiP & N, N;"* & U™ & N,

ATPON, N POATPON, UPOAIPON, NP U oA ON,

for some k,t > 2, where N is a nilpotent x-algebra and C is a
commutative algebra with trivial superinvolution.
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Subvarieties of var™ (F & F)
Subvarieties of var™ (M)
Subvarieties of var™ (M>!P)

Classification of the subvarieties Subvarieties of var*(Gu) and var* (G*)

The algebras G,E and G;
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Subvarieties of var™ (F & F)
Subvarieties of var™ (M)
Subvarieties of var™(M>!P)

Classification of the subvarieties Subvarieties of var*(Gu) and var* (G*)

The algebras G,E and G;

Let G* and G* be the x-algebras defined above.
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Subv: arieties o (F®F)
i (M)
Subv: mer s 0 *(M>UP)

Classification of the subvarieties Subvarieties of var® (Gu) and var* (G*)

The algebras G,E and G;

Let G* and G* be the x-algebras defined above. We denote by
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(M)
Subvarieties of var™ (M>"P)

Classification of the subvarieties Subvarieties of var*(Gu) and var* (G*)

The algebras G,E and G;

Let G* and G* be the x-algebras defined above. We denote by

° G,E the Grassmann algebra of dimension k over F with
superinvolution induced by G,
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. e Subvarieties of var™ (M>"P)
Classification of the subvarieties Subvarieties of var*(Gu) and var* (G*)

The algebras G,E and G;

Let G* and G* be the x-algebras defined above. We denote by
° G,E the Grassmann algebra of dimension k over F with
superinvolution induced by G,
@ G, the Grassmann algebra of dimension k over F with
superinvolution induced by G*.
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es of var™(F & F)
ieties of var™ (M)
Su es of var™ (M>!P)

Classification of the subvarieties Subvarieties of Var;ﬁ(Gu) and var* (G*)

The algebras G,E and G;

Let G* and G* be the x-algebras defined above. We denote by
° G,E the Grassmann algebra of dimension k over F with
superinvolution induced by G,

@ G, the Grassmann algebra of dimension k over F with
superinvolution induced by G*.

G,E and G| generate minimal varieties of polynomial growth.
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Subvarieties of var™ (F & F)
Subvarieties of var™ (M)
Subvarieties of var™ (M>!P)

Classification of the subvarieties Subvarieties of var*(Gu) and var* (G*)

Subvarieties of var*(GT)
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* (M5UP)

Classification of the subvarieties Subvarietieé (;f Var;ﬁ(Gu) and var* (G*)

Subvarieties of var*(GT)

Let us denote by T one of the superinvolutions § and .
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Subvarieties of var 1F ® F)
Subvarieties of var™ (M
Subvarieties of var 1/\]*””)

Classification of the subvarieties Subvarieties of var (Gu) and var* (G*)

Subvarieties of var*(GT)

Let us denote by T one of the superinvolutions § and .
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Subvarieties of var™(F @ F)
Subvarieties of var™ (
Subvarieties of var™ (

A . )
Classification of the subvarieties Subvarieties of var* (Gu) and var* (G*)

Subvarieties of var*(GT)

Let us denote by T one of the superinvolutions § and .

Let A be a x-algebra such that A € var*(GT).
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Subvarieties of var™(F @ F)
Subvarieties of “(M)
Subvarieties of var™(M>!P)

Classification of the subvarieties Subvarieties of var* (Gu) and var* (G*)

Subvarieties of var*(GT)

Let us denote by T one of the superinvolutions § and .

Let A be a x-algebra such that A € var*(GT). Then A is
T5-equivalent to one of the following algebras:
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Subvarieties of var™(F @ F)
Subvarieties of “(M)
Subvarieties of var™(M>!P)

Classification of the subvarieties Subvarieties of var* (Gu) and var* (G*)

Subvarieties of var*(GT)

Let us denote by T one of the superinvolutions § and .

Let A be a x-algebra such that A € var*(GT). Then A is
T5-equivalent to one of the following algebras:

1. Gt,
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Subvarieties of var™(F @ F)
Subvarieties of “(M)
Subvarieties of var™(M>!P)

Classification of the subvarieties Subvarieties of var* (Gu) and var* (G*)

Subvarieties of var*(GT)

Let us denote by T one of the superinvolutions § and .

Let A be a x-algebra such that A € var*(GT). Then A is
T5-equivalent to one of the following algebras:

1. Gt,
2. N,
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Subvarieties of var*(GT)

Let us denote by T one of the superinvolutions § and .

Let A be a x-algebra such that A € var*(GT). Then A is
T5-equivalent to one of the following algebras:

1. Gt,
2. N,
3. CaN,
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Subvarieties of var™ (

. . Subvarieties of var™ ( )
Classification of the subvarieties Subvarieties of var® (Gu) and var* (G*)

Subvarieties of var*(GT)

Let us denote by T one of the superinvolutions § and .

Let A be a x-algebra such that A € var*(GT). Then A is
T5-equivalent to one of the following algebras:

1. Gf,
2. N,
3. CaN,
4. GloN,
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Subvarieties of var™(
Subvarieties of var™ (M)

e . L Subvarieties of var™ ( )
Classification of the subvarieties Subvarieties of var® (Gg) and var* (G*)

Subvarieties of var*(GT)

Let us denote by T one of the superinvolutions § and .

Let A be a x-algebra such that A € var*(GT). Then A is
T5-equivalent to one of the following algebras:

1. Gf,
2. N,
3. CoN,
4. Gl oN,

for some k > 2, where N is a nilpotent x-algebra and C is a
commutative algebras with trivial superinvolution.
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