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Notation

F = field of characteristic zero,

A= a non-necessarily associative algebra over F .

F{X}= the free non-associative algebra on a countable set X .

f (x1, . . . , xn) ∈ F 〈X 〉 is a polynomial identity for the algebra
A if f (a1, . . . , an) = 0 for all a1, . . . , an ∈ A.
Examples

1 A = commutative then [x1, x2] = x1x2 − x2x1 ≡ 0 is a PI

2 A = nilpotent , (An = 0, n ≥ 1), then x1 · · · xn ≡ 0 is a PI

3 A = M2(F ) then [[x , y ]2, z] ≡ 0 is a PI
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Id(A) = {f ∈ F{X} | f ≡ 0 on A} = the T-ideal of F{X} of
polynomial identities of A.

Pn = the space of multilinear polynomials in x1, . . . , xn.

F{X}/Id(A) is determined by {Pn/(Pn ∩ Id(A)}n≥1

cn(A) = dimF
Pn

Pn∩Id(A) is the n-th codimension of A.
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The growth of V is the growth of the sequence cn(V) = cn(A).

Examples

Let Cn = 1
n

(2n−2
n−1

)

= the number of distinct arrangements of
parentheses on a monomial of length n. Hence

cn(F{X}) = dimF Pn = n!Cn =

(

2n − 2

n − 1

)

(n − 1)!
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If V = var(A) then Id(V) = Id(A), and cn(V) = cn(A).

The growth of V is the growth of the sequence cn(V) = cn(A).

Examples

Let Cn = 1
n

(2n−2
n−1

)

= the number of distinct arrangements of
parentheses on a monomial of length n. Hence

cn(F{X}) = dimF Pn = n!Cn =

(

2n − 2

n − 1

)

(n − 1)!

.

If F 〈X 〉 is the free associative algebra, then cn(F 〈X 〉) = n!

For L〈X 〉 = the free Lie algebra, we have cn(L〈X 〉) = (n − 1)!.
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Associative algebras

Regev (1972) If A is an associative PI-algebra, then there
exists d ≥ 1 such that cn(A) ≤ dn, for all n.

Kemer (1978). For an associative PI-algebra A,
cn(A), n = 1, 2, . . . , is either polynomially bounded , (i.e.
cn(A) ≤ αnt ,for some constants α, t), or grows exponentially.
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n→∞

n
√

cn(V)



Notation and Basic Facts
Associative algebras

Non Associative algebras
The variety 2N

Varieties with subexponential growth
Varieties of polynomial growth

V = var(A)

exp(V) = ĺım sup
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V = var(A)

exp(V) = ĺım sup
n→∞

n
√

cn(V), exp(V) = ĺım ı́nf
n→∞

n
√

cn(V)

If exp(V) = exp(V) = exp(V) = exp(A) is the exponent of the
variety V.

Giambruno-Zaicev (1999). For an associative PI-algebra A,

exp(A) = ĺım
n→∞

n
√

cn(A)

exists and is an integer.
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Remark In general for nonassociative algebras cn(A), n = 1, 2, . . .
has overexponential growth.
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Volicenko(1980) Lie algebras

Petrogradsky (1997) Constructed a scale of overexponential
functions behaving like the codimension sequences of suitable Lie
algebras.
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Non Associative algebras

Remark In general for nonassociative algebras cn(A), n = 1, 2, . . .
has overexponential growth.

Volicenko(1980) Lie algebras

Petrogradsky (1997) Constructed a scale of overexponential
functions behaving like the codimension sequences of suitable Lie
algebras.

Bahturin-Drensky (2002) If dimA = d < ∞, then cn(A) ≤ dn+1.
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exists and is an integer.
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Zaicev (2001) For any finite dimensional Lie algebra L, exp(A)
exists and is an integer.

Mishchenko-Zaicev(2006) Constructed a Lie algebra with non
integral exponential growth of the codimensions
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inequalities

C1n
k < cn(V) < C2a

n
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Definition. A variety V has polynomial growth if there exist
costants α, t ≥ 0 such that cn(V) ≃ αnt .

If t = 1,V has linear growth, if t = 2,V has quadratic growth.

Definition. A variety V has intermediate growth if for any k > 0,
a > 1 there exist constants C1,C2, such that for any n the
inequalities

C1n
k < cn(V) < C2a

n

hold.

Definition. A variety V has subexponential growth if for any
constant B there exists n0 such that for all n > n0, cn(V) < Bn.
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If A is a nilpotent algebra, then cn(A) = 0, for n large.

Definition. A variety of algebras V is nilpotent if it is generated by
a nilpotent algebra.

Definition. A variety V is almost nilpotent if V is non-nilpotent but
every proper subvariety W ⊂ V is nilpotent.

Almost nilpotent varieties exist in abundance. In fact we have

Theorem (Mishchenho, Valenti)

Any non-nilpotent variety of algebras contains an almost nilpotent
subvariety.
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Problem

Classify the almost nilpotent varieties.

1 V= a variety of associative algebras.
The only almost nilpotent variety is the variety V of
commutative algebras. In this case cn(V) = 1, n ≥ 1.

2 V = a variety of Lie algebras.There is only one almost
nilpotent variety: the metabelian variety, denoted A2

determined by the identity [[x1, x2], [x3, x4]] ≡ 0 In this case
cn(A

2) = n − 1.
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(Mishchenho, Valenti)

Constructed an algebra A such that the variety V = var(A) is
almost nilpotent and has exponential growth i.e.,
exp(V) = exp(A) = 2.
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Constructed an algebra A such that the variety V = var(A) is
almost nilpotent and has exponential growth i.e.,
exp(V) = exp(A) = 2.

Theorem(Mishchenko-Shulezhko-Valenti)

For any integer m ≥ 2, there exists an almost nilpotent variety Vm

with exp(Vm) = m.
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Constructed an algebra A such that the variety V = var(A) is
almost nilpotent and has exponential growth i.e.,
exp(V) = exp(A) = 2.

Theorem(Mishchenko-Shulezhko-Valenti)

For any integer m ≥ 2, there exists an almost nilpotent variety Vm
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(Mishchenho, Valenti)

Constructed an algebra A such that the variety V = var(A) is
almost nilpotent and has exponential growth i.e.,
exp(V) = exp(A) = 2.

Theorem(Mishchenko-Shulezhko-Valenti)

For any integer m ≥ 2, there exists an almost nilpotent variety Vm

with exp(Vm) = m.

Problem

Classify the almost nilpotent varieties of subexponential growth.

We reach our objective in the setting of varieties satisfying the
identity x(yz) ≡ 0.
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Let 2N be the variety determined by the identity x(yz) ≡ 0.
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x(yz) ≡ α(xy)z , for some α ∈ R. Then either
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The variety 2N

Let 2N be the variety determined by the identity x(yz) ≡ 0.

2N is the variety of left nilpotent algebras of index two.

Remark Let V be the variety of algebras satisfying the identity
x(yz) ≡ α(xy)z , for some α ∈ R. Then either

1 V is nilpotent, or

2 V is the variety of associative algebras, or
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The variety 2N

Let 2N be the variety determined by the identity x(yz) ≡ 0.

2N is the variety of left nilpotent algebras of index two.

Remark Let V be the variety of algebras satisfying the identity
x(yz) ≡ α(xy)z , for some α ∈ R. Then either

1 V is nilpotent, or

2 V is the variety of associative algebras, or

3 V = 2N .
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that exp(Vα) = α.
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For varieties of associative and Lie algebras, no exponential growth
between 1 and 2 and no intermediate growth is allowed.

Theorem (Giambruno-Mishchenko-Zaicev )

For any real number α > 1, there exists a variety Vα ⊆ 2N , such
that exp(Vα) = α.

Theorem (Giambruno-Mishchenko-Zaicev )

For any real number β, 0 < β < 1, there exists a variety Vβ ⊆ 2N ,
such that

ĺım
n→∞

logn logn cn(Vβ) = β,

i.e. the sequence cn(Vβ) behaves like nnβ

, n = 1, 2, . . . .
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Theorem (Zaicev)

For any real α > 1 there exists a variety Vα ⊆ 2N such that

1 = exp(Vα) 6= exp(Vα) = α.



Notation and Basic Facts
Associative algebras

Non Associative algebras
The variety 2N

Varieties with subexponential growth
Varieties of polynomial growth

Theorem (Zaicev)

For any real α > 1 there exists a variety Vα ⊆ 2N such that

1 = exp(Vα) 6= exp(Vα) = α.

If a variety of associative algebras, or Lie algebras or Jordan
algebras has polynomial growth, then cn(V) asymptotically behaves
like Cnk , for some costant C and for some integer k.
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Theorem (Zaicev)

For any real α > 1 there exists a variety Vα ⊆ 2N such that

1 = exp(Vα) 6= exp(Vα) = α.

If a variety of associative algebras, or Lie algebras or Jordan
algebras has polynomial growth, then cn(V) asymptotically behaves
like Cnk , for some costant C and for some integer k.

Theorem (Mishchenko-Zaicev )

For any real number α, 3 < α < 4, there exists a variety of
algebras Vα ⊆ 2N such that, for sufficiently large n, the following
condition holds

C1n
α < cn(Vα) < C2n

α,

where C1,C2 are positive constants.
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Varieties with subexponential growth

Definition

Let Vsym be the variety of algebras satisfying the following
identities:

1 x(yz) ≡ 0;

2 (xy)z ≡ (xz)y + x(yz).
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Varieties with subexponential growth

Definition

Let Vsym be the variety of algebras satisfying the following
identities:

1 x(yz) ≡ 0;

2 (xy)z ≡ (xz)y + x(yz).

Definition

Let L be the two dimensional Leibniz algebra with basis {e1, e2}
and multiplication table given by e2e1 = e2

1 = e2, e
2
2 = e1e2 = 0.
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Varieties with subexponential growth

Definition

Let Vsym be the variety of algebras satisfying the following
identities:

1 x(yz) ≡ 0;

2 (xy)z ≡ (xz)y + x(yz).

Definition

Let L be the two dimensional Leibniz algebra with basis {e1, e2}
and multiplication table given by e2e1 = e2

1 = e2, e
2
2 = e1e2 = 0.

Remark

Vsym = var(L)
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Let Valt be the variety of algebras satisfying the following identities:

1 x(yz) ≡ 0.

2 xyz ≡ −xzy .
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Definition

Let Valt be the variety of algebras satisfying the following identities:

1 x(yz) ≡ 0.

2 xyz ≡ −xzy .

Definition

Let Aalt be the algebra over F generated by the countable set of
elements e1, e2, . . . satisfying the following relations

1 ueiej = −uejei for any nonempty word u in e1, e2, . . .

2 uv = 0, for any nonempty words u, v in e1, e2, . . . with |v | ≥ 2.
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Definition

Let Valt be the variety of algebras satisfying the following identities:

1 x(yz) ≡ 0.

2 xyz ≡ −xzy .

Definition

Let Aalt be the algebra over F generated by the countable set of
elements e1, e2, . . . satisfying the following relations

1 ueiej = −uejei for any nonempty word u in e1, e2, . . .

2 uv = 0, for any nonempty words u, v in e1, e2, . . . with |v | ≥ 2.

Remark

Valt = var(Aalt).
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Proposition

If W $ Vsym is a proper subvariety of Vsym, then W is nilpotent.
If W $ Valt is a proper subvariety of Valt , then W is nilpotent.
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Proposition

If W $ Vsym is a proper subvariety of Vsym, then W is nilpotent.
If W $ Valt is a proper subvariety of Valt , then W is nilpotent.

Theorem (Mishckenko, Valenti)

Let V be a subvariety of 2N . If V has subexponential growth then
either Vsym ⊆ V or Valt ⊆ V or V is nilpotent.
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Proposition

If W $ Vsym is a proper subvariety of Vsym, then W is nilpotent.
If W $ Valt is a proper subvariety of Valt , then W is nilpotent.

Theorem (Mishckenko, Valenti)

Let V be a subvariety of 2N . If V has subexponential growth then
either Vsym ⊆ V or Valt ⊆ V or V is nilpotent.

Corollary

Let V ⊂ 2N be an almost nilpotent variety. If V has
subexponential growth then either V = Vsym or V = Valt .



Notation and Basic Facts
Associative algebras

Non Associative algebras
The variety 2N

Varieties with subexponential growth
Varieties of polynomial growth

Definition

Let A be the algebra generated by one element a such that every
word in A containing two or more subwords equal to a2 must be
zero.
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Definition

Let A be the algebra generated by one element a such that every
word in A containing two or more subwords equal to a2 must be
zero.

A is metabelian, i.e., it satisfies the identity

(x1x2)(x3x4) ≡ 0.
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Definition

Let A be the algebra generated by one element a such that every
word in A containing two or more subwords equal to a2 must be
zero.

A is metabelian, i.e., it satisfies the identity

(x1x2)(x3x4) ≡ 0.

For any real number α, 0 < α < 1, we construct an ideal Iα and
Aα = A/Iα. Let Vα = var(Aα).
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Definition

Let A be the algebra generated by one element a such that every
word in A containing two or more subwords equal to a2 must be
zero.

A is metabelian, i.e., it satisfies the identity

(x1x2)(x3x4) ≡ 0.

For any real number α, 0 < α < 1, we construct an ideal Iα and
Aα = A/Iα. Let Vα = var(Aα).

Theorem (Mishchenko-Valenti)

For any real number α, 0 < α < 1, the variety Vα is an almost
nilpotent variety and has linear or quadratic growth according as α
is rational or irrational, respectively.
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Theorem (Mishchenko-Valenti)

Over a field of characteristic zero there are countable many almost
nilpotent metabelian varieties of at most linear growth and
uncountable many almost nilpotent metabelian varieties of at most
quadratic growth.
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Definition

Given an infinite (associative) word w in the alphabet {0, 1} the
complexity Compw of w is defined as the function
Compw : N → N, where Compw (n) is the number of distinct
subwords of w of length n.
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Definition

Given an infinite (associative) word w in the alphabet {0, 1} the
complexity Compw of w is defined as the function
Compw : N → N, where Compw (n) is the number of distinct
subwords of w of length n.

Definition

w is called a Sturmian word if Compw (n) = n + 1 for all n ≥ 1.
An infinite word w = w1w2 · · · is periodic with period T if
wi = wi+T for i = 1, 2, . . . .
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Given an infinite (associative) word w in the alphabet {0, 1} the
complexity Compw of w is defined as the function
Compw : N → N, where Compw (n) is the number of distinct
subwords of w of length n.

Definition

w is called a Sturmian word if Compw (n) = n + 1 for all n ≥ 1.
An infinite word w = w1w2 · · · is periodic with period T if
wi = wi+T for i = 1, 2, . . . .

If w is an infinite word let w(1, n) denote its prefix subword of
length n. Let h(w(1, n)) = number of 1 appearing in w(1, n).
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Definition

Given an infinite (associative) word w in the alphabet {0, 1} the
complexity Compw of w is defined as the function
Compw : N → N, where Compw (n) is the number of distinct
subwords of w of length n.

Definition

w is called a Sturmian word if Compw (n) = n + 1 for all n ≥ 1.
An infinite word w = w1w2 · · · is periodic with period T if
wi = wi+T for i = 1, 2, . . . .

If w is an infinite word let w(1, n) denote its prefix subword of
length n. Let h(w(1, n)) = number of 1 appearing in w(1, n).

If the sequence h(w(1,n))
n

, converges then the slope of w is the limit

π(w) = ĺım
n→∞

h(w(1, n))

n
.
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Let La and Ra denote the linear transformations on A of left and
right multiplication by a.
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Let La and Ra denote the linear transformations on A of left and
right multiplication by a.

Definition

Let Iα be the ideal of A generated by the elements a2u(La,Ra)
where u(0, 1) is not a subword of the word wα and u(La,Ra) is the
monomial obtained by substituting 0 with La and 1 with Ra.
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Let La and Ra denote the linear transformations on A of left and
right multiplication by a.

Definition

Let Iα be the ideal of A generated by the elements a2u(La,Ra)
where u(0, 1) is not a subword of the word wα and u(La,Ra) is the
monomial obtained by substituting 0 with La and 1 with Ra.

Let Aα = A/Iα and let Vα = var(Aα).
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Let La and Ra denote the linear transformations on A of left and
right multiplication by a.

Definition

Let Iα be the ideal of A generated by the elements a2u(La,Ra)
where u(0, 1) is not a subword of the word wα and u(La,Ra) is the
monomial obtained by substituting 0 with La and 1 with Ra.

Let Aα = A/Iα and let Vα = var(Aα).

Theorem (Mishchenko-Valenti)

For any real number α, 0 < α < 1, the variety Vα has linear or
quadratic growth according as wα is a periodic or a Sturmian word.
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Proposition

For 0 < α < 1, the variety Vα is almost nilpotent.
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Proposition

For 0 < α < 1, the variety Vα is almost nilpotent.

Theorem (Mishchenko-Valenti)

Over a field of characteristic zero there are countable many almost
nilpotent metabelian varieties of at most linear growth and
uncountable many almost nilpotent metabelian varieties of at most
quadratic growth.
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