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Diophantine problem

D(A) denotes the Diophantine problem over a structure A
(e.g. a group or a ring).

D(A) is decidable or undecidable.

Hilbert’s 10th Problem: D(Z,+, ·) is undecidable (Davis,
Matiyasevich, Putnam, Robinson, 1970).

D(Z,+) and D(Z, ·) are decidable (Presburger arithmetic and
Skolem arithmetic, resp.)

D(F , ·) is decidable (Makanin, 1983). F is a free group.

Decidability of D(Q,+, ·) is an open problem.

Initial question

Is D(G ) decidable, for G nilpotent?
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Nilpotent groups

[x , y ] = x−1y−1xy .

G1(G ) = G , G2 = [G ,G ], . . . , Gk = [Gk−1,G ].

G is nilpotent if Gk = 1 for some k .
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Equations in nilpotent groups - known results

There exists a 4-nilpotent group G such that D(G ) is
undecidable (Roman’kov, 1974).

D(G ) is undecidable in any free nonabelian nilpotent group
G . (Duchin, Liang, Shapiro, 2014).

Single equations:

Single equations are decidable in some 2-step nilpotent
groups. (Duchin, Liang, Shapiro, 2014).

Hence single equations and systems of equations are
‘essentially different’ in nilpotent groups. This is not the case
for (Z,+, ·), for example.
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E-definable sets

Let x ∈ R. Then x ∈ R≥0 iff x = y2 for some y ∈ R.

Let x ∈ Z. Then x ∈ N iff x = y2
1 + · · ·+ y2

4 for some yi ∈ Z.

Definition

R ⊆ G (or ⊆ Gn) is e-definable in G if “g ∈ R” can be
expressed as a system over G :

g ∈ R ⇔ ∃~y S(g , ~y) = 1.

An operation � in R is e-definable in G if “~z = ~x � ~y ,” can
be expressed as a system over G .
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Definable and interpretable structures

Definition

A ring (R,+, ·) (or a structure) is e-definable in G if R ⊆ Gn,
and R,+, · are e-definable in G .

If (R,+, ·) is e-definable in G up to an e-definable equivalence
relation, then (R,+, ·) is e-interpretable in G .

In both cases:

D(R,+, ·) is reducible to D(G ).

If R = Z, then D(G ) is undecidable, by the negative answer
to Hilbert’s 10th problem.
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Rings of algebraic integers

Theorem (G., Miasnikov, Ovchinnikov)

Let G be a f.g. non-virtually abelian nilpotent group. Then there
exists a ring of algebraic integers O that is e-interpretable in G .

Generalized Hilbert’s 10th problem: Determine whether D(O)
is decidable. Open problem in number theory. It is
conjectured it is not.

Conjecture

D(G ) is undecidable for any f.g. non-virtually abelian nilpotent
group G .
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Where does the ring O come from?

The following is a bilinear map between abelian groups:

[·, ·] : G/G ′ × G/G ′ → G ′/G3

[gG ′, hG ′] 7→ [g , h]G3

The set of endomorphisms End(A) of an abelian group A,
with the operations + and ◦, forms a non-commutative ring.

O is constructed using subrings of End(G/G ′) and
End(G ′/G3) (the maximal ring of scalars of [·, ·]).
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Applications

Groups where one can e-interpret a f.g. non-virtually abelian
nilpotent group.

Example: F.g. metabelian groups G such that G/G3 is
non-virtually abelian.

Open problem

D(Lampligther group) and D(BS(1, 2)).

There are no known examples of (non-virtually abelian)
metabelian groups with decidable DP...

... but they all have undecidable first-order theory (Noskov
1983).
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Applications

Groups G that satisfy:

All abelian subgroups are finitely generated.
G contains a f.g. non-virtually abelian nilpotent group.

Examples: Subgroups of GL(n,K ) for K a ring of algebraic
integers. Discrete solvable subgroups of GL(n,R).
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