GRAPHS ENCODING THE GENERATING PROPERTIES OF A FINITE GROUP

Andrea Lucchini

Università di Padova, Italy

Advances in Group Theory and Applications 2017 September 5-8, 2017 - Lecce

- Cristina Acciarri
- Thomas Breuer
- Peter Cameron
- Eleonora Crestani
- Marco Di Summa
- Robert Guralnick
- Claude Marion
- Attila Maróti
- Colva Roney-Dougal
- Gábor Péter Nagy

The generating graph $\Gamma(G)$ of a finite group *G* is the graph with vertex set *G*, in which two vertices *x* and *y* are joined if and only if $\langle x, y \rangle = G$.

The generating graph $\Gamma(G)$ of a finite group *G* is the graph with vertex set *G*, in which two vertices *x* and *y* are joined if and only if $\langle x, y \rangle = G$.

Many deep results about finite simple groups *G* can equivalently be stated as theorems about $\Gamma(G)$.

- 1 is the unique isolated vertex in $\Gamma(G)$ (Guralnick and Kantor).
- Γ(G) \ {1} is connected, with diameter equal to 2 (Breuer, Guralnick and Kantor).

Let $\Gamma^*(G)$ be the subgraph of $\Gamma(G)$ that is induced by all the vertices that are not isolated.

Let $\Gamma^*(G)$ be the subgraph of $\Gamma(G)$ that is induced by all the vertices that are not isolated.

THEOREM (E. CRESTANI AND AL 2013 - AL 2017)

Let G be a 2-generated finite soluble group.

- $\Gamma^*(G)$ is connected;
- diam(Γ^{*}(G)) ≤ 3.

Let $\Gamma^*(G)$ be the subgraph of $\Gamma(G)$ that is induced by all the vertices that are not isolated.

THEOREM (E. CRESTANI AND AL 2013 - AL 2017)

Let G be a 2-generated finite soluble group.

- Γ^{*}(G) is connected;
- diam(Γ*(G)) ≤ 3.

The situation is different if the solubility assumption is dropped. It is an open problem whether or not $\Gamma^*(G)$ is connected, but even when $\Gamma^*(G)$ is connected, its diameter can be arbitrarily large: if *G* is the largest 2-generated direct power of SL(2, 2^p) and *p* is a sufficiently large odd prime, then $\Gamma^*(G)$ is connected but diam($\Gamma^*(G)$) $\geq 2^{p-2}$. For soluble groups, the bound diam($\Gamma^*(G)$) \leq 3 is best possible.

Let $H = GL(2, 2) \times GL(2, 2)$ and let $W = V_1 \times V_2 \times V_3 \times V_4$ be the direct product of four 2-dimensional vector spaces over the field \mathbb{F}_2 . Define an action of H on W by setting

$$(v_1, v_2, v_3, v_4)^{(x,y)} = (v_1^x, v_2^x, v_3^y, v_4^y)$$

and consider the semidirect product $G = W \rtimes H$: diam($\Gamma^*(G)$) = 3.

For soluble groups, the bound diam($\Gamma^*(G)$) ≤ 3 is best possible.

Let $H = GL(2, 2) \times GL(2, 2)$ and let $W = V_1 \times V_2 \times V_3 \times V_4$ be the direct product of four 2-dimensional vector spaces over the field \mathbb{F}_2 . Define an action of H on W by setting

$$(v_1, v_2, v_3, v_4)^{(x,y)} = (v_1^x, v_2^x, v_3^y, v_4^y)$$

and consider the semidirect product $G = W \rtimes H$: diam($\Gamma^*(G)$) = 3.

However diam($\Gamma^*(G)$) ≤ 2 in some relevant cases.

THEOREM (AL 2017)

Suppose that a finite 2-generated soluble group G has the property that $|\operatorname{End}_{G}(V)| > 2$ for every nontrivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G (this holds for example if the derived subgroup G' is nilpotent or has odd order). Then diam($\Gamma^*(G)$) ≤ 2 , i.e. if $\langle a_1, b_1 \rangle = \langle a_2, b_2 \rangle = G$, then there exists $b \in G$ with $\langle a_1, b \rangle = \langle a_2, b \rangle = G$.

HAMILTONIAN CYCLE

A Hamiltonian cycle in a graph Γ is a graph cycle that visits each vertex of Γ exactly once.

THEOREM (BREUER, GURALNICK, MARÓTI, NAGY, AL 2010)

- For every sufficiently large finite simple group G, the graph Γ*(G) contains a Hamiltonian cycle.
- For every sufficiently large symmetric group S_n, the graph Γ^{*}(S_n) contains a Hamiltonian cycle.
- Let G be a finite soluble group. If the identity is the unique isolated vertex of Γ(G), then Γ*(G) contains a Hamiltonian cycle.

HAMILTONIAN CYCLE

A Hamiltonian cycle in a graph Γ is a graph cycle that visits each vertex of Γ exactly once.

THEOREM (BREUER, GURALNICK, MARÓTI, NAGY, AL 2010)

- For every sufficiently large finite simple group G, the graph Γ*(G) contains a Hamiltonian cycle.
- For every sufficiently large symmetric group S_n, the graph Γ*(S_n) contains a Hamiltonian cycle.
- Let G be a finite soluble group. If the identity is the unique isolated vertex of Γ(G), then Γ*(G) contains a Hamiltonian cycle.

It was conjectured that if 1 is the unique isolated vertex of $\Gamma(G)$, then $\Gamma^*(G)$ is Hamiltonian. No counterexample is known to the following stronger conjecture (which holds for example in the nilpotent case):

HAMILTONIAN CYCLE

A Hamiltonian cycle in a graph Γ is a graph cycle that visits each vertex of Γ exactly once.

THEOREM (BREUER, GURALNICK, MARÓTI, NAGY, AL 2010)

- For every sufficiently large finite simple group G, the graph Γ*(G) contains a Hamiltonian cycle.
- For every sufficiently large symmetric group S_n, the graph Γ*(S_n) contains a Hamiltonian cycle.
- Let G be a finite soluble group. If the identity is the unique isolated vertex of Γ(G), then Γ*(G) contains a Hamiltonian cycle.

It was conjectured that if 1 is the unique isolated vertex of $\Gamma(G)$, then $\Gamma^*(G)$ is Hamiltonian. No counterexample is known to the following stronger conjecture (which holds for example in the nilpotent case):

CONJECTURE

Let G be a finite group. Then $\Gamma^*(G)$ contains a Hamiltonian cycle.

EULERIAN GRAPH

A connected graph Γ is Eulerian if it contains a closed trail (a walk with no repeated edges) containing all edges of the graph. A famous result going back to Euler states that a connected graph Γ is Eulerian if and only if every vertex of Γ is of even degree.

A connected graph Γ is Eulerian if it contains a closed trail (a walk with no repeated edges) containing all edges of the graph. A famous result going back to Euler states that a connected graph Γ is Eulerian if and only if every vertex of Γ is of even degree.

PROPOSITION (C. MARION, AL 2107)

Let G be a finite group and $1 \neq g \in G$. Let

$$\eta(G):=egin{cases} 1 ext{ if } |G/G'| ext{ is odd,}\ 2 ext{ if } |G/G'| ext{ is even.} \end{cases}$$

If $2^{\eta(G)}$ divides $|N_G(\langle g \rangle)|$, then the degree of g in $\Gamma(G)$ is even.

A connected graph Γ is Eulerian if it contains a closed trail (a walk with no repeated edges) containing all edges of the graph. A famous result going back to Euler states that a connected graph Γ is Eulerian if and only if every vertex of Γ is of even degree.

PROPOSITION (C. MARION, AL 2107)

Let G be a finite group and $1 \neq g \in G$. Let

$$\eta(G) := egin{cases} 1 ext{ if } |G/G'| ext{ is odd,} \ 2 ext{ if } |G/G'| ext{ is even.} \end{cases}$$

If $2^{\eta(G)}$ divides $|N_G(\langle g \rangle)|$, then the degree of g in $\Gamma(G)$ is even.

THEOREM (C. MARION, AL 2107)

Let G = Alt(n) or G = Sym(n) with $n \ge 3$ and let $1 \ne g \in G$. Then the degree of g in $\Gamma(G)$ is odd if and only if there exists a prime number p congruent to 3 modulo 4 such that $p \in \{n, n-1\}$ and |g| = p. In particular, $\Gamma^*(G)$ is Eulerian if and only if n and n - 1 are not equal to a prime number congruent to 3 modulo 4.

What kind of group-theoretic information about *H* can be deduced from knowledge about $\Gamma(H)$ only? We are especially interested in when, if ever, $\Gamma(H)$ determines *H* up to isomorphism.

If |G| = |H| and G/ Frat $G \cong H/$ Frat H then $\Gamma(G) \cong \Gamma(H)$. Thus it will be convenient to assume that Frat H = 1. But even this condition is too weak to determine H up to isomorphism.

What kind of group-theoretic information about *H* can be deduced from knowledge about $\Gamma(H)$ only? We are especially interested in when, if ever, $\Gamma(H)$ determines *H* up to isomorphism.

If |G| = |H| and G/ Frat $G \cong H/$ Frat H then $\Gamma(G) \cong \Gamma(H)$. Thus it will be convenient to assume that Frat H = 1. But even this condition is too weak to determine H up to isomorphism.

EXAMPLE

Let $C = \langle x \rangle \cong C_5$. Define two actions of *C* on a vector space $V = \langle a, b \rangle \cong \mathbb{F}_{11}^2$: $a^x = 3a, \ b^x = 4b$ in the first action, $a^x = 3a, \ b^x = 5b$ in the second action. The semidirect product of *C* with *V* give rise to two soluble groups. He

The semidirect product of *C* with *V* give rise to two soluble groups, H_1 and H_2 , both of order 605 : $H_1 \not\cong H_2$, however $\Gamma(H_1) \cong \Gamma(H_2)$.

Theorem (A. Maróti, C. Roney-Dougal, AL 2016)

If H is a sufficiently large simple group with $\Gamma(G) \cong \Gamma(H)$ for a finite group G, then $G \cong H$.

Theorem (A. Maróti, C. Roney-Dougal, AL 2016)

Let G be a finite group.

- If $\Gamma(G) \cong \Gamma(\operatorname{Alt}(n))$, then $G \cong \operatorname{Alt}(n)$.
- If $\Gamma(G) \cong \Gamma(\text{Sym}(n))$, then $G \cong \text{Sym}(n)$.

THEOREM (A. MARÓTI, C. RONEY-DOUGAL, M. CERVETTI, AL)

Let G be a finite soluble group such that $\Gamma(G)$ has a unique isolated vertex, then $\Gamma(G)$ determines G up to isomorphism.

QUESTION

Let G and H be finite groups with $\Gamma(G) \cong \Gamma(H)$.

- Assume that G is soluble. Is H soluble?
- Assume that G is nilpotent. Is H nilpotent?

QUESTION

Let G and H be finite groups with $\Gamma(G) \cong \Gamma(H)$.

- Assume that G is soluble. Is H soluble?
- Assume that G is nilpotent. Is H nilpotent?

Only a weak result in this direction is available: if *G* is nilpotent, *H* is supersoluble and $\Gamma(G) \cong \Gamma(H)$, then *H* is nilpotent.

 $\Gamma(G)$ encodes significant information only when *G* is a 2-generator group. We want to introduce a wider family of graphs which encode the generating property of *G* when *G* is an arbitrary finite group.

DEFINITION

Assume that *G* is a finite group and let *a* and $b \in \mathbb{N}$. We define an undirected graph $\Gamma_{a,b}(G)$ whose vertices correspond to the elements of $G^a \cup G^b$ and in which two tuples (x_1, \ldots, x_a) and (y_1, \ldots, y_b) are adjacent if and only $\langle x_1, \ldots, x_a, y_1, \ldots, y_b \rangle = G$.

 $\Gamma(G)$ encodes significant information only when *G* is a 2-generator group. We want to introduce a wider family of graphs which encode the generating property of *G* when *G* is an arbitrary finite group.

DEFINITION

Assume that *G* is a finite group and let *a* and $b \in \mathbb{N}$. We define an undirected graph $\Gamma_{a,b}(G)$ whose vertices correspond to the elements of $G^a \cup G^b$ and in which two tuples (x_1, \ldots, x_a) and (y_1, \ldots, y_b) are adjacent if and only $\langle x_1, \ldots, x_a, y_1, \ldots, y_b \rangle = G$.

Notice that $\Gamma_{1,1}(G) = \Gamma(G)$, so these graphs can be viewed as a natural generalization of the generating graph.

 $\Gamma(G)$ encodes significant information only when *G* is a 2-generator group. We want to introduce a wider family of graphs which encode the generating property of *G* when *G* is an arbitrary finite group.

DEFINITION

Assume that *G* is a finite group and let *a* and $b \in \mathbb{N}$. We define an undirected graph $\Gamma_{a,b}(G)$ whose vertices correspond to the elements of $G^a \cup G^b$ and in which two tuples (x_1, \ldots, x_a) and (y_1, \ldots, y_b) are adjacent if and only $\langle x_1, \ldots, x_a, y_1, \ldots, y_b \rangle = G$.

Notice that $\Gamma_{1,1}(G) = \Gamma(G)$, so these graphs can be viewed as a natural generalization of the generating graph.

DEFINITION

We denote by $\Gamma_{a,b}^*(G)$ the graph obtained from $\Gamma_{a,b}(G)$ by deleting the isolated vertices.

The swap graph $\Sigma_d(G)$ is the graph in which the vertices are the ordered generating *d*-tuples and two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

The swap graph $\Sigma_d(G)$ is the graph in which the vertices are the ordered generating *d*-tuples and two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

PROPOSITION

If $\sum_{a+b}(G)$ is connected, then $\Gamma^*_{a,b}(G)$ is also connected.

Definition

The swap graph $\Sigma_d(G)$ is the graph in which the vertices are the ordered generating *d*-tuples and two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

PROPOSITION

If $\sum_{a+b}(G)$ is connected, then $\Gamma^*_{a,b}(G)$ is also connected.

Tennant and Turner conjectured that the swap graph is connected for every group. Roman'kov proved that the free metabelian group of rank 3 does not satisfy this conjecture but no counterexample is known in the class of finite groups.

THEOREM (E. CRESTANI, M. DI SUMMA, AL)

 $\Sigma_d(G)$ is connected if either d > d(G) or d = d(G) and G is soluble (where d(G) is the minimum number of generators of G).

Definition

The swap graph $\sum_{d} (G)$ is the graph in which the vertices are the ordered generating *d*-tuples and two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

PROPOSITION

If $\sum_{a+b}(G)$ is connected, then $\Gamma^*_{a,b}(G)$ is also connected.

Tennant and Turner conjectured that the swap graph is connected for every group. Roman'kov proved that the free metabelian group of rank 3 does not satisfy this conjecture but no counterexample is known in the class of finite groups.

THEOREM (E. CRESTANI, M. DI SUMMA, AL)

 $\Sigma_d(G)$ is connected if either d > d(G) or d = d(G) and G is soluble (where d(G) is the minimum number of generators of G).

COROLLARY

The graphs $\Gamma_{a,b}^*(G)$ are connected, except possibly when a + b = d(G) and G is not soluble.

THEOREM (C. ACCIARRI, AL 2017)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$. If either $a \neq 1$ or $|\operatorname{End}_G(V)| > 2$ for every non-trivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G, then there exists $z_1, \ldots, z_a \in G$ s.t. $G = \langle z_1, \ldots, z_a, x_1, \ldots, x_b \rangle = \langle z_1, \ldots, z_a, y_1, \ldots, y_b \rangle$.

The previous statement does not remain true if we drop off the assumption on the endomorphism group of irreducible *G*-module.

THEOREM (C. ACCIARRI, AL 2017)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$. If either $a \neq 1$ or $|\operatorname{End}_G(V)| > 2$ for every non-trivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G, then there exists $z_1, \ldots, z_a \in G$ s.t. $G = \langle z_1, \ldots, z_a, x_1, \ldots, x_b \rangle = \langle z_1, \ldots, z_a, y_1, \ldots, y_b \rangle$.

The previous statement does not remain true if we drop off the assumption on the endomorphism group of irreducible *G*-module.

COROLLARY

 $diam(\Gamma_{a,b}^*(G)) \leq 4$ whenever G is soluble and $a + b \geq d(G)$.

COROLLARY

If G is soluble and $|\operatorname{End}_G(V)| > 2$ for every non-trivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G, then the diameter of the swap graph $\Sigma_d(G)$ is at most 2d - 1.

The bound diam($\Gamma_{a,b}^*(G)$) \leq 4 that holds for finite soluble groups cannot be generalized to an arbitrary finite group.

Assume that *S* is a finite non-abelian simple group and, for $d \ge 2$, let $\tau_d(S)$ be the largest positive integer *r* such that *S*^{*r*} can be generated by *d* elements. If *a* and *b* are positive integers, then

$$\lim_{\rho\to\infty} \operatorname{diam}(\Gamma^*_{a,b}(\operatorname{SL}(2,2^\rho)^{\tau_{a+b}(\operatorname{SL}(2,2^\rho)})) = \infty.$$

Denote by $\Lambda^*(G)$ the collection of all the connected components of the graphs $\Gamma^*_{a,b}(G)$, for all the possible choices of a, b in \mathbb{N} . However for each of the graphs in this family, we don't assume to know from which choice of a, b it arises.

We can think that we packaged all the graphs $\Gamma_{a,b}^*(G)$ in a (quite spacious) box but that we did not pay enough attention during this operation and we lost the information to which group *G* these graphs correspond and the labels *a*, *b*.

Denote by $\Lambda^*(G)$ the collection of all the connected components of the graphs $\Gamma^*_{a,b}(G)$, for all the possible choices of a, b in \mathbb{N} . However for each of the graphs in this family, we don't assume to know from which choice of a, b it arises.

We can think that we packaged all the graphs $\Gamma_{a,b}^*(G)$ in a (quite spacious) box but that we did not pay enough attention during this operation and we lost the information to which group *G* these graphs correspond and the labels *a*, *b*. Do not panic.

Denote by $\Lambda^*(G)$ the collection of all the connected components of the graphs $\Gamma^*_{a,b}(G)$, for all the possible choices of a, b in \mathbb{N} . However for each of the graphs in this family, we don't assume to know from which choice of a, b it arises.

We can think that we packaged all the graphs $\Gamma_{a,b}^*(G)$ in a (quite spacious) box but that we did not pay enough attention during this operation and we lost the information to which group *G* these graphs correspond and the labels *a*, *b*. Do not panic. A big amount of the lost information can be reconstructed!

Denote by $\Lambda^*(G)$ the collection of all the connected components of the graphs $\Gamma^*_{a,b}(G)$, for all the possible choices of a, b in \mathbb{N} . However for each of the graphs in this family, we don't assume to know from which choice of a, b it arises.

We can think that we packaged all the graphs $\Gamma_{a,b}^*(G)$ in a (quite spacious) box but that we did not pay enough attention during this operation and we lost the information to which group *G* these graphs correspond and the labels *a*, *b*. Do not panic. A big amount of the lost information can be reconstructed!

PROPOSITION (C. ACCIARRI, AL)

From the knowledge of $\Lambda^*(G)$ we may recover d(G), |G| and the labels a, b, at least when a + b > d(G).

Philip Hall observed that the probability of generating a given finite group G by a random t-tuple of elements is given by

$$P_G(t) = \frac{\phi_G(t)}{|G|^t} = \sum_{n \in \mathbb{N}} \frac{a_n(G)}{n^t} \text{ where } a_n(G) = \sum_{|G:H|=n} \mu_G(H)$$

and μ is the Möbius function on the subgroup lattice of *G*. In other words there exists a uniquely determined Dirichlet polynomial $P_G(s)$ with the property that, for every $t \in \mathbb{N}$, the number $P_G(t)$ coincides with the probability of generating *G* by *t* random elements.

Philip Hall observed that the probability of generating a given finite group G by a random t-tuple of elements is given by

$$P_G(t) = \frac{\phi_G(t)}{|G|^t} = \sum_{n \in \mathbb{N}} \frac{a_n(G)}{n^t} \text{ where } a_n(G) = \sum_{|G:H|=n} \mu_G(H)$$

and μ is the Möbius function on the subgroup lattice of *G*. In other words there exists a uniquely determined Dirichlet polynomial $P_G(s)$ with the property that, for every $t \in \mathbb{N}$, the number $P_G(t)$ coincides with the probability of generating *G* by *t* random elements.

Let t = a + b. The number $\phi_G(t)$ of the ordered generating *t*-tuples of *G* may be determined by counting the edges of the graph $\Gamma^*_{a,b}(G)$.

We may determine $P_G(s)$ from the knowledge of $\Lambda^*(G)$. Consequently we may also recover from $\Lambda^*(G)$ all the information that can be determined from $P_G(s)$. In particular we may determine whether *G* is soluble, whether *G* is supersoluble and, for every prime power *n*, the number of maximal subgroups of *G* of index *n*. $\Lambda^*(G)$ encodes information on G that cannot be deduced from $P_G(s)$.

THEOREM (C. ACCIARRI, AL)

Let G be a finite nilpotent group. If $\Lambda^*(H) = \Lambda^*(G)$, then H is nilpotent.

PROPOSITION (C. ACCIARRI, AL)

We may determine | Frat G| from the knowledge of $\Lambda^*(G)$.

COROLLARY (C. ACCIARRI, AL)

Let G be a finite non-abelian simple group. If $\Lambda^*(H) = \Lambda^*(G)$, then $H \cong G$.

 $\Lambda^*(G)$ encodes information on G that cannot be deduced from $P_G(s)$.

THEOREM (C. ACCIARRI, AL)

Let G be a finite nilpotent group. If $\Lambda^*(H) = \Lambda^*(G)$, then H is nilpotent.

PROPOSITION (C. ACCIARRI, AL)

We may determine | Frat G| from the knowledge of $\Lambda^*(G)$.

COROLLARY (C. ACCIARRI, AL)

Let G be a finite non-abelian simple group. If $\Lambda^*(H) = \Lambda^*(G)$, then $H \cong G$.

All the above mentioned properties of *G* could be deduced taking into account only the graphs of the form $\Gamma_{1,b}^*(G)$ for $b \in \mathbb{N}$.

We may define an equivalence relation \equiv_m on *G* as follows: two elements are equivalent if each can be substituted for the other in any generating set for *G*. It can be easily seen that $x \equiv_m y$ if and only if *x* and *y* lie in exactly the same maximal subgroups of *G*.

We may define an equivalence relation \equiv_m on *G* as follows: two elements are equivalent if each can be substituted for the other in any generating set for *G*. It can be easily seen that $x \equiv_m y$ if and only if *x* and *y* lie in exactly the same maximal subgroups of *G*.

We may refine this to a sequence $\equiv_{m}^{(r)}$ of equivalence relations. Let $r \in \mathbb{N}$. For $x, y \in G$, say $x \equiv_{m}^{(r)} y$ if, for every $z_1, \ldots, z_{r-1} \in G$,

$$\langle x, z_1, \ldots, z_{r-1} \rangle = G \quad \Leftrightarrow \quad \langle y, z_1, \ldots, z_{r-1} \rangle = G.$$

So *x* and *y* can be interchanged in any generating set of size $\leq r$.

 $x \equiv_{m}^{(r)} y$ if and only if x and y have the same neighbours in $\Gamma_{1,r-1}(G)$.

We may define an equivalence relation \equiv_m on *G* as follows: two elements are equivalent if each can be substituted for the other in any generating set for *G*. It can be easily seen that $x \equiv_m y$ if and only if *x* and *y* lie in exactly the same maximal subgroups of *G*.

We may refine this to a sequence $\equiv_{m}^{(r)}$ of equivalence relations. Let $r \in \mathbb{N}$. For $x, y \in G$, say $x \equiv_{m}^{(r)} y$ if, for every $z_1, \ldots, z_{r-1} \in G$,

$$\langle x, z_1, \ldots, z_{r-1} \rangle = G \quad \Leftrightarrow \quad \langle y, z_1, \ldots, z_{r-1} \rangle = G.$$

So *x* and *y* can be interchanged in any generating set of size $\leq r$.

 $x \equiv_{m}^{(r)} y$ if and only if x and y have the same neighbours in $\Gamma_{1,r-1}(G)$.

The relations $\equiv_{m}^{(r)}$ become finer as *r* increases. We define $\psi(G)$ to be the value of *r* at which the relations $\equiv_{m}^{(r)}$ stabilise to \equiv_{m} .

THEOREM (P. CAMERON, C. RONEY-DOUGAL, AL 2016)

If G is a finite group, then $d(G) \le \psi(G) \le d(G) + 5$. Furthermore, if G is simple, then $\psi(G) \le 5$, and if G is almost simple then $\psi(G) \le 7$.

THEOREM (P. CAMERON, C. RONEY-DOUGAL, AL 2016)

If G is a finite soluble group, then $d(G) \le \psi(G) \le d(G) + 1$.

THEOREM (P. CAMERON, C. RONEY-DOUGAL, AL 2016)

Let G be a finite soluble group. The following are equivalent:

•
$$\psi(\mathbf{G}) = \mathbf{d}(\mathbf{G}).$$

• If g is an isolated vertex of $\Gamma_{1,d(G)-1}(G)$, then $g \in Frat(G)$.

Let *G* be an almost simple group with socle of order less than 10.000 such that all proper quotients of *G* are cyclic. Then $\psi(G) = 2$.

QUESTION

Does there exist a group G for which $\psi(G) > d(G) + 1$?

DEFINITION

Let *G* be a finite group and let $x, y \in G$. We define $x \equiv_{c} y$ if $\langle x \rangle = \langle y \rangle$.

THEOREM (P. CAMERON, C. RONEY-DOUGAL, AL 2016)

Let G be a group for which \equiv_c coincides with \equiv_m .

- We have a (messy) characterisation of such soluble G.
- **2** Frat G = 1.
- G/ soc G is soluble, and if G has a nonabelian minimal normal subgroup N ≅ S₁ × ··· × S_t then either t = 1 or t = 2 and S₁ ≅ PΩ₈⁺(q) with q ≤ 3.

QUESTION

Characterise the insoluble G for which \equiv_c coincides with \equiv_m .

AUTOMORPHISM GROUP OF $\Gamma(G)$

Aut($\Gamma(G)$) is MASSIVE! For example $|\operatorname{Aut}(\Gamma(\operatorname{Alt}(5)))| = 2^{31} \cdot 3^7 \cdot 5$.

AUTOMORPHISM GROUP OF $\Gamma(G)$

Aut($\Gamma(G)$) is MASSIVE! For example $|\operatorname{Aut}(\Gamma(\operatorname{Alt}(5)))| = 2^{31} \cdot 3^7 \cdot 5$.

A GRAPH REDUCTION

For vertices *x*, *y* of a graph Γ , say $x \equiv_{\Gamma} y$ if *x* and *y* have the same neighbours. By identifying equivalence classes, we get the quotient graph $\overline{\Gamma}$.

- If $\Gamma = \Gamma(G)$ then \equiv_{Γ} is $\equiv_{m}^{(2)}$.
- If $x \equiv_{\Gamma} y$ then $(x, y) \in Aut(\Gamma)$.

We define a weighting of $\overline{\Gamma}$, by assigning to each vertex a weight which is the cardinality of the corresponding \equiv_{Γ} -class. Let $\overline{\Gamma}_w(G)$ denote the weighted graph, and let Aut($\overline{\Gamma}_w(G)$) be the group of weight-preserving automorphisms of $\overline{\Gamma}_w(G)$.

AUTOMORPHISM GROUP OF $\Gamma(G)$

Aut($\Gamma(G)$) is MASSIVE! For example $|\operatorname{Aut}(\Gamma(\operatorname{Alt}(5)))| = 2^{31} \cdot 3^7 \cdot 5$.

A GRAPH REDUCTION

For vertices *x*, *y* of a graph Γ , say $x \equiv_{\Gamma} y$ if *x* and *y* have the same neighbours. By identifying equivalence classes, we get the quotient graph $\overline{\Gamma}$.

- If $\Gamma = \Gamma(G)$ then \equiv_{Γ} is $\equiv_{m}^{(2)}$.
- If $x \equiv_{\Gamma} y$ then $(x, y) \in Aut(\Gamma)$.

We define a weighting of $\overline{\Gamma}$, by assigning to each vertex a weight which is the cardinality of the corresponding \equiv_{Γ} -class. Let $\overline{\Gamma}_w(G)$ denote the weighted graph, and let Aut($\overline{\Gamma}_w(G)$) be the group of weight-preserving automorphisms of $\overline{\Gamma}_w(G)$.

PROPOSITION

Let the \equiv_{Γ} -classes of a finite group G be of sizes k_1, \ldots, k_n . Then

$$\operatorname{Aut}(\Gamma(G)) = (\operatorname{Sym}(k_1) \times \cdots \times \operatorname{Sym}(k_n)) \rtimes \operatorname{Aut}(\overline{\Gamma}_{\mathrm{w}}(G)).$$

EXAMPLE (G = Alt(5))

- $\psi(G) = 2$ and the relations $\equiv_m, \equiv_{\Gamma} and \equiv_c are all equal.$
- There are: 6 classes containing 4 of elements of order 5, 10 classes containing 2 elements of order 3 and 16 singletons.
- The kernel of the action of Aut(Γ(G)) on the classes is isomorphic to (Sym(4))⁶ × (Sym(2))¹⁰.
- $\operatorname{Aut}(\overline{\Gamma}_w(\operatorname{Alt}(5))) = \operatorname{Aut}(\overline{\Gamma}(\operatorname{Alt}(5)) = \operatorname{Sym}(5).$
- Aut($\Gamma(G)$) \cong ((Sym(4))⁶ \times (Sym(2))¹⁰)) \rtimes Sym(5).

DEFINITION

G has spread *k* if *k* is the largest number such that for any set *S* of *k* nonidentity elements, there exists *x* such that $\langle x, s \rangle = G$ for all $s \in S$.

- The spread is nonzero if and only if no vertex of the generating graph except the identity is isolated.
- Breuer, Guralnick and Kantor conjectured that *G* has nonzero spread if and only if every proper quotient is cyclic.

Definition

G has spread *k* if *k* is the largest number such that for any set *S* of *k* nonidentity elements, there exists *x* such that $\langle x, s \rangle = G$ for all $s \in S$.

- The spread is nonzero if and only if no vertex of the generating graph except the identity is isolated.
- Breuer, Guralnick and Kantor conjectured that *G* has nonzero spread if and only if every proper quotient is cyclic.

QUESTION

Let G be insoluble and of nonzero spread. Is $Aut(G) = Aut(\overline{\Gamma}_w(G))$?

We know of no examples where this is not the case. For example if *G* is an almost simple group with socle of order less than 10.000 such that all proper quotients of *G* are cyclic, then $Aut(\overline{\Gamma}_w(G)) = Aut(G)$.

Generalizing the definition given before, we say that *G* has nonzero spread if *g* is not isolated in $\Gamma_{1,d(G)-1}(G)$ whenever $g \neq 1$.

CONJECTURE

A finite group G has nonzero spread if and only if d(G/N) < d(G) for every nontrivial normal subgroup N of G.

Let *L* be a monolithic primitive group and let *A* be its unique minimal normal subgroup. For each positive integer *k*, the crown-based power of *L* of size *k* is the subgroup L_k of L^k defined by

$$L_k = \{(I_1, \ldots, I_k) \in L^k \mid I_1 \equiv \cdots \equiv I_k \mod A\}.$$

THEOREM (C. ACCIARRI, AL)

The previous conjecture is true except possibly when d(G) = 2.