On large orbits of actions of finite groups.
Applications

Dedicated to the memory of Professor James Clark Beidleman

Adolfo Ballester-Bolinches1

1Universitat de València, València, Spain

Advances in Group Theory and Applications 2017
Lecce, September, 2017
All sets, groups, modules and fields are finite.
The solution of the $k(GV)$-problem ($k(GV) \leq |V|$) depends on the existence of regular orbits.

P. Schmid.

The solution of the $k(GV)$-problem, volume 4 of *ICP Advanced Texts in Mathematics*.
Definition

If G acts on $\Omega \neq \emptyset$, $w \in \Omega$ is in a regular orbit if $C_G(w) = \{g \in G : wg = w\} = 1$, that is, the orbit of w is as large as possible and has size $|G|$.
Natural question: existence of regular orbits.
Interesting case: $\Omega = V$ a G-module.
Our motivation: open questions about intersections of prefrattini subgroups and system normalisers of soluble groups raised by Kamornikov, Shemetkov and Vasil’ev in Kourovka Notebook.
Definition

Let k be a positive integer. A 3-tuple (G, X, Y) is said to be a k-conjugate system if G is a group, X, Y are subgroups of G with $Y = \text{Core}_G(X)$, and there exist k elements g_1, \ldots, g_k such that $Y = \bigcap_{i=1}^k X^{g_i}$.
Introduction

Known results about conjugate systems

Theorem (Dolfi)

If π is a set of primes and G is a π-soluble group, then $(G, H, O_{\pi}(G))$ is a 3-conjugate system, where H is a Hall π-subgroup of G.

S. Dolfi.

Large orbits in coprime actions of solvable groups.

Theorem (Dolfi)

If π is a set of primes and G is a π-soluble group, then $(G, H, O_\pi(G))$ is a 3-conjugate system, where H is a Hall π-subgroup of G.

Particular cases:

- Passman ($|\pi| = 1$)

D. S. Passman.
Groups with normal, solvable Hall p'-subgroups.
Theorem (Dolfi)

If π is a set of primes and G is a π-soluble group, then $(G, H, O_{\pi}(G))$ is a 3-conjugate system, where H is a Hall π-subgroup of G.

Particular cases:

- Zenkov (H nilpotent)

Mann pointed out that the results of Passman imply that $(G, I, F(G))$ is a 3-conjugate system, where $F(G)$ is the Fitting subgroup of a soluble group G and I is a nilpotent injector of G.

A. Mann.

The intersection of Sylow subgroups.

Problem (Kamornikov, Problem 17.55)

Does there exist an absolute constant k such that $(G, H, \Phi(G))$ is a k-conjugate system for any soluble group G and any prefrattini subgroup H of G?

V. D. Mazurov and E. I. Khukhro, editors.

Unsolved problems in Group Theory: The Kourovka Notebook.

Problem (Shemetkov and Vasil’ev, Problem 17.39)

Is there a positive integer k such that $(G, D, Z_\infty(G))$ is a k-conjugate system for any soluble group G and any system normaliser D of G? What is the least number with this property?

V. D. Mazurov and E. I. Khukhro, editors.
Unsolved problems in Group Theory: The Kourovka Notebook.
These kind of questions can be reduced to a problem about regular orbits in faithful actions of groups. Assume we want to prove that \((G, X, Y)\) is a \(k\)-conjugate system by induction on the order of the soluble group \(G\). Then we may assume that \(Y = 1\), \(k > 1\) and, in many cases, that \(G = NX\), where \(N\) is self-centralising minimal normal subgroup of \(G\) which is complemented in \(G\) by the core-free maximal subgroup \(X\). Note that \(X \cap X^n = C_X(n)\). Therefore, if the natural action of \(X\) on \(N \oplus \cdots \oplus N\) has a regular orbit, then there exist \(n_1, \ldots, n_{k-1} \in N\) such that \(C_X(n_1) \cap \cdots \cap C_X(n_{k-1}) = 1\) and so \(X \cap X^{n_1} \cdots X^{n_{k-1}} = 1\).
Introduction

Gluck’s conjecture

- \(\text{Irr}(G) \): set of all irreducible complex characters of \(G \).
- \(b(G) = \max\{\chi(1) \mid \chi \in \text{Irr}(G)\} \): largest irreducible (complex) character degree of \(G \).

Gluck showed that if \(G \) is soluble, then \(|G : F(G)| \leq b(G)^{13/2} \) and conjectures:

Conjecture (Gluck, 1985)

\[|G : F(G)| \leq b(G)^2. \]

D. Gluck.
Gluck’s conjecture is still open and has been studied extensively. **Gluck’s strategy**: consider the action of $G/ F(G)$ on the faithful and completely reducible $G/ F(G)$-module V of all linear characters of the section $F(G)/\Phi(G)$. We have that large orbits of $G/ F(G)$ on V give large character degrees. To prove Gluck’s conjecture in this way, it is enough to prove that if V is a faithful completely reducible G-module, then there exists an orbit in V of length at least $\sqrt{|G|}$. We could get such an orbit by means of a regular orbit of G on $V \oplus V$.
Espuelas proved that if G is a group of odd order and V is a faithful and completely reducible G-module of odd characteristic, then G has a regular orbit on $V \oplus V$.

A. Espuelas.
Large character degrees of groups of odd order.

Dolfi and Jabara extended Espuelas’ result to the case where the Sylow 2-subgroups of the semidirect product $[V]G$ of V and the soluble group G are abelian.

Yang proved that the same is true if 3 does not divide the order of the soluble group G.

Dolfi, reproving a result of Seress, proved that any soluble group G has a regular orbit on $V \oplus V \oplus V$ and if either $(|V|, |G|) = 1$ or G is of odd order, then G has also a regular orbit on $V \oplus V$.

S. Dolfi.
Large orbits in coprime actions of solvable groups.

Á. Seress.
The minimal base size of primitive solvable permutation groups.
A result of Wolf shows that a similar result holds if G is supersoluble (see also Moretó and Wolf for an improved result when G is nilpotent).

- **T. Wolf.**
 Large orbits of supersolvable linear groups.

- **A. Moretó and T. R. Wolf.**
 Orbit sizes, character degrees and Sylow subgroups.
 Erratum: ibid., no. 2, page 409.
More recently, Yang (2014) extends some of these results to the case when H is a subgroup of the soluble group G by proving that if V is a faithful completely reducible G-module (possibly of mixed characteristic) and if either H is nilpotent or 3 does not divide the order of H, then H has at least three regular orbits on $V \oplus V$. If the Sylow 2-subgroups of the semidirect product $[V]H$ are abelian, then H has at least two regular orbits on $V \oplus V$.

Y. Yang.

Our main theorems

Theorem (with Meng and Esteban-Romero)

Let G be a soluble group and let V be a faithful completely reducible G-module (possibly of mixed characteristic). Suppose that H is a subgroup of G such that the semidirect product VH is S_4-free. Then H has at least two regular orbits on $V \oplus V$. Furthermore, if H is $\Gamma(2^3)$-free and $\text{SL}(2,3)$-free, then H has at least three regular orbits on $V \oplus V$.

- Recall that if G and X are groups, then G is said to be X-free if X cannot be obtained as a quotient of a subgroup of G; $\Gamma(2^3)$ denotes the semilinear group of the Galois field of 2^3 elements.
- The S_4-free hypothesis in the above theorem is not superfluous (Dolfi and Jabara, 2007).
Corollary (Yang)

Let G be a soluble group acting completely reducibly and faithfully on a module V. Suppose that H is a subgroup of G. If H is nilpotent or $3
mid |H|$, then H has at least three regular orbits on $V \oplus V$. If the Sylow 2-subgroups of the semidirect product VH are abelian, then H has at least two regular orbits on $V \oplus V$.

Y. Yang.
Large orbits of subgroups of solvable linear groups.
Corollary (Dolfi)

Let G be a soluble group and V be a faithful completely reducible G-module. Suppose that $(|G|, |V|) = 1$. Then G has at least two regular orbits on $V \oplus V$.

S. Dolfi.
Large orbits in coprime actions of solvable groups.
Our main theorems

Theorem (with Meng)

Let G be a soluble group acting completely reducibly and faithfully on a module V. If H is a supersoluble subgroup of G, then H has at a regular orbit on $V \oplus V$.

Adolfo Ballester-Bolinches

Regular orbits of finite groups
Our main theorems

Theorem (with Meng and Esteban-Romero)

Let G be a soluble group satisfying one of the following conditions:

1. G is S_4-free;
2. $G/F(G)$ is S_4-free and $F(G)$ is of odd order;
3. $G/F(G)$ is S_3-free.

Then Gluck's conjecture is true for G.
Corollary (Dolfi and Jabara; Cossey, Halasi, Maróti, Nguyen)

Let G be a soluble group. If either the Sylow 2-subgroups of G are abelian or $|G/F(G)|$ is not divisible by 6, then Gluck’s conjecture is true for G.

Recall that a formation is a class of groups \mathcal{F} which is closed under taking epimorphic images and such that every group G has an smallest normal subgroup with quotient in \mathcal{F}. This subgroup is called the \mathcal{F}-residual of G and denoted by $G^{\mathcal{F}}$. A maximal subgroup M of a group G containing $G^{\mathcal{F}}$ is called \mathcal{F}-normal in G; otherwise, M is said to be \mathcal{F}-abnormal.
We say that \mathcal{F} is saturated if it is closed under Frattini extensions. In such case, by a well-known theorem of Gaschütz-Lubeseder-Schmid, there exists a collection of formations $F(p) \subseteq \mathcal{F}$, one for each prime p, such that \mathcal{F} coincides with the class of all groups G such that if H/K is a chief factor of G, then $G/C_G(H/K) \in F(p)$ for all primes p dividing $|H/K|$. In this case, we say that H/K is \mathcal{F}-central in G and \mathcal{F} is locally defined by the $F(p)$. H/K is called \mathcal{F}-eccentric if it is not \mathcal{F}-central.
Note that a chief factor H/K supplemented by a maximal subgroup M is \mathcal{F}-central in G if and only if M is \mathcal{F}-normal in G. Every group G has a largest normal subgroup such that every chief factor of G below it is \mathcal{F}-central in G. This subgroup is called the \mathcal{F}-hypercentre of G and it is denoted by $Z_\mathcal{F}(G)$.
Let Σ be a Hall system of the soluble group G. Let S^p be the p-complement of G contained in Σ, and denote by $W^p(G)$ the intersection of all \mathcal{F}-abnormal maximal subgroups of G containing S^p ($W^p(G) = G$ if the set of all \mathcal{F}-abnormal maximal subgroups of G containing S^p is empty).
System normalisers and prefrattini subgroups

Then $W(G, \Sigma, \mathcal{F}) = \bigcap_{p \in \pi(G)} W^p(G)$ is called the \mathcal{F}-prefrattini subgroup of G associated to Σ. The prefrattini subgroups of G form a characteristic class of G-conjugate subgroups and they were introduced by Gaschütz and Hawkes.

The intersection $L_{\mathfrak{F}}(G)$ of all \mathfrak{F}-abnormal maximal subgroups of a soluble group G is the core of every \mathfrak{F}-prefrattini subgroup of G and $L_{\mathfrak{F}}(G)/\Phi(G) = Z_{\mathfrak{F}}(G/\Phi(G))$ for every group G.
Theorem (with Cossey, Kamornikov and Meng)

Let \(\mathcal{F} \) be a saturated formation and let \(H \) be an \(\mathcal{F} \)-prefrattini subgroup of a soluble group \(G \). Then \((G, H, L_{\mathcal{F}}(G)) \) is a 4-conjugate system. Furthermore, if either \(G \) is \(S_4 \)-free or \(\mathcal{F} \) is composed of \(S_3 \)-free groups, then \((G, H, L_{\mathcal{F}}(G)) \) is a 3-conjugate system.
If $\mathcal{F} = \mathcal{N}$, the formation of all nilpotent groups, then $L_{\mathcal{F}}(G) = L(G)$ is the intersection of all self-normalising maximal subgroups of G.
It is a characteristic nilpotent subgroup of G that was introduced by Gaschütz (1953).
If \mathcal{F} is the trivial formation, then $L_{\mathcal{F}}(G) = \Phi(G)$, the Frattini subgroup of G.

W. Gaschütz.
Über die Φ-Untergruppe endlicher Gruppen.
If $\mathcal{F} = \mathcal{N}$, the formation of all nilpotent groups, then $L_\mathcal{F}(G) = L(G)$ is the intersection of all self-normalising maximal subgroups of G.

Corollary (Kamornikov)

If G is soluble and H is an \mathcal{N}-prefrattini subgroup of G, then $(G, H, L(G))$ is a 3-conjugate system.

S. F. Kamornikov.

One characterization of the Gaschütz subgroup of a finite soluble group.

Russian.
If $\mathcal{F} = \mathcal{N}$, the formation of all nilpotent groups, then $L_\mathcal{F}(G) = L(G)$ is the intersection of all self-normalising maximal subgroups of G.

Corollary (Kamornikov)

If G is soluble and H is a prefrattini subgroup of G, then $(G, H, \Phi(G))$ is a 3-conjugate system.

S.F. Kamornikov.

Intersections of prefrattini subgroups in finite soluble groups.

Let $F(p)$ be a particular family of formations locally defining \mathcal{F} and such that $F(p) \subseteq \mathcal{F}$ for all primes p.
Let $\pi = \{p : F(p) \text{ non-empty}\}$. For an arbitrary soluble group G and a Hall system Σ of G, choose for any prime p, the p-complement $K^p = S^p \cap G^{F(p)}$ of the $F(p)$-residual $G^{F(p)}$ of G, where S^p is the p-complement of G in Σ. Then
\[D_{\mathcal{F}}(\Sigma) = G_\pi \cap \left(\bigcap_{p \in \pi} N_G(K^p) \right), \]
where G_π is the Hall π-subgroup of G in Σ, is the \mathcal{F}-normaliser of G associated to Σ.
The \mathcal{F}-normalisers of G are a characteristic class of G-conjugate subgroups. There were introduced by Carter and Hawkes and coincide with the classical system normalisers of Hall when \mathcal{F} is the formation of all nilpotent groups.
If D is an \mathcal{F}-normaliser of G, then $\text{Core}_G(D) = Z_{\mathcal{F}}(G)$.
Theorem (with Cossey, Kamornikov and Meng)

Let \mathfrak{F} be a saturated formation and let D be an \mathfrak{F}-normaliser of a soluble group G such that $\Phi(G) = 1$. Then $(G, D, Z_{\mathfrak{F}}(G))$ is a 4-conjugate system. Furthermore, if either G is S_4-free or \mathfrak{F} is composed of S_3-free groups, then $(G, D, Z_{\mathfrak{F}}(G))$ is a 3-conjugate system.
Corollary (with Cossey, Kamornikov and Meng)

Let G be a soluble group with $\Phi(G) = 1$. If D is a system normaliser of G, then $(G, D, Z_\infty(G))$ is a 3-conjugate system.
Example

Let D be the dihedral group of order 8. Then D has an irreducible and faithful module V of dimension 2 over the field of 3-elements such that $C_D(v) \neq 1$ for all $v \in V$. Let $G = V \rtimes D$ be the corresponding semidirect product. Then D is a system normaliser of G and $Z_\infty(G) = 1$. $D \cap D^v = C_D(v) \neq 1$ for all $v \in V$. Hence $(G, D, Z_\infty(G))$ is not a 2-conjugate system.
A class of groups \(\mathcal{F} \) is said to be a **Fitting class** if \(\mathcal{F} \) is a class under taking subnormal subgroups and such that every group \(G \) has a largest normal \(\mathcal{F} \)-subgroup called \(\mathcal{F} \)-**radical** and denoted by \(G_{\mathcal{F}} \). Every soluble group \(G \) has a conjugacy class of subgroups, called \(\mathcal{F} \)-**injectors**, which are defined to be those subgroups \(I \) of \(G \) such that if \(S \) is a subnormal subgroup of \(G \), then \(I \cap S \) is \(\mathcal{F} \)-maximal subgroup of \(S \). Note that, in this case, \(\text{Core}_G(I) = G_{\mathcal{F}} \).
Theorem (with Cossey, Kamornikov and Meng)

Let \mathcal{F} be a Fitting class and let I be an \mathcal{F}-injector of a soluble group G. Then $(G, I, G_{\mathcal{F}})$ is a 4-conjugate system. Furthermore, if either G is S_4-free or \mathcal{F} is composed of S_3-free groups, then $(G, I, G_{\mathcal{F}})$ is a 3-conjugate system.
Corollary (Passman-Mann)

If G is soluble and I is a nilpotent injector of G, then $(G, I, F(G))$ is a 3-conjugate system.