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Abstract

This thesis discusses upper bounds on the minimal number of elements d(G) re-

quired to generate a finite groupG. We derive explicit upper bounds for the function

d on transitive and minimally transitive permutation groups, in terms of their de-

gree n. In the transitive case, bounds obtained first by Kovács and Newman, then

by Bryant, Kovács and Robinson, and finally by Lucchini, Menegazzo and Morigi,

show that d(G) = O(n/
√

log n), for a transitive permutation group G of degree n.

In this thesis, we find best possible estimates for the constant involved.

We also settle an old conjecture of Pyber on minimal generator numbers in

minimally transitive permutation groups of degree n. Specifically, we prove that

such a group can be generated by µ(n) + 1 elements, where for an integer n with

prime factorisation n =
∏
p prime p

n(p), µ(n) := maxp prime{n(p)}. Furthermore, this

bound is best possible.

We also derive upper bounds on the minimal number of elements dG(M)

required to generate a submodule M of an induced module V ↑GH for a finite group

G and a subgroup H ≤ G. These upper bounds are given in terms of the dimension

dimV , and the index |G : H|.

Finally, we prove that there exists a universal constant C such that if G is

a transitive permutation group of degree n ≥ 2, then d(G) ≤ Cn2/(log |G|
√

log n).

This reduces another conjecture of Pyber on the number of subgroups of the sym-

metric group Sym(n). Moreover, we show that this bound is asymptotically best

possible.
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Chapter 1

Introduction

1.1 Background

A well-developed branch of finite group theory studies properties of certain classes

of permutation groups as a function of their degree. The purpose of this thesis is

to study one such property: the minimal size of a generating set.

For a finitely generated group G, let d(G) denote the minimal number of

elements required to generate G. Of course, one can study minimal generation for

any type of algebraic object; in particular, the minimal size of generating set for a

vector space V over a field F, i.e. the F-dimension of V . However, while the function

dimF is well-behaved with respect to substructures (that is to say, W is a subspace

of V implies that dimFW ≤ dimF V ), the same is not true for the function d on finite

groups (the familiar example of H := 〈(1, 2), (3, 4), . . . , (2n − 1, 2n)〉 ≤ Sym (2n),

with n ≥ 2, suffices to demonstrate this: d(H) = n while d(Sym (2n)) = 2).

Similarly, while dimF V also equals the size of any irredundant set of gener-

ators for V , the same fails to hold for d(G). (For a group G, a subset X of G is

said to be an “irredundant generating set” for G if 〈X〉 = G, and 〈Y 〉 6= G for each

proper subset Y of X.) To see this, note that {(1, 2), (2, 3), . . . , (n− 1, n)} is an

irredundant set of generators in the symmetric group Sym (n). These phenomena

mean that the function d is much more difficult to study, and as a result, requires

deeper and more powerful techniques.

Apart from its independent interest, the invariant d(G) is also useful in

subgroup enumeration. Indeed, ifG is a finite group and d(H) ≤ m for all subgroups

H of G, then G has at most |G|m subgroups. This is often a crude upper bound,

but the method can sometimes be used effectively if combined with other results.

1



In Chapter 7, we prove one of our main theorems, Theorem 1.2.3, whose motivation

comes from a conjecture of L. Pyber which counts the number of subgroups of the

symmetric group Sym(n), in terms of n (see Chapter 7 for more details).

1.2 Main results and layout of the thesis

Apart from Chapter 2, where we discuss some preliminary material in Representa-

tion Theory and in the theory of finite permutation groups, this thesis can be split

up into two main parts, which we now discuss.

1.2.1 Part I: Generating minimally transitive groups

The purpose of this thesis is to study upper bounds on the minimal size of a gen-

erating set in certain classes of finite transitive permutation groups. We begin our

analysis in Chapter 3, where we study the class of minimally transitive permuta-

tion groups (a minimally transitive permutation group is a transitive permutation

group which contains no proper transitive subgroups). In [45], Pyber asks if every

minimally transitive permutation group of degree n can be generated by µ(n) + 1

elements. Here, for an integer n with prime factorisation n =
∏
p prime p

n(p), we

define

µ(n) := max
p prime

{n(p)}.

In Chapter 3, we answer this question in the affirmative.

Theorem 1.2.1. Let G be a minimally transitive permutation group of degree n.

Then d(G) ≤ µ(n) + 1.

The main tool in proving the theorem is the method of “generator critical

groups” developed by F. Dalla Volta and A. Lucchini (see [14], or Section 2 of the

survey [41]). We remark that the theorem was proved by Pyber himself in the

regular and nilpotent cases (see [45]), and by Lucchini in the soluble case (see [34]).

Moreover, the bound in the theorem is best possible. To see this, let p be an odd

prime, and set G := V o 〈τ〉 to be the semi-direct product of an elementary abelian

group V of order pn with a cyclic group 〈τ〉 of order 2, where τ acts by inverting

the non-trivial elements in V . Then G is minimally transitive of degree |G| (via the

regular action) and d(G) = n+ 1 = µ(|G|) + 1. Finally, we remark that our proof

relies on the Classification of Finite Simple Groups (which from here on in will be

abbreviated to CFSG), via Lemma 3.4.1.

2



1.2.2 Part II: Generating transitive groups

The remainder of the thesis is devoted to the study of the behaviour of d(G) on the

more general class of transitive permutation groups. We prove two main results, in

Chapters 6 and 7, which we now discuss.

The two main results

In [28], [8], [33] and [37], it is shown that d(G) = O(n/
√

log n) whenever G is

a transitive permutation group of degree n ≥ 2 (here, and throughout this thesis,

“ log ” means log to the base 2). A beautifully constructed family of examples due to

L. Kovács and M. Newman shows that this bound is “asymptotically best possible”

(see Example 6.3.2), thereby ending the hope that a bound of d(G) = O(log n) could

be proved. (For an example of where this “hope” is discussed, see [4, Remark 6.4].)

The constants involved in these theorems, however, were never estimated.

Our first main result in Part II reads as follows.

Theorem 1.2.2. Let G be a transitive permutation group of degree n ≥ 2. Then

d(G) ≤ c1n/
√

log n

where c1 :=
√

3
2 in all but finitely many cases.

The theorem is stated more precisely as Theorem 6.1.3. In particular, we

give details of the finitely many cases for which we were not able to prove the bound

d(G) ≤ c1n/
√

log n. It is important to remark that although these finitely many

cases could not be dealt with using our methods, we do not believe that they are

genuine exceptions. For more details, see Chapter 6. Note also that the bound in

Theorem 1.2.2 is attained when n = 8 and G ∼= D8 ◦D8.

We prove Theorem 1.2.2 in Chapter 6. The proof relies on the CFSG indi-

rectly through our application of Theorem 2.1.14.

Our second main result in Part II also involves upper bounds on d(G) for

transitive permutation groups G of degree n, but this time the bound obtained is

an asymptotic one, and is expressed in terms of n and |G|. Specifically, we prove

Theorem 1.2.3. There exists an absolute constant C such that

d(G) ≤
⌊

Cn2

log |G|
√

log n

⌋
whenever G is a transitive permutation group of degree n ≥ 2.

3



We prove Theorem 1.2.3 in Chapter 7, where we also show (see Example

7.3.3) that the bound is asymptotically best possible. As discussed briefly in Section

1.1, the motivation for Theorem 1.2.3 is a reduction of a conjecture of Pyber on the

number of subgroups of Sym(n). See Chapter 7 for more details. We also remark

that the proof of Theorem 1.2.3 relies on the CFSG, again through our application

of Theorem 2.1.14.

Proving the main theorems in Part II

So how do we prove Theorems 1.2.2 and 1.2.3? We have the same hypothesis in

each theorem, so for the purposes of this discussion fix a transitive permutation

group G of degree n ≥ 2. As we shall see in Chapters 6 and 7, both theorems follow

from existing results in the literature when G is primitive. Thus the bulk of Part II

concerns imprimitive G. So assume that G is imprimitive, with minimal block size

r ≥ 2. Then (see Chapter 2) G may be viewed as a certain subgroup of a wreath

product R o S, where R is primitive of degree r, S is transitive of degree s := n/r,

and Gπ = S, where π : G → S denotes projection over the top group. Write the

base group of this wreath product as B := R(1) × R(2) × . . . × R(s), where each

R(i)
∼= R, and for a subgroup L of R, write BL := L(1) × . . .× L(s)

∼= Ls.

Rather than just studying imprimitive permutation groups, we will actually

study the function d(G) on the subgroups G of wreath products described above in a

bit more generality. So while continuing to adopt the set-up introduced in the above

paragraph, assume now that R is just an arbitrary non-trivial finite group (rather

than a primitive permutation group). The idea is as follows: let L be a minimal

normal subgroup of R. Then G/G ∩ BL is isomorphic to a subgroup of (R/L) o S.

Thus, we now have a path to an inductive argument: we just need to investigate

the contribution of G∩BL to d(G) (of course, d(G) ≤ d(G∩BL) + d(G/G∩BL)).

Since L is a minimal normal subgroup of a finite group, L ∼= T a for some

finite simple group T . If T is nonabelian, then G∩BL is a minimal normal subgroup

of G (see Lemma 6.2.5), and d(G) ≤ 1 + d(G/G ∩BL) by a result of Lucchini (see

Theorem 6.2.2). So assume that T is isomorphic to a cyclic group of order p, for

p prime. Then BL is an Fp[G]-module, where Fp denotes the field of p elements.

Let H := NG(R(1)) = π−1(StabS(1)). Then |G : H| = s since Gπ = S is transitive,

and L(1) is an Fp[H]-module. Moreover, L(1) generates BL as a G-module, and

dimBL = as = |G : H| dimL(1). Hence (see Proposition 2.2.6) BL is isomorphic to

the induced module L(1) ↑GH .

4



Let dG(G∩B) denote the minimal number of elements required to generate

G∩B as a G-module. Since d(G) ≤ dG(G∩BL)+d(G/G∩BL), we now need to study

another invariant: the minimal number of elements dG(M) required to generate a

submodule M of an induced module V ↑GH , where H ≤ G are finite groups, and V

is a finite dimensional H-module over an arbitrary field F. In Chapter 5, which is

the critical step of the thesis, we derive upper bounds on dG(M) in terms of dimV

and |G : H| (and some additional data when char(F) is positive and/or the image

of the induced action (say S) of G on the set H\G of right cosets of H in G is

insoluble).

This demonstrates the importance of Chapter 5 of the thesis, but what about

Chapter 4? In Chapter 4, we give a necessary condition for a transitive permutation

group G of degree 2m3 to be minimally transitive. But why do we care? Consider

again the situation described above, that is, suppose that M is a submodule of an

induced module V ↑GH , where H ≤ G are finite groups, and V is a finite dimensional

H-module over an arbitrary field F. Let S denote the image of the induced action

of G on H\G. Due to their nature, the main bounds obtained in Chapter 5 fail to

prove Theorem 1.2.2 in the case when the degree s = |G : H| of S is of the form

s = 2m3, and S contains no soluble transitive subgroups. Thus, we need to work

harder in this exceptional case. So assume that s = 2m3, and S contains no soluble

transitive subgroups. If G̃ is a subgroup of G acting transitively on H\G, then

HG̃ = G so V ↑GH↓G̃ is isomorphic to V ↑G̃
G̃∩H

, by Mackey’s Theorem (see Theorem

2.2.4). Thus, since dG(M) ≤ d
G̃

(M), it is no loss, for the purposes of bounding

dG(M), to assume that S is minimally transitive.

Therefore, some information on the structure of the minimally transitive

permutation groups of degree s = 2m3 will be necessary. Our main result reads as

follows.

Theorem 1.2.4. Let G be a minimally transitive permutation group of degree n =

2m3. Then one of the following holds:

(i) G is soluble, or:

(ii) G has a unique nonabelian chief factor, which is a direct product of copies of

L2(p), where p is a Mersenne prime.

5



1.3 Notation and terminology

Our proofs are theoretical, although we do use MAGMA [6] for computations of

generator numbers and composition factors for some groups of small order. In

particular, we compute the maximum values of d(G) as G runs over the transitive

groups of degree n, for 2 ≤ n ≤ 32. These values are presented in Table B.1

(Appendix B).

Notation: The following is a table of constants which will be used through-

out the thesis.

b
√

2/π = 0.797885 . . .

c1

√
3/2 = 0.866025 . . .

c 1512660
√

log (21915)/(21915) = 0.920581 . . .

c0 log9 48 + (1/3) log9 24 = 2.24399 . . .

c′ ln 2/1.25506 = 0.552282 . . .

We will adopt the notation of [29] for group names, although we will usually write

Sym(n) and Alt(n) for the symmetric and alternating groups of degree n. Further-

more, these groups, and their subgroups act naturally on the set {1, . . . , n}; we will

make no further mention of this.

The centre of a group G will be written as Z(G), the Frattini subgroup as

Φ(G), and the Fitting subgroup as F (G). The letters G, H, and K will usually

be used for groups, while U , V and W will usually be modules. The letter M will

usually denote a submodule. Finally, group homomorphisms will be written on the

right.

We finish by recording two definitions which will be used throughout the

thesis.

Definition 1.3.1. Let G be a group.

(a) Write a(G) to denote the composition length of G.

(b) Let aab(G) denote the number of abelian composition factors of G.

(c) Let cnonab(G) denote the number of nonabelian chief factors of G.

Definition 1.3.2. For a positive integer s with prime factorisation s = pr11 p
r2
2 . . . prtt ,

set ω(s) :=
∑
ri, ω1(s) :=

∑
ripi, K(s) := ω1(s)− ω(s) =

∑
ri(pi − 1) and

ω̃(s) =
s

2K(s)

(
K(s)⌊
K(s)

2

⌋).
6



Chapter 2

Background

In this chapter, we outline some preliminary material which will be used throughout

the thesis.

2.1 Permutation groups

2.1.1 Group actions and transitivity

We begin with an introduction to permutation group theory. For a set Ω, let

Sym (Ω) denote the group of permutations of Ω. We will write permutations on the

right, and compose from left to right, so that when g, h ∈ Sym(Ω), and ω ∈ Ω, we

have ωgh = (ωg)h.

Definition 2.1.1. A subgroup G of Sym(Ω) is called a permutation group on Ω.

An action of a group G on Ω is a homomorphism θ : G → Sym(Ω). In the

special case when Ω = H\G is the set of right cosets of a subgroup H of G, we will

write the associated action as θH : G → Sym(Ω). In this case, we call Ω the coset

space of H in G.

Definition 2.1.2. We say that two actions θ1 : G1 → Sym(Ω1) and θ2 : G2 →
Sym(Ω2) are permutation isomorphic, and write (G1, θ1) ∼= (G2, θ2), if there exists

a group isomorphism α : G1 → G2, and a bijection σ : Ω1 → Ω2 satisfying σ(ωgθ1) =

σ(ω)gαθ2 for all ω ∈ Ω1, g ∈ G1.

We remark that when the homomorphisms θ1 and θ2 are understood, we will

write (G1,Ω1) ∼= (G2,Ω2). Note also that two permutation groups on a set Ω are

permutation isomorphic if and only if they are conjugate as subgroups of Sym(Ω).

7



In the case where Ω is finite of cardinality n, we have

(Sym(Ω),Ω) ∼= (Sym(n), {1, . . . , n}).

Thus, in this case, we will usually write Sym (Ω) = Sym (n) = Sn, and say that a

subgroup G of Sym(Ω) is a permutation group of degree n.

Suppose now that G is a group acting on a set Ω, via the homomorphism

θ : G → Sym(Ω). When there is no ambiguity, we will abbreviate ωgθ to ωg, for

g ∈ G, ω ∈ Ω. We will also write

GΩ := Gθ, and KerG(Ω) := Ker(θ)

to denote the image and kernel of θ, respectively. We say that G acts faithfully on Ω

if KerG(Ω) = 1. The orbit ωGθ of ω ∈ Ω under the action of G will be abbreviated

to ωG, while the stabiliser will be written as StabG(ω). Finally, for a subset ∆ of

Ω, we will write StabG(∆) = {g ∈ G : ∆g ⊂ ∆} for the setwise stabiliser of ∆ in

G.

As is well known, the action of G on the orbit ωG is permutation isomorphic

to the action of G on the coset space StabG(ω)\G. Hence, |ωG| = |G : StabG(ω)|
for all ω ∈ Ω.

Let ωGi , i ∈ I, denote the orbits in Ω under the action of G (the set I is an

index set). The groups Gω
G
i are called the transitive constituents of G on Ω, and if

|I| = 1, we say that G acts transitively on Ω, or GΩ is transitive.

Definition 2.1.3. Let Gi, i ∈ I, be a set of groups. A subgroup G of the direct

product
∏
iGi is called a subdirect product of the Gi if πi|G : G→ Gi is surjective

for each projection map πi :
∏
iGi → Gi.

We note the following easily proved proposition, which will be used fre-

quently.

Proposition 2.1.4 ([9], Theorem 1.1). Let the group G act on the finite set Ω.

Then GΩ is isomorphic to a subdirect product of its transitive constituents.

2.1.2 Transitive actions

In this thesis, we will be interested in transitive actions on finite sets. So assume

that Ω is finite of cardinality n, and that G is a group acting transitively on Ω. In
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particular, note that the action of G on Ω is permutation isomorphic to the action

of G on the coset space StabG(ω)\G, for any point ω ∈ Ω.

We now describe how the action can be “factored” into actions which are

as “small” as possible.

Definition 2.1.5. Suppose that there exists a subset ∆ of Ω such that:

(a) For all g ∈ G, either ∆g = ∆ or ∆g ∩∆ = ∅; and

(b) 1 < |∆| < n.

Then G is said to act imprimitively on Ω, and GΩ is called imprimitive. The set ∆

is said to be a block for G (in Ω), and the set ∆G = {∆g : g ∈ G} of G-translates

of ∆ is called a system of blocks for G (in Ω). If no such subset exists, then G is

said to act primitively on Ω, and GΩ is called primitive.

We now construct the wreath product of permutation groups, as in [9]. Let

R and S be permutation groups on the finite sets ∆ and Γ, respectively, and let

Ω := ∆ × Γ. We will write Ω as the union of the fibres ∆γ := {(δ, γ) : δ ∈ ∆}.
Now let B be the group of functions from Γ to R, with pointwise multiplication as

its operation. Then B is isomorphic to the direct product of |Γ| copies of R. The

group B acts on Ω via (δ, γ)f = (δf(γ), γ), so that each copy of R in B acts on the

corresponding fibre. In particular, this action is faithful. The group S also acts

on Ω, via (δ, γ)σ = (δ, γσ). Since the action of S is also faithful, we may view B

and S as subgroups of Sym(Ω). Furthermore, S normalises B, so we can form the

semidirect product B o S.

Definition 2.1.6. The (permutational) wreath product of R and S, denoted R o S,

is defined to be the semi-direct product B o S ≤ Sym(∆× Γ). If the set ∆ is not

given then we assume that ∆ := R, equipped with the regular action.

It will be useful to note that the action of S on B is given by f s(γ) = f(γs
−1

).

For a subgroup L of R, B contains the direct product of |Γ| copies of L: we will

denote this direct product by BL (so that B1 = 1 and BR = B).

Now, for each γ ∈ Γ, set

R(γ) := {f ∈ B : f(γ′) = 1 for all γ′ ∈ Γ\{γ}}EB.

Then R(γ)
∼= R, and B =

∏
γ∈ΓR(γ). Furthermore, NRoS(R(γ)) ∼= R(γ) × (R o

9



StabS(γ)). Hence, we may define the projection maps

ργ : NRoS(R(γ))→ R(γ). (2.1.1)

We also define π : R oS → S to be the quotient map by B. This allows us to define

a special class of subgroups of R o S.

Definition 2.1.7 ([18], Definition 3). A subgroup G of R o S is called large if

(a) NG(R(γ))ργ = R(γ) for all γ ∈ Γ, and;

(b) Gπ = S.

Remark 2.1.8. If R and S are transitive, the sets ∆ and Γ each have cardinal-

ity larger than 1, and G is a large subgroup of R o S, then G is transitive, and

imprimitive, with a system of blocks {∆γ : γ ∈ Γ}.

In fact, it turns out that every imprimitive permutation group arises as a

large subgroup of a certain wreath product.

Theorem 2.1.9 ([48], Theorem 3.3). Let G be an imprimitive permutation group

on a set Ω1, and let ∆ be a block for G in Ω1. Also, let Γ := ∆G be the set of G-

translates of ∆, and set Ω2 := ∆× Γ. Denote by R and S the permutation groups

StabG(∆)∆, and GΓ, on ∆ and Γ respectively. Then

(i) G ∼= GΩ2 is isomorphic to a large subgroup of R o S, and;

(ii) (G,Ω1) and (G,Ω2) are permutation isomorphic.

Proof. First, let H := StabG(∆) and fix a right transversal T for H in G. Then

G acts on T via tg = t.g, where t ∈ T , g ∈ G, and t.g is the unique element

of T satisfying Htg = H(t.g). In particular, tg(t.g)−1 ∈ H. Note also that Γ =

{∆t : t ∈ T }, since G is transitive.

Let K1 := KerH(∆), and K := KerG(Γ). For g ∈ G, define fg : Γ →
H/K1

∼= R by fg(∆
t) = K1tg(t.g)−1. Also, for g ∈ G, define α : G → R o S by

gα := (fg,Kg). It is easy to see that α is a homomorphism. Moreover, α is injective

since G acts faithfully on Ω1. It is also easy to see that G ∼= Gα ≤ R o S is large.

Finally, define σ : Ω1 → Ω2 as follows: since Ω1 =
⊔
t∈T ∆t, there exists, for

each element ω ∈ Ω1, unique elements δω ∈ ∆ and tω ∈ T such that ω = δtωω . In

this case, set σ(ω) := (δω,∆
tω).
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Fix g ∈ G, ω ∈ Ω1 and set h := tωg(tω.g)−1 ∈ H. Since σ is a bijection by

construction, and

σ(ωg) = σ(δh(tω .g)
ω ) = (δhω,∆

tω .g) = (δω,∆
tω)(fg ,Kg) = (δω,∆

tω)gα,

the proof is complete.

If G is an imprimitive permutation group, and the block ∆ as in Theorem

2.1.9 is assumed to be a minimal block for G, then the group R = StabG(∆)∆ is

primitive. When Ω1 is finite we can iterate this process, and deduce the following.

Corollary 2.1.10. Let G be a transitive permutation group on a finite set Ω1.

Then there exist primitive permutation groups R1, R2, . . ., Rt such that G is a

subgroup of R1 oR2 o . . . oRt.

Remark 2.1.11. The wreath product construction is associative, in the sense that

R o (S o T ) ∼= (R o S) o T , so the iterated wreath product in Corollary 2.1.10 is

well-defined.

Definition 2.1.12. The tuple (R1, R2, . . . , Rt), where the Ri are as in Corollary

2.1.10, is called a tuple of primitive components for G on Ω.

We caution the reader that a tuple of primitive components for an imprimi-

tive permutation group G on a set Ω is not necessarily unique - see [9, Page 13] for

an example.

We will frequently use a result on composition length, due to Pyber. First,

define the constant

c0 := log9 48 + (1/3) log9 24 = 2.24399 . . .

We also recall the following definition from Chapter 1.

Definition 2.1.13. Let G be a finite group.

(a) Write a(G) to denote the composition length of G.

(b) Let aab(G) denote the number of abelian composition factors of G.

(c) Let cnonab(G) denote the number of nonabelian chief factors of G.

The result of Pyber can now be given as follows. It is presented in a slightly

weaker form to how it is stated in [45]. As remarked in Chapter 1, its proof requires

the CFSG.
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Theorem 2.1.14 ([45], Theorem 2.10). Let R be a primitive permutation group

of degree r ≥ 2. Then aab(R) ≤ (1 + c0) log r − (1/3) log 24, and cnonab(R) ≤ log r.

The stronger version [45, Theorem 2.10] of Theorem 2.1.14 gives bounds on

the product of the orders of the abelian chief factors of R, which are best possible.

See [45] for more details.

We shall also require the following theorem of D. Holt and C. Roney-Dougal

on generator numbers in primitive groups.

Theorem 2.1.15 ([25], Theorem 1.1). Let H be a subnormal subgroup of a

primitive permutation group of degree r. Then d(H) ≤ blog rc, except that d(H) = 2

when r = 3 and H ∼= Sym(3).

We deduce the following easy consequence.

Corollary 2.1.16. Let G be an imprimitive permutation group of degree n, and

suppose that G has a minimal block ∆ of cardinality r ≥ 4. Let S denote the induced

action of G on the set of distinct G-translates of ∆. Then d(G) ≤ sblog rc+ d(S),

where s := n/r.

Proof. Let R be the induced action of the block stabiliser StabG(∆) on ∆, and let

K := KerG(Ω) be the kernel of the action of G on the set Ω of distinct G-translates

of ∆. Then K∆ ER, and hence, by Theorem 2.1.15, each normal subgroup of K∆

can be generated by blog rc elements.

Since K EG, we have

(K,∆) ∼= (K,∆g) (2.1.2)

for all g ∈ G. Also, since R is primitive, K∆ E R is either trivial or transitive. If

K∆ is trivial, then K is trivial by (2.1.2), and hence d(G) = d(G/K) = d(S). So

assume that K∆ is transitive. Then K is a subdirect product of s copies of K∆,

by Proposition 2.1.4. Hence, d(K) ≤ sblog rc by the previous paragraph. Since

G/K ∼= S, the claim follows.

2.2 Induced modules for finite groups

In this section, we define induced modules for finite groups, and outline some of

their properties. For the remainder of the chapter, let F be an arbitrary field. When

we say “module”, we will always mean a finite dimensional right module.
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Definition 2.2.1. Let G be a finite group, let H be a subgroup of G, and let V be

an F[G]-module. Then V is also an F[H]-module, called the F[H]-module restricted

from the F[G]-module V , and written U := V ↓H .

Definition 2.2.2. Let G be a finite group, let H be a subgroup of G, and let U be

an F[H]-module. Fix a right transversal T for H in G, and define the F[G]-module

V by setting V :=
⊕

t∈T U ⊗ t to be the set of formal sums v =
∑

t∈T u ⊗ t, for

u ∈ U . The action of G on V is given by (u⊗ t)ht1 = uh
′⊗ t′, and extended linearly,

where tht1 = h′t′, for t, t1, t′ ∈ T , h, h′ ∈ H, and u ∈ U . We write V = U ↑GH , and

call V the F[G]-module induced from the F[H]-module U .

Remark 2.2.3. It is an easy exercise to show that, up to F[G]-module isomorphism,

the definition of U ↑GH does not depend on the choice of transversal T for H in G.

Mackey’s Theorem, which we now record, describes what happens when one

restricts an induced module.

Theorem 2.2.4 ([22], Proposition 6.20). Let G be a finite group, and let H

and Q be subgroups of G. Let U be a finite dimensional right F[H]-module, and let

{x1, x2, . . . , xt} be a full set of representatives for the (H,Q) double cosets in G,

where t denotes the number of orbits of Q on the coset space H\G. Then

(U ↑GH) ↓Q∼=
t⊕
i=1

Uxi ,

where Uxi := (U ⊗ xi) ↑QQ∩Hxi , and U ⊗ xi is the F[Q ∩Hxi ]-module defined by

(u⊗ xi)h
xi := uh ⊗ xi, where u ∈ U , h ∈ H.

We also require a well-known theorem of Frobenius, which is referred to in

the literature as “Frobenius reciprosity”.

Theorem 2.2.5 ([5], Proposition 3.3.1). Let G be a finite group, let W be a

finite dimensional right F[G]-module, let H be a subgroup of G, and let U be a finite

dimensional right F[H]-module. Then

dimFHomF[G](U ↑GH ,W ) = dimFHomF[H](U,W ↓H).

We finish this section with a useful result of Alperin.

Proposition 2.2.6 ([1], Corollary 3, Page 56). Let G be a finite group, and let

H be a subgroup of G. If the F[G]-module V is generated by the F[H]-submodule U

of V , and dimV = |G : H| dimU , then V ∼= U ↑GH .
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2.3 Further results from representations

In this section we discuss some topics from the theory of representations of finite

groups, which will be useful later in the thesis. We begin with Clifford’s Theorem.

Theorem 2.3.1 ([13], Theorem 49.7). Let G be a group, L a normal subgroup

of G, and V an irreducible F[G]-module. Then

(i) V ↓L is completely reducible; and

(ii) If U is an irreducible constituent of V ↓L, then

V ↓L∼= e(Ug1 ⊕ . . .⊕ Ugk)

where {Ug1 , . . . , Ugk} is a full set of non-isomorphic G-conjugates of U , and

e is a positive integer.

Remark 2.3.2. By V ↓L∼= e(Ug1 ⊕ . . . ⊕ Ugk) we mean of course that V ↓L is

isomorphic to a direct sum of e copies of the module Ug1 ⊕ . . .⊕ Ugk .

Definition 2.3.3. Let G be a group, L a normal subgroup of G, and V an irre-

ducible F[G]-module.

(a) The submodules e(Ugi) of V ↓L in Theorem 2.3.1 Part (ii) are called the ho-

mogeneous components of V ↓L.

(b) If k = 1, then V ↓L is said to be homogeneous.

Remark 2.3.4. By Theorem 2.3.1, we have V ↓L= M1 ⊕ . . . ⊕ Mr, where the

Mi
∼= e(Ugi) are the homogeneous components of V ↓L. Clearly, for x ∈ G we

have Mx
i = Mj for some j, so G acts on the set {M1, . . . ,Mr} of homogeneous

components. Furthermore, since V is irreducible, this action is transitive.

Remark 2.3.5. Let G be a group, and V an n-dimensional F[G]-module. Let K be

an extension field of F. Then the F[G]-representation ρ : G → GLn(F) associated

to V can be viewed as a K[G]-representation, just by viewing the matrix as having

entries in K; we write this K[G]-representation as ρK (this merely indicates a change

in point of view). In module theoretic language, the K[G]-module associated to

ρK is V ⊗F K, and will be denoted by V K. In the literature, the module V K

is sometimes refereed to as an extension of scalars of V to K. Note also that

dimK(V K) = dimF(V ).
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We now record two lemmas which will be key in the proof of Proposition

5.3.7. The first has a stronger version which is stated in [25, Lemma 2.13], but we

only require the following.

Lemma 2.3.6 ([25], Lemma 2.13). Let G ≤ GLn(F) be finite, let V = Fn be the

natural module, and assume that G acts irreducibly on V . Suppose that

1. V ↓L is homogeneous for each normal subgroup L of G; and

2. G has no non-trivial abelian quotients.

Then G is isomorphic to a subgroup of GLn/f (K) for some divisor f of n, and some

extension field K of F of degree f . Furthermore, if W denotes the natural module

for GLn/f (K), then G acts irreducibly on W and

(i) W ↓L is homogeneous for each normal subgroup L of G;

(ii) Z(G) is cyclic; and

(iii) Each abelian characteristic subgroup of G is contained in Z(GLn/f (K)).

Lemma 2.3.7. Let G ≤ GLn(F) be finite, let V be the natural module, and assume

that V is irreducible. Suppose that 1 6= E E LEG, and that V ↓L is homogeneous.

Suppose that K ⊇ F is a splitting field for all subgroups of L, and assume that

the resulting extension K/F is normal. Then V K ↓E is a non-trivial completely

reducible K[E]-module.

Proof. Since L is homogeneous, V ↓L∼= eU , for some irreducible F[L]-module U

and some positive integer e. Since G is faithful on V and L 6= 1, L is faithful on

U . Moreover, UK is completely reducible, and each of its irreducible constituents

are algebraically conjugate, by [13, Theorem 70.15]. It follows that L is faithful on

V K ↓L, and hence V K ↓E is non-trivial. Also, since E E L, and

V K ↓E∼= V K ↓L↓E ,

it follows from Theorem 2.3.1 that V K ↓E is completely reducible. This completes

the proof.

Remark 2.3.8. Let K be a splitting field for the finite group G, containing the

field F. Then every field E containing K is also a splitting field for G (for example,

see [27, Corollary 9.8]). Thus, one can always find a splitting field E for G such

that E/F is a normal extension (for instance, by taking E to be the normal closure

of K/F).
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2.4 Number Theory: The prime counting function

We close this chapter with a brief discussion of large prime power divisors of positive

integers.

Definition 2.4.1. For a positive integer s and a prime p, write sp for the p-part

of s. Also, define lpp s = maxp prime sp to be the largest prime power divisor of s.

Fix s ≥ 2, and let k = lpp s. By writing the prime factorization of s

as s = kpr22 . . . prtt , one immediately sees that s ≤ kδ(k), where δ(k) denotes the

number of primes less than or equal to k. Hence, log s ≤ δ(k) log k. Also, it is

proved in [46, Corollary 1] that

δ(k) < 1.25506k/ ln k

for k ≥ 2. Define the constant c′ by

c′ := ln 2/1.25506 (2.4.1)

We deduce the following.

Lemma 2.4.2. Let s be a positive integer. Then

lpp s ≥ (ln 2/1.25506) log s = c′ log s.
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Part I

Generating minimally transitive

groups
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Chapter 3

Generating minimally transitive

permutation groups

3.1 Introduction

We begin this chapter with a definition.

Definition 3.1.1. A transitive permutation group G is said to be minimally tran-

sitive if every proper subgroup of G is intransitive.

For example, a finite group G acting on itself by right multiplication (i.e.

the regular action) is minimally transitive of degree |G|. Another example includes

the alternating group G := Alt(5). Of course, G is not minimally transitive in its

natural action on 5 points (a cyclic subgroup of order 5 is transitive, for example),

but G does acts minimally transitively on the cosets of a subgroup of order 3 (or a

subgroup of order 4).

Apart from their independent interest, minimally transitive groups have

applications in Combinatorics (for counting vertex transitive graphs; for example,

see [4]), and in the theory of BFC-groups (see [42] and [47]). In Chapter 4, we

study the structure of minimally transitive groups of degree 2m3, and later on in

the thesis we use the results therein to study minimal generator numbers in modules

for permutation groups.

In this chapter, we consider the minimal number of elements required to

generate such a group, in terms of its degree n. For the prime factorisation n =∏
p prime p

n(p) of n, recall from Definition 1.3.2 that ω(n) :=
∑

p n(p). We will also

define µ(n) := max {n(p) : p prime}.
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Motivated by the problem of bounding the order of the derived subgroup of

a BFC-group, the question of bounding d(G) in terms of n was first considered by

Shepperd and Wiegold in [47]. There, they prove that every minimally transitive

group of degree n can be generated by ω(n) elements. It was then suggested by

Pyber (see [45]) to investigate whether or not µ(n)+1 elements would always suffice.

A. Lucchini gave a partial answer to this question in [34], proving that: if G is a

minimally transitive group of degree n, and µ(n) + 1 elements are not sufficient to

generate G, then ω(n) ≥ 2 and d(G) ≤ blog2(ω(n)− 1) + 3c.
In this chapter, we offer a complete solution to the problem, proving

Theorem 1.2.1. Let G be a minimally transitive permutation group of degree n.

Then d(G) ≤ µ(n) + 1.

If p is an odd prime, and G := (Cp)
n o C2, with the generator in C2 acting

by inverting the non-identity elements in (Cp)
n, then d(G) = n + 1 = µ(|G|) + 1,

so the bound in Theorem 1.2.1 is best possible.

Our approach follows along the same lines as Lucchini’s proof of the main

theorem in [34]. Indeed, his methods suffice to prove Theorem 1.2.1 in the case

when a minimal normal subgroup of a “crown” for G is abelian (see Section 3.3).

Thus, our main efforts will be concerned with the case when a minimal normal

subgroup of a crown for G is a direct product of isomorphic non-abelian simple

groups. The key step in this direction is Lemma 3.4.1, which we prove in Section

3.4. We use Section 3.3 to outline the method of crown-based powers due to F. Dalla

Volta and Lucchini [14]; this will serve as the basis for our arguments. Section 3.2

is reserved for a preliminary lemma on minimally transitive groups, which will also

be used in Chapter 4. Finally, we prove Theorem 1.2.1 in Section 3.5.

3.2 Some observations on minimally transitive groups

We begin preparations towards the proof of Theorem 1.2.1 with some easy obser-

vations on minimally transitive groups.

Lemma 3.2.1. Let G be a transitive subgroup of Sn, let A be a point stabiliser in

G, let 1 6= L be a normal subgroup of G, and let Ω = {∆1, . . . ,∆t} be the set of

L-orbits. Then

(i) Either L is transitive, or Ω forms a system of blocks for G. In particular, the

size of an L-orbit divides n.
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(ii) (L,∆1) is permutation isomorphic to (L,∆j), for all j.

(iii) |Ω| = |G : AL|.

(iv) G is minimally transitive if and only if the only subgroup X ≤ G satisfying

AX = G is X = G.

(v) If G is minimally transitive, then GΩ is minimally transitive.

(vi) If n = pa for a prime p and G is minimally transitive, then G is a p-group.

Proof. Part (i) is clear, so we prove (ii): Fix j in the range 1 ≤ j ≤ t. By (i), there

exists g ∈ G such that ∆g
1 = ∆j . Let αg : L → L denote the automorphism of L

induced by conjugation by g, and define σ : ∆1 → ∆j by σ(δ) = δg, for δ ∈ ∆1.

Then

σ(δl) = δlg = σ(δ)l
g

= σ(δ)(lαg),

for l ∈ L, δ ∈ ∆1. This proves (ii).

If L is transitive, then AL = G, so |Ω| = 1 = |G : AL|. Otherwise, Part (i)

implies that the size of each L-orbit is |L : L ∩ A| = |AL : A|, so the number of

L-orbits is n/|AL : A| = |G : AL|. Part (iii) follows.

Now, a subgroup X of G is transitive if and only if AX = G. Hence, Part

(iv) follows.

Part (v) is proved in [15, Theorem 2.4]. Finally, Part (vi) follows since a

Sylow p-subgroup of a transitive group of degree pa acts transitively.

3.3 Crown-based powers

In this section, we outline an approach to study the question of finding the minimal

number of elements required to generate a finite group, which is due to F. Dalla

Volta and A. Lucchini. So let G be a finite group, with d(G) = d > 2, and let M

be a normal subgroup of G, maximal with the property that d(G/M) = d. Then

G/M needs more generators than any proper quotient of G/M , and hence, as we

shall see below, G/M has a very restrictive structure. We remark that G/M is

sometimes referred to in the literature as a crown for G.

We describe this structure as follows: let L be a finite group, with a unique

minimal normal subgroup N . If N is abelian, then assume further that N is

complemented in L. Now, for a positive integer k, set Lk to be the subgroup
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of the direct product Lk defined as follows

Lk := {(x1, x2, . . . , xk) : xi ∈ L, Nxi = Nxj for all i, j}

Equivalently, Lk := diag(Lk)Nk, where diag (Lk) denotes the diagonal subgroup

of Lk. The group Lk is called the crown-based power of L of size k. Note that

Soc(Lk) = Nk.

We can now state the theorem of Dalla Volta and Lucchini.

Theorem 3.3.1 ([14], Theorem 1.4). Let G be a finite group, with d(G) ≥
3, which requires more generators than any of its proper quotients. Then there

exists a finite group L, with a unique minimal normal subgroup N , which is either

nonabelian or complemented in L, and a positive integer k ≥ 2, such that G ∼= Lk.

Remark 3.3.2. It is clear that, for fixed L, d(Lk) increases with k. Indeed, if

we identify L with the first coordinate subgroup of Lk, then Lk ∩ L ∼= N , and

Lk/(L ∩ Lk) ∼= Lk−1.

To use Theorem 3.3.1, we will need a bound on d(Lk), in terms of k. This

is provided by the next two results. Before giving the statements, we require some

additional notation: let d be a positive integer. For a finite group G, let φG(d)

denote the number of ordered d-tuples of elements of G which generate G. Now,

set

PG(d) :=
φG(d)

|G|d

so that PG(d) denotes the probability that d randomly chosen elements of G gen-

erate G. Finally, for a normal subgroup M of G, define

PG,M (d) :=
PG(d)

PG/M (d)
.

PG,M (d) represents the conditional probability that d randomly chosen elements of

G generate G, given that their images modulo M generate G/M .

Remark 3.3.3. If L is a finite group with a unique minimal normal subgroup N ,

then CL(N) = Z(N). Thus, L/Z(N) can be embedded as a subgroup of Aut(N).

Hence, since (L/Z(N))/(N/Z(N)) ∼= L/N , and N/Z(N) ∼= Inn(N) E Aut(N), the

group CAut(N)(L/N) is well-defined.

Theorem 3.3.4 ([34], Theorem 2.1 and [14], Theorem 2.7). Let L be a finite

group with a unique minimal normal subgroup N which is either nonabelian or
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complemented in L, and let k be a positive integer. Assume also that d(L) ≤ d.

Then

(i) If N is abelian, then d(Lk) ≤ max {d(L), k + 1};

(ii) If N is nonabelian, then d(Lk) ≤ d if and only if k ≤ PL,N (d)|N |d/|CAut (N)(L/N)|.

Proof. Part (i) follows immediately from [34, Theorem 2.1], so we just prove (ii).

So assume that N is nonabelian. By Remark 3.3.2 above, d(Lk) increases with k.

Thus, since d ≥ d(L) = d(L1), there exists a largest positive integer fL(d) such

that d(LfL(d)) ≤ d. Furthermore, by [14, Theorem 2.7], we have

fL(d) =
φL(d)

|CAut (N)(L/N)|φL/N (d)
.

Since

PL,N (d) =
PL(d)

PL/N (d)
=

φL(d)

φL/N (d)|N |d

the result follows.

We will also need an estimate for PL,N (d).

Theorem 3.3.5 ([17], Theorem 1.1). Let L be a finite group, with a unique

minimal normal subgroup N , which is nonabelian, and suppose that d ≥ d(L).

Then PL,N (d) ≥ 53/90.

3.4 Indices of proper subgroups in finite simple groups

For a positive integer m, π(m) denotes the set of prime divisors of m.

Lemma 3.4.1. Let S be a nonabelian simple group. Then there exists a set of

primes Γ = Γ(S) with the following properties:

(i) |Γ| ≤ f(S), where f(S) := r/2 + 1 if S is an alternating group of degree r,

and f(S) := 4 otherwise;

(ii) π(|S : H|) intersects Γ nontrivially for every proper subgroup H of S.

Proof. If S = L2(p), for some prime p, then since every maximal subgroup M

of S has index divisible by either p or p + 1 (see [19], for example), we can take

Γ(S) = {2, p}. If S = L2(8), L3(3), U3(3) or Sp4(8), then direct computation using
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MAGMA (or Tables 8.1 to 8.6 and Table 8.14 in [7]), implies that each maximal

subgroup of S has index divisible by at least one of the primes in {2, 3}, {2, 13},
{3, 7}, and {2, 3}, respectively.

Next, assume that S = Ar is an alternating group of degree r, and let p

and q be the two largest primes not exceeding r, where p > q. If r = p, then we

can take Γ := {r, q}, by [30, Theorem 4]. So assume that p < r, and for each

k in p ≤ k ≤ r − 1, choose a prime divisor qk of
(
r
k

)
. Then set Γ := Γ(Ar) =

{qp, . . . , qr−1} ∪ {p, q}. We claim that Γ satisfies (i) and (ii). To see this, note that

|Γ| ≤ r− p+ 2, which is less than r/2 + 2 by Bertrand’s postulate. This proves (i).

To see that (ii) holds, let H be a proper subgroup of Ar. If p or q does not divide

|H| then we are done, so assume that pq divides |H|. Then Ak EH ≤ Sk × Sr−k,
for some k with p ≤ k ≤ r − 1, by [30, Theorem 4]. Hence, H has index divisible

by
(
r
k

)
, and (ii) follows.

So assume that S is not one of the simple groups considered in the first two

paragraphs above, and let Π = Π(S) be the set of prime divisors of |S| discussed

in [30, Corollary 6], so that |Π| ≤ 3. If S does not occur in the left hand column

of Table 10.7 in [30], then Γ := Π satisfies the conclusion of the lemma, by [30,

Corollary 6], so assume otherwise.

Then S is one of the simple groups in the first column of [30, Table 10.7]; we

need to prove that there exists a set Γ as in the statement of the lemma. If H < S

is not one of the exceptions listed in the middle column of Table 10.7, then |S : H|
intersects Π non-trivially. Thus, all we need to prove is that there exists a prime p

such that, whenever H is one of these exceptional subgroups, then p divides |S : H|.
Indeed, in this case, Γ := Π ∪ {p} gives us what we need.

So let H be one of these subgroups. We consider each of the possibilities

from [30, Table 10.7]:

1. Suppose that either

(a) S = PSp2m(q) (m, q even) or P Ω2m+1(q) (m even, q odd), and Ω−2m(q)E

H; or

(b) S = P Ω+
2m(q) (m even, q odd), and Ω2m−1(q) EH; or

(c) S = PSp4(q) and PSp2(q2) EH.

Let p be the defining characteristic of S. Since H is not a parabolic subgroup

of G, H does not contain a Sylow p-subgroup of S. Hence, our choice of p

gives us what we need.
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2. In each of the remaining cases (see [29, Table 10.7]), we are given a tuple (S,

Y1,. . ., Yt(S)), where t(S) ≤ 4, S is one of L2(8), L3(3), L6(2), U3(3), U3(3),

U3(5), U4(2), U4(3), U5(2), U6(2), PSp4(7), PSp4(8), PSp6(2), P Ω+
8 (2), G2(3),

2F4(2)′, M11, M12, M24, HS, McL, Co2 or Co3, Yi < S for each 1 ≤ i ≤ t(S),

and H is contained in at least one of the groups Yi. In each case, we can easily

see that there is a prime p, with p dividing |S : Yi| for each i in 1 ≤ i ≤ t(S).

This completes the proof.

3.5 The proof of Theorem 1.2.1

Recall that for a group G acting on a set Ω, we write GΩ for the image of the

induced action of G on Ω. Before proceeding to the proof of Theorem 1.2.1, we

need two lemmas.

Lemma 3.5.1 ([38], Proof of Lemma 3). Let L be a finite group with a unique

minimal normal subgroup N , which is nonabelian, and write N ∼= St, where S is a

nonabelian simple group. Then |CAut (N)(L/N)| ≤ t|S|t|Out (S)|.

Lemma 3.5.2 ([31], Proposition 4.4). Let S be a nonabelian finite simple group.

Then |Out (S)| ≤ |S|1/4.

The preparations are now complete.

Proof of Theorem 1.2.1. Assume that the theorem is false, and let G be a coun-

terexample of minimal degree. Also, let A be the stabiliser in G of a point α, and

let m := µ(n) + 1.

First, we claim that G needs more generators than any proper quotient of G.

To this end, let M be a non-trivial normal subgroup of G, and let K be the kernel of

the action of G on the set of M -orbits. Then G/K is minimally transitive of degree

s := |G : AM |, by Lemma 3.2.1 Parts (iii) and (v), and hence, since s divides n,

the minimality of n implies that there exists elements x1, x2, . . ., xm in G such that

G = 〈x1, x2, . . . , xm,K〉. But then H := 〈x1, x2, . . . , xm〉 acts transitively on the

set of M -orbits, so HM = G by minimal transitivity of G. Hence d(G/M) ≤ m,

which proves the claim.

Hence, by Theorem 3.3.1, G ∼= Lk, for some k ≥ 2, and some group L with a

unique minimal normal subgroup N , which is either nonabelian, or complemented

in L. We now fix some notation: write Soc (G) = N1 ×N2 × . . .×Nk, where each
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Ni
∼= N ∼= St, for some simple group S, and t ≥ 1, and set Xi := N1×N2× . . .×Ni.

We will also write X0 := 1, Hi+1 = Ni+1 ∩XiA, and we denote by ∆i the Xi-orbit

containing α, for 0 ≤ i ≤ k. Then |∆i| = n|XiA|/|G| by Lemma 3.2.1 Part (iii),

and hence
|∆i+1|
|∆i|

=
|Xi+1A|
|XiA|

=
|Ni+1XiA|
|XiA|

= |Ni+1 : Hi+1|

Furthermore, it is shown in the proof of the main theorem in [34], that |∆i+1|/|∆i| =
|Ni+1 : Hi+1| is greater than 1 for 0 ≤ i ≤ k−2, and also for i = k−1 if N is abelian.

Note also that G/Soc (G) ∼= L/N is m-generated, by the previous paragraph; thus,

L is m-generated (see Theorem 6.2.2).

We now separate the cases of N being abelian or nonabelian. If N is abelian,

then N ∼= Ctp, for some prime p, so by the previous paragraph, p divides |Ni+1 :

Hi+1| = |∆i+1|/|∆i| for each 0 ≤ i ≤ k − 1. Thus, pk divides |∆k|, and hence

divides n, by Lemma 3.2.1 Part (i). It follows that k ≤ µ(n), which, by Theorem

3.3.4 Part (i), contradicts our assumption that d(G) > µ(n) + 1.

Thus, N is nonabelian. Hence, by the third paragraph, for each i in 0 ≤ i ≤
k − 2, Ni+1 has a direct factor Si+1 (Si+1

∼= S), with |Si+1 : Si+1 ∩Hi+1| > 1. Let

Γ = Γ(S) be the set of primes in Lemma 3.4.1, so that |Γ| ≤ f(S), where f(S) is

as defined in Lemma 3.4.1. Then Lemma 3.4.1 implies that for each 0 ≤ i ≤ k− 2,

the index |Si+1 : Si+1 ∩Hi+1|, and hence |∆i+1|/|∆i| = |Ni+1 : Hi+1|, is divisible

by some prime pi+1 in Γ.

So we now have a list of primes p1, p2, . . ., pk−1, with each pi in Γ, such that

the product
∏k−1
i=1 pi divides |∆k−1|. For each prime p in Γ, let a(p) be the number

of times that p occurs in this product. Then, since |∆k−1| divides n by Lemma

3.2.1 Part (i),
∏
p∈Γ p

a(p) divides n. Since |Γ| ≤ f(S), and
∑

p∈Γ a(p) = k − 1, we

have a(p) ≥ (k−1)/f(S) for at least one prime p in Γ. Hence, (k−1)/f(S) ≤ µ(n),

and it follows that

k ≤ f(S)µ(n) + 1 ≤ 53|S|tµ(n)

90t|Out (S)|
(see the paragraph below) (3.5.1)

≤ 53|N |m

90|CAut (N)(L/N)|
(by Lemma 3.5.1) (3.5.2)

≤
PL,N (m)|N |m

|CAut (N)(L/N)|
(by Theorem 3.3.5) (3.5.3)

Note that |N | = |S|t. Then the inequality in (3.5.1) above follows easily when S is

an alternating group of degree r, since |S| = r!/2, and |Out(S)| ≤ 4 in this case
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(also, |Out(S)| ≤ 2 if r 6= 6). It also follows easily when S is not an alternating

group, using Lemma 3.5.2. Now, by Theorem 3.3.4 Part (ii), the inequality in

(3.5.3) contradicts our assumption that d(G) > m. This completes the proof.
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Part II

Generating transitive groups
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Chapter 4

Minimally transitive groups of

degree 2m3

4.1 Introduction

We begin the second part of this thesis with a continuation of our discussion of

minimally transitive permutation groups. As mentioned in Chapter 3, we use these

groups in Part II to study minimal generator numbers in modules for permutation

groups. Specifically, as mentioned in Chapter 1, ifH ≤ G are finite groups, V is aG-

module, and G̃ is a subgroup of G acting transitively on the set H\G of right cosets

of H in G, then V ↑GH∼= V ↑G̃
G̃∩H , by Theorem 2.2.4. Thus, when studying induced

modules, one may often reduce to the case where G acts minimally transitively on

H\G.

Note also that the bounds we obtain in Theorem 5.4.15 and its corollaries

are strong enough to prove Theorem 6.1.3 in most cases. Due to the nature of the

bounds however, this is not the case when |G : H| has the form 2m3. Thus, we

have to work harder, and try to obtain some information about the structure of the

minimally transitive groups of degree 2m3. Recall from Chapter 1 that our main

result is as follows.

Theorem 1.2.4. Let G be a minimally transitive permutation group of degree n =

2m3. Then one of the following holds:

(i) G is soluble; or

(ii) G has a unique nonabelian chief factor, which is a direct product of copies of

L2(p), where p is a Mersenne prime.
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A minimally transitive group of prime power degree is a p-group (see Lemma

3.2.1), and therefore soluble. Therefore, another motivation behind Theorem 1.2.4

is to study how far away from being soluble a minimally transitive group of degree

n := 2m3 is. It would be interesting to study the same question for minimally

transitive groups of degree n := pmq, for arbitrary primes p and q. For an analysis

of the case n = pq, for distinct primes p and q, see [15].

4.2 Subgroups of index 2m3 in direct products of non-

abelian simple groups

In [30, Corollary 6], information is given regarding the prime divisors of indices of

subgroups of simple groups. We utilise this work for the second time in this thesis

in the following proposition.

Proposition 4.2.1. Let T be a nonabelian finite simple group, and suppose that

T has a proper subgroup X of index n = 2i3j, with 0 ≤ j ≤ 1. Then one of the

following holds:

(i) T = M12 and X is contained in one of the two T -conjugacy classes of copies

of M11 in M12.

(ii) T = M11 or M24, and X is T -conjugate to L2(11) or M23, respectively.

(iii) T = Ar, r = 2i3j, and either X is T -conjugate to Ar−1, or r = 6 and X is

T -conjugate to L2(5).

(iv) T = L2(p) where p is a prime of the form p = 2f13f2 − 1 with f2 ≤ 1, and X

is a subgroup of index either 1 or 3 in a T -conjugate of the maximal subgroup

M = Cp o C(p−1)/2 < L2(p).

Proof. For a finite set F , let π(F ) denote the set of prime divisors of |F |. Thus, we

have π(X) ⊆ π(T ), since X ≤ T . We wish to reduce to the case π(X) = π(T ) and

then use [30, Corollary 6]. However, we first need to deal with some cases which are

not covered by this approach. First, the classification of the maximal subgroups

of the simple classical groups of dimension up to 12 implies that T is not L2(8),

L3(3), U3(3), Sp4(8), U4(2) or U5(2) (see [7, Tables 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.10,

8.11, 8.14, 8.20 and 8.21]).

Assume next that T ∼= L2(p), for some prime p of the form p = 2f13f2 − 1,

with f2 ≥ 0. Also, let M be a maximal subgroup of T containing X. Then, since
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|T : M | divides |T : X| = 2i3j with j ≤ 1, we must have M = Cp o C(p−1)/2, and

f2 ≤ 1 (see [7, Table 8.1]). Set l := 1 if f2 = 0, and l := 3 if f2 = 1. Since (p+ 1)/l

is the highest power of 2 dividing |T |, and |T : X| = 2i3j with j ≤ 1, either X = M ;

or f2 = 0 and |M : X| = 3. This is the situation described in (iv).

Next, assume that T is one of the Mathieu groups M11 or M12. Using the

ATLAS [12], we find that the only possibilities for X are T = M11 and X is T -

conjugate to L2(11) ≤M11 (of index 12); or T = M12 and X is a member of one of

the two T -conjugacy classes of M11 ≤M12 (of index 12).

Finally, assume that T is not one of the groups considered above, and let

Π be the set of primes for T given in the statement of [30, Corollary 6]. Then

π(|T : X|) ⊆ {2, 3}, and q ≥ 5 for each q ∈ Π (the cases where Π contains 2 or 3

have been dealt with in the preceding paragraphs - see [30, Corollary 6]). Thus,

we must have Π ⊆ π(X). Hence [30, Corollary 6] gives π(X) = π(T ) and the

possibilities for T and X are as follows (see [30, Table 10.7]).

(1) T = Ar, Ak E X ≤ Sk × Sr−k, and k is greater than or equal to the largest

prime p with p ≤ r (in particular, k ≥ 5, since T is simple). Then |Ar :

Ar ∩ (Sk × Sr−k)| =
(
r
k

)
divides |T : X| = 2i3j . But a well-known theorem

of Sylvester and Schur (see [23]) states that either
(
r
k

)
= 1 or

(
r
k

)
has a prime

divisor exceeding min {k, r − k}. Thus, since k ≥ 5 we must have k = r − 2

or k = r − 1. Since r ≥ 5, k = r − 1 is the only option and hence X = Ar−1,

which gives us what we need.

(2) T = A6, X = L2(5). This, together with (1) above, gives precisely the situation

described in (iii).

(3) T = PSp2m(q) (m, q even) or P Ω2m+1(q) (m even, q odd), and Ω−2m(q) E X.

Then X ≤ NT (Ω−2m(q)), so |T : NT (Ω−2m(q))| divides |T : X| = 2i3j . But

|NT (Ω−2m(q)) : Ω−2m(q)| = 2, by [29, Proposition 4.8.6] for T = PSp2m(q) and

[29, Proposition 4.1.6] for T = P Ω2m+1(q). Hence, |T : Ω−2m(q)| divides 2i+13j .

Also, for each of the two choices of T we get |T : Ω−2m(q)| = qm(qm − 1). But

qm(qm − 1) cannot be of the form 2f or 2f3, since m > 1 and (m, q) 6= (2, 2)

(as T is simple). Therefore, we have a contradiction.

(4) T = P Ω+
2m(q) (m even, q odd) and Ω2m−1(q)EX. As above, X ≤ NT (Ω2m−1(q)),

and we use [29, Proposition 4.1.6 Part (i)] to conclude that |NT (Ω2m−1(q)) :

Ω2m−1(q)| = 2. It follows that 1
2q
m−1(qm − 1) = |T : Ω2m−1(q)| divides 2i+13j .

This again gives a contradiction, since m ≥ 4.
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(5) T = PSp4(q) and PSp2(q2)EX. Then X ≤ NT (PSp2(q2)), and [29, Proposition

4.3.10] gives |NT (PSp2(q2)) : PSp2(q2)| = 2. It follows that q2(q2 − 1) = |T :

PSp2(q2)| divides 2i+13j . Again, this is impossible.

(6) In each of the remaining cases (see [29, Table 10.7]), we are given a pair (T , Y ),

where T is L2(8), L3(3), L6(2), U3(3), U3(5), U4(3), U6(2), PSp4(7), PSp4(8),

PSp6(2), P Ω+
8 (2), G2(3), 2F4(2)′, M24, HS, McL, Co2 or Co3, and Y is a

subgroup of T containing X. Apart from when T = M24, we find that |T : Y |
does not divide 2i3j , so we get a contradiction in each case. When T = M24,

the only possibility is when X is T -conjugate to M23 ≤M24 (of index 24).

This completes the proof.

Our main tool in proving Theorem 1.2.4 is the Frattini argument. The result

is well-known, but we couldn’t find a reference so we include a proof here.

Lemma 4.2.2. Let G be a group, and let L be a normal subgroup of G. Suppose

that H is a subgroup of L with the property that H and Hα are L-conjugate for

each α ∈ Aut(L). Then G = NG(H)L.

Proof. Let g ∈ G. Then conjugation by g induces an automorphism of L, so

Hg = H l for some l ∈ L, by hypothesis. Hence, gl−1 ∈ NG(H), so g ∈ NG(H)L,

and this completes the proof.

With the Frattini argument in mind, the next corollary will be crucial.

Lemma 4.2.3. Let T be a nonabelian finite simple group, and suppose that T has

a proper subgroup X of index r := 2i3j, with 0 ≤ j ≤ 1. Assume also that if

T ∼= L2(p), with p a Mersenne prime, then j = 0. Denote by Γ the set of right

cosets of X in T . Then there exists a proper subgroup H of T with the following

properties:

(i) H and Hα are conjugate in T for each automorphism α ∈ Aut(T ); and

(ii) NT (H)Γ is transitive.

Proof. By Proposition 4.2.1, the possibilities for the pair (T,X) (up to conjugation

in T ) are as follows:

1. (T,X) = (Ar, Ar−1), with r = 2i3j for some j ≤ 1, or (T,X) = (A6, L2(5)).

Since T is nonabelian simple, r ≥ 6, so r is even. If r is a power of 2, let H
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be a Sylow 2-subgroup of T . Then HΓ itself is transitive, and properties (i)

and (ii) are clearly satisfied.

Otherwise, let H = 〈(1, 2, 3), (4, 5, 6), . . . , (r − 1, r − 2, r)〉. Then NT (H)Γ is

transitive. Thus, (ii) is satisfied. Property (i) is also easily seen to be satisfied

(this includes the case r = 6, when Out (A6) has order 4).

2. (T,X) = (M11, L2(11)): Let H be a Sylow 3-subgroup of T . Then NT (H) ∼=
M9 : 2 (see page 18 of the ATLAS of finite groups [12]) acts transitively on

the cosets of X. Since Aut(M11) = Inn(M11), (i) and (ii) are satisfied.

3. T = M12 and X is T -conjugate to one of the two copies of M11 in M12; or

T = M24 and X is T -conjugate M23: In each case, let H be a subgroup

of T generated by a fixed point free element of order 3. When T = M12,

NT (H) ∼= A4 × S3 (see [12, page 18]) is a maximal subgroup of T , and acts

transitively on the cosets of X (for each copy of M11). Also, the unique non-

identity outer automorphism of M12 fixes the set of T -conjugates of H, so

both (i) and (ii) are satisfied.

When T = M24, NT (H) has order 1008, and acts transitively on the cosets of

X (using MAGMA [6], for example). Also, Out (T ) is trivial. Thus, (i) and

(ii) are again satisfied.

4. T = L2(p), with p = 2f13f2 − 1 ≥ 7, f2 ≤ 1 and X = Cp o C(p−1)/2. Then

|T : X| = p + 1 = 2f13f2 . Assume first that p ≥ 7, and let H be a dihedral

group of order p+ 1 contained in T . Since T has a unique conjugacy class of

maximal subgroups of dihedral groups of order p+1, (i) follows. Furthermore,

|T : H| and |T : X| are coprime, so (ii) is also satisfied.

This just leaves the case p = 5, but in this case T = A5 and X is T -conjugate

to D10 so taking H = A4 gives us what we need.

Lemma 4.2.4. Let p ≥ 7 be a Mersenne prime, and let L = T1 × T2 × . . . × Te,
where each Ti ∼= L2(p). Also, let A be a subgroup of L such that |L : A| = 2a3, for

some a, and |Ti : Ti ∩ A| ∈ {p + 1, 3(p + 1)} for all i, with |Ti : Ti ∩ A| = 3(p + 1)

for at least one i. Then

(i) |L : A| = 3(p+ 1)e.
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(ii) Let P be a Sylow p-subgroup of L. Then NL(P ) is soluble, and has precisely

2e orbits on the set ∆ of (right) cosets of A in L, with
(
e
k

)
orbits of size 3pk,

for each k, 0 ≤ k ≤ e.

Proof. We first prove Part (i) by induction on e, with the case e = 1 being trivial.

So assume that e > 1, and fix k in the range 1 ≤ k ≤ e with |Tk : Tk∩A| = 3(p+1).

Also, fix i 6= k, and set T̂i := T1 × . . . × Ti−1 × Ti+1 × . . . × Te and Âi = A ∩ T̂i.
Then

|Tj : Tj ∩ Âi| = |Tj : Tj ∩ T̂i ∩A| = |Tj : Tj ∩A| ∈ {3(p+ 1), p+ 1}

for each j 6= i. In particular, |Tk : Tk ∩ Âi| = 3(p + 1). Also, |T̂i : Âi| = |T̂iA : A|
divides |L : A|, and is divisible by |Tk : Tk ∩ Âi| = |TkÂi : Âi| = 3(p + 1), so

|T̂i : Âi| = 2bi3, for some bi ≤ a. Hence, the inductive hypothesis implies that

|T̂i : Âi| = 3(p+ 1)e−1.

Assume that the claim in Part (i) does not hold. Then since (p+ 1)e is the

highest power of 2 dividing |L|, we must have |L : T̂iA| = |L : A|/|T̂i : Âi| < p+ 1.

Hence, if ρi : L → Ti denotes projection onto Ti, then |Ti : ρi(A)| = |ρi(L) :

ρi(T̂iA)| = |L : T̂iA| < p + 1. But, as can be readily checked using [7, Tables

8.1 and 8.2], no maximal subgroup of L2(p) can have index a power of 2 and

strictly less than p + 1. Thus, we must have T̂iA = L, so A projects onto Ti. But

then A ∩ Ti is a normal subgroup of Ti, so A ∩ Ti = 1 or Ti. This contradicts

|Ti : A ∩ Ti| ∈ {p+ 1, 3(p+ 1)}, and Part (i) follows.

Finally, we prove (ii). Let N := NL(P ). By Proposition 4.2.1 Part (iii),

each Tj ∩ A is contained in a maximal subgroup Mj := Cp o C(p−1)/2 of Tj , and

|Tj : Tj ∩ A| ∈ {p + 1, 3(p + 1)}. Thus, Tj ∩ A has a normal Sylow p-subgroup

Pj ∼= Cp. Let P̃ := P1× . . .×Pe, so that P̃ is a Sylow p-subgroup of L. Since P and

P̃ are conjugate in L, we may assume, for the purposes of proving Part (ii), that

P̃ = P . Since Mj = NTj (Pj) is soluble, N = M1× . . .×Me is soluble. Also, P EA

since P is a characteristic subgroup of (T1 ∩A)× . . .× (Te ∩A) EA, so A ≤ N .

Suppose first that e = 1. Then |L : A| = 3(p + 1), so A has index 3 in N ,

since |L : N | = |L : M1| = p + 1. Let x ∈ L\N , and let Γ ⊂ ∆ be the N -orbit

corresponding to Ax. Then |Γ| = |N : N ∩Ax| = |L:N∩Ax|
|L:N | . Since |L : N | = p+ 1 is

a power of 2 and |L : N ∩ Ax| is divisible by |L : Ax| = 3(p + 1), it follows that 3

divides |Γ|. Also, as mentioned above, Ax and N have unique Sylow p-subgroups

P x and P , respectively. Since x does not normalise P , we have P x 6= P , so p, and

hence 3p, divides |N : N ∩ Ax| = |Γ|. Since |N : A| = 3 and |L : A| = 3(p + 1), it
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follows that |Γ| = 3p, which proves the claim in the case e = 1.

We now consider the general case. Fix 1 ≤ i ≤ e, and xi ∈ Ti\Mi. Suppose

first that |Ti : Ti ∩A| = 3(p+ 1). From the previous paragraph, we see that Mi has

precisely two orbits on the cosets of Ti ∩A in Ti, of size 3 and 3p, represented by A

and Axi respectively. Next, assume that |Ti : Ti ∩ A| = p + 1. Then Mi = Ti ∩ A.

Moreover, arguing as in the previous paragraph, p divides |Mi : Mi ∩ Axi |, from

which it follows that Mi again has two orbits on the cosets of A ∩ Ti in Ti, of size

1 and p, represented by A and Axi respectively.

Let B := (T1∩A)×. . .×(Te∩A)EA. It is clear, from the previous paragraph,

that N = M1 × . . . ×Me has 2e orbits on the cosets of B in L, represented by

Bt1t2 . . . te, where ti ∈ {1, xi}, for 1 ≤ i ≤ e. Also, the orbit represented by the

coset Bt1t2 . . . te has cardinality 3dpk, where k is the number of subscripts i with

ti 6= 1, and d is the number of subscripts i with

|Ti : Ti ∩A| = 3(p+ 1). (4.2.1)

Since B ≤ A, N has at most 2e orbits in ∆. Suppose there exist ti,

t̃i ∈ {1, xi} for 1 ≤ i ≤ e, and n = n1n2 . . . ne ∈ N (with ni ∈ Mi), such that

At1t2 . . . te = A(t̃1t̃2 . . . t̃e)(n1n2 . . . ne). Then ti = ait̃ini, where a1a2 . . . ae ∈ A.

Since A ≤ N , it follows that ti = 1 if and only if t̃i = 1. Hence, t1t2 . . . te =

t̃1t̃2 . . . t̃e. Thus, N has precisely 2e orbits in ∆, represented by At1 . . . te, where

ti ∈ {1, xi}. Since the size of the N -orbit corresponding to At1t2 . . . te is

|N : N ∩At1t2...te | = |N : N ∩Bt1t2...te |
|N ∩At1t2...te : N ∩Bt1t2...te |

≥ |N : N ∩Bt1t2...te |
|At1t2...te : Bt1t2...te |

,

and |At1t2...te : Bt1t2...te | = |A : B| = |N : B|/|N : A| = 3d−1, it now follows from

(4.2.1) that

|N : N ∩At1t2...te | = |N : N ∩Bt1t2...te |
3d−1

= 3pk

where k is the number of subscripts i such that ti 6= 1. This proves (ii).

4.3 The proof of Theorem 1.2.4

First, we fix some notation which will be retained for the remainder of this section:

Let G be a minimally transitive permutation group of degree 2m3; let A be the

stabiliser in G of a point δ; let L be a minimal normal subgroup of G; let Ω be the
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set of L-orbits; let K := Ker(GΩ) be the kernel of the action of G on Ω; and finally,

let ∆ be the L-orbit containing δ.

Remark 4.3.1. GΩ acts minimally transitively on Ω, by Lemma 3.2.1 Part (v).

Note also that, if |G : AL| is a power of 2, then GΩ is a 2-group by Lemma 3.2.1

Part (vi).

We require the following easy proposition.

Proposition 4.3.2. There exists a subgroup E of G such that G = EL and E ∩K
is soluble.

Proof. Consider the (set-wise) stabiliser StabG(∆) of ∆ in G. Since L acts tran-

sitively on ∆, we have LA = StabG(∆). Let E be a subgroup of G minimal with

the property that EK = G. Then E ∩K is contained in the Frattini subgroup of

E, and hence is soluble. Finally, G = EK ≤ E StabG(∆) = ELA, so G = ELA.

Thus, EL = G by minimal transitivity, as needed.

Corollary 4.3.3. If L is abelian, then the set of nonabelian chief factors of G equals

the set of nonabelian chief factors of GΩ. If L is nonabelian and |Ω| = |G : LA| is

a power of 2, then L is the unique nonabelian chief factor of G.

Proof. Let E be as in Proposition 4.3.2, and assume that either L is abelian or

L is nonabelian and |Ω| = |G : LA| is a power of 2. For a finite group X write

NCF(X) for the set of nonabelian chief factors of X. We need to prove that

NCF(G) = NCF(GΩ) if L is abelian, and NCF(G) = {L} otherwise. Note that if

|Ω| is a power of 2 then GΩ is soluble, by Remark 4.3.1.

Since EΩ is transitive, the minimal transitivity of GΩ implies that GΩ =

EΩ ∼= E/E ∩K. Since E ∩K is soluble, it follows that NCF(GΩ) = NCF(E). By

hypothesis, either L is abelian, or L is nonabelian and EΩ, and hence E, is soluble.

Since G = EL, the claim follows, in either case.

Proposition 4.3.4. Suppose that L = T1× . . .×Tf , where each Ti is isomorphic to

a nonabelian simple group T . Without loss of generality, assume that KerL(∆) =

Te+1 × . . .× Tf , so that L∆ = T∆
1 × . . .× T∆

e . Then

(i) T ∼= L2(p) for some Mersenne prime p,

(ii) |Ti : Ti ∩A| ∈ {p+ 1, 3(p+ 1)} for each 1 ≤ i ≤ e, and;
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(iii) There exists at least one i in the range 1 ≤ i ≤ e such that |Ti : Ti ∩ A| =

3(p+ 1).

Proof. Suppose that the proposition is false, and set Xi := Ti ∩ A. Note that

|Ti : Xi| divides 2m3 for each i, by Lemma 3.2.1 Part (i). Hence, Proposition 4.2.1

implies that one of the following must hold:

(a) T 6∼= L2(p), for any Mersenne prime p. Then by Proposition 4.2.1, either

Ti ∼= M12 and each Xi is contained in one of the two conjugacy classes of M11

in M12; or (Ti, Xi) = (Ar, Ar−1), (A6, L2(5)), (M11, L2(11)), (M24,M23), or

(L2(p), CpoC p−1
2

) where p is a prime of the form p = 2f13−1. Here, the group

Xi is given up to conjugacy in Ti.

(b) T ∼= L2(p) for some Mersenne prime p. In this case, Proposition 4.2.1 implies

that |Ti : Xi| = p+ 1 for all i. In particular, Xi is Ti-conjugate to the maximal

subgroup Mi := Cp o C p−1
2

of Ti. (We remark that it is here where we use

the assumption that the proposition is false. Specifically, since |Ti : Xi| divides

2m3 for each i, Proposition 4.2.1 implies that Xi is Ti-conjugate to either Mi,

or an index 3 subgroup of Mi. Hence |Ti : Xi| ∈ {p + 1, 3(p + 1)} for each i.

Thus, Part (iii) of the proposition must fail, forcing |Ti : Xi| to be p + 1, and

hence for Xi to be Ti-conjugate to Mi, for each i.)

Fix 1 ≤ i ≤ e, and write T = Ti. Note that T∆ is isomorphic to T . Set

Γ := δT ⊂ ∆, and set X := T ∩A. Then the pair (T,X) satisfies the hypothesis of

Lemma 4.2.3. Thus, we conclude that T contains a proper subgroup H such that

(i) H and Hα are conjugate in T for each automorphism α ∈ Aut(T ); and

(ii) NT (H)Γ is transitive.

Fix a T -orbit Γ′ in ∆. We claim that NT (H)Γ′ is transitive. By Lemma

3.2.1 Part (ii), TΓ′ is permutation isomorphic to TΓ. Hence, by (ii) above, there

exists an automorphism α of T such that NT (H)α = NT (Hα) acts transitively on

Γ′. Since H is T -conjugate to Hα, it follows that NT (H) is T -conjugate to NT (H)α.

Thus, NT (H) acts transitively on Γ′, as claimed.

Since Ti ∼= Tj for all i, j, we can choose the subgroup Hj < Tj corresponding

to H, and the subgroup Nj < Tj corresponding to NT (H), for each 1 ≤ j ≤ f .

Furthermore, each group Xi is determined up to conjugacy in Ti by (a) and (b)

above. Hence, by the previous paragraph

Nj acts transitively on each Tj-orbit in ∆ whenever 1 ≤ j ≤ e. (4.3.1)
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Set H̃ = H1×H2× . . .×Hf < L, and N := N1×N2× . . .×Nf . Now, note

that N ≤ NL(H̃). Thus, N∆
1 ×N∆

2 × . . .×N∆
e = N∆ ≤ NL(H̃)∆.

We will now prove that N∆ is transitive. Indeed, let ε ∈ ∆, and let x ∈ L
such that δx = ε. Write x = t1t2 . . . te, with tj ∈ Tj . By (ii) above, N1 acts

transitively on δT1 . Hence, there exists n1 ∈ N1 such that δt1 = δn1 . We now

inductively define the permutations n2, . . ., ne by choosing nj ∈ Nj such that

(δn1···nj−1)nj = δn1···nj−1tj (this is possible since Nj acts transitively on (δn1...nj−1)Tj ,

by (4.3.1)). Then

ε = δt1t2···te = (δt1)t2···te = δn1t2···te = (δn1t2)t3···te

= δn1n2t3···te = (δn1n2t3)t4···te = · · · = δn1n2···ne

Thus

N∆ is transitive, as claimed. (4.3.2)

Finally, let α ∈ Aut (L) ∼= Aut (T ) o Sym(f). Then there exists τ ∈ Sym (f)

and αi ∈ Aut (T ) such that

H̃α = Hα1
1τ ×H

α2
2τ × . . .×H

αf
fτ

= H
α

1τ
−1

1 ×H
α

2τ
−1

2 × . . .×H
α
fτ
−1

f

By (i) above, there exists, for each 1 ≤ i ≤ f , an element ti ∈ Ti such that

H
α
iτ
−1

i = Hti
i . Hence

H̃α = Ht1
1 ×H

t2
2 × . . .×H

tf
f = H̃t1t2...tf .

Thus, H̃ and H̃α are conjugate in L for all α ∈ Aut (L). Lemma 4.2.2

then implies that G = NG(H̃)L. Thus, NG(H̃) acts transitively on the set Ω of L-

orbits. But NG(H̃) also acts transitively on the fixed L-orbit ∆, by (4.3.2). Hence,

NG(H̃) is a transitive subgroup of G. By minimal transitivity of G, it follows that

NG(H̃) = G, so H̃ is normal in G. But this is a contradiction, since 1 < H̃ < L

and L is a minimal normal subgroup of G. The proof is complete.

Property (iii) of Proposition 4.3.4 immediately implies the following.

Corollary 4.3.5. Suppose that L is isomorphic to a direct product of copies of

L2(p), where p is a Mersenne prime. Then |∆| is divisible by 3.
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Finally, we are ready to prove Theorem 1.2.4.

Proof of Theorem 1.2.4. Assume that G is a counterexample to the theorem of

minimal degree. Note that |Ω| = |G : LA| divides |G : A| = 2m3, and is less

than 2m3. Furthermore, a minimally transitive group of 2-power degree is soluble

by Remark 4.3.1. Hence, the minimality of G as a counterexample implies that

GΩ = G/K satisfies either (i) or (ii) in the statement of the theorem.

If L is abelian, then Corollary 4.3.3 implies that the set of nonabelian chief

factors of G equals the set of nonabelian chief factors of GΩ. Thus, the result

follow from the inductive hypothesis in this case. So we may assume that L =

T1 × T2 × . . .× Tf , where each Ti is isomorphic to a nonabelian finite simple group

T . Furthermore, Proposition 4.3.4 then implies that T ∼= L2(p), where p is a

Mersenne prime. Also, 3 divides |∆| by Corollary 4.3.5. But then |Ω| = |G : LA|
is a power of 2, so L is the unique nonabelian chief factor of G by Corollary 4.3.3.

This contradiction completes the proof.

We also deduce two corollaries which will be vital in our application of

Theorem 5.4.15 (see Chapter 5).

Corollary 4.3.6. Assume that G is insoluble, and let p := 2a − 1 be a Mersenne

prime such that G has a unique nonabelian chief factor isomorphic to a direct

product of f copies of L2(p). Then there exists a triple of integers (e, t1, t), with

e ≥ 1, and t ≥ t1 ≥ 0, such that

(i) m = ea+ t, and;

(ii) For some soluble subgroup N of G, N has 2e+t1 orbits, with
(
e
k

)
2t1 of them of

length 3pk × 2t−t1, for each k, 0 ≤ k ≤ e.

Proof. Let E be as in Proposition 4.3.2, so that G = EL, and E ∩ K is soluble.

We prove the claim by induction on m. Suppose first that L is abelian. Then

since EL = G and E ∩K is soluble, GΩ = EΩ is insoluble. Hence |Ω| = 2m̃3 and

|∆| = 2m−m̃, for some m̃ with 1 ≤ m̃ < m, by Lemma 3.2.1 Parts (i) and (vi). The

inductive hypothesis then implies that there exists a triple (ẽ, t̃1, t̃) such that

1. m̃ = ẽa+ t̃, and;

2. For some soluble subgroup Ñ of EΩ, Ñ has 2ẽ+t̃1 orbits, with
(
ẽ
k

)
2t̃1 of them

of length 3pk × 2t̃−t̃1 , for each k, 0 ≤ k ≤ ẽ.
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Set e := ẽ, t := m− m̃+ t̃, and t1 := t̃1, so that m = ea+ t, which is what we need

for (i). Also, let Y ≤ E such that Y Ω = Ñ , and set N := LY . Then N is soluble,

since the groups Y Ω, Y ∩K and L are soluble. Moreover, N acts transitively on

each L-orbit, since L ≤ N . Since each L-orbit has size 2m−m̃, it follows that N has

2e+t1 orbits, with
(
e
k

)
× 2t1 of them of length 3pk2t̃−t̃1+m−m̃ = 3pk2t−t1 . This gives

us what we need.

So assume that L = T1×T2×. . .×Tf , where each Ti ∼= L2(p). By Proposition

4.2.1 Part (iii), Ti ∩ A is contained in the maximal subgroup Mi
∼= Cp o C(p−1)/2

of Ti, and |Ti : Ti ∩ A| ∈ {p+ 1, 3(p+ 1)} for all i. Furthermore, Proposition 4.3.4

implies that there exists at least one subscript i such that |Ti : Ti ∩ A| = 3(p+ 1).

Lemma 4.2.4 now implies that |∆| = |L : L ∩ A| = 3(p + 1)e = 2ea3, where e is

the number of direct factors of L acting non-trivially on ∆. It also follows that

|Ω| = 2m−ea.

By relabeling the Ti if necessary, we may write L∆ = T∆
1 × T∆

2 × . . .× T∆
e .

Let P be a Sylow p-subgroup of L, and let N := NL(P ). By Lemma 4.2.4 Part (ii),

N is soluble, and NL(P )∆ = NL∆(P∆) has 2e orbits on ∆, with
(
e
k

)
of size 3pk, for

each 0 ≤ k ≤ e. Since the action of L on each L-orbit is permutation isomorphic

to the action of L on ∆, it follows that N := NL(P ) has 2e orbits on each L-orbit,

with
(
e
k

)
of size 3pk, for each 0 ≤ k ≤ e. Also, N acts trivially on the set Ω of

L-orbits, so N has 2e+m−ea orbits in total, with 2m−ea
(
e
k

)
of them of size 3pk, for

each 0 ≤ k ≤ e. Setting t := m − ea and t1 := t now gives us what we need, and

completes the proof.

Corollary 4.3.7. Let S be a transitive permutation group of degree s := 2m3,

and assume that S contains no soluble transitive subgroups. Then there exists a

Mersenne prime p := 2a − 1 and a triple of integers (e, t1, t), with e ≥ 1, and

t ≥ t1 ≥ 0, such that

(i) m = ea+ t, and;

(ii) For some soluble subgroup N of S, N has 2e+t1 orbits, with
(
e
k

)
2t1 of them of

length 3pk × 2t−t1, for each k, 0 ≤ k ≤ e.

Proof. Let G be a minimally transitive subgroup of S. Then G is insoluble, so

Corollary 4.3.6 applies, and the result follows.
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Chapter 5

Generating submodules of

induced modules for finite

groups

5.1 Introduction

The purpose of this thesis is to derive upper bounds on minimal generator numbers

in certain classes of permutation groups. As can be seen from Section 2.1.2, this

essentially amounts to deriving upper bounds on d(G) for subgroups G of wreath

products R oS. Our main strategy for doing this will be to reduce modulo the base

group B of R o S and use induction to bound d(G/G ∩ B). In this way, all that

remains is to investigate the contribution of G ∩ B to d(G): The purpose of this

chapter is to carry out such an investigation.

As we will show in Lemma 6.2.5, the group G ∩ B is built, as a normal

subgroup of G, from submodules of induced modules for G, and nonabelian chief

factors of G. Thus, the main aim of the chapter will be to derive upper bounds

for generator numbers in submodules of induced modules. The strategy to do this

will be to first view soluble groups as certain partially ordered sets: We prove

some properties of these partially ordered sets in Section 5.2. Our main results

are Theorem 5.4.4 and Theorem 5.4.15, which are proved in Sections 5.4.1 and

5.4.2 respectively. We remark that Theorem 5.4.4 improves [8, Theorem 1.5], while

Theorem 5.4.15 improves [37, Lemma 4].
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5.2 Partially ordered sets

Let P = (P,4) be a finite partially ordered set, and let w(P ) denote the width of P .

That is, w(P ) is the maximum cardinality of an antichain in P . Suppose now that,

with respect to 4, P is a cartesian product of chains, and write P = P1×P2×. . .×Pt,
where each Pi is a chain of cardinality ki. Then P is poset-isomorphic to the set

of divisors of the positive integer m = pk1−1
1 pk2−1

2 . . . pkt−1
t , where p1, p2, . . ., pt are

distinct primes. We make this identification without further comment.

Next, recall that each divisor d of m can be written uniquely in the form

d = pr11 p
r2
2 . . . prtt , where 0 ≤ ri ≤ ki− 1, for each i, 1 ≤ i ≤ t. In this case, the rank

of d is defined as r(d) =
∑t

i=1 ri. For 0 ≤ k ≤ K :=
∑t

i=1(ki − 1), let Rk denote

the set of elements of P of rank k; clearly Rk is an antichain in P . In fact, it is

proved in [16] that w(P ) = max |Rk|. This maximal rank set occurs at k = bK/2c,
and hence, by [2, Theorem 2], we have

w(P ) ≤
⌊
s

2K

(
K

bK/2c

)⌋
where s := |P | =

∏t
i=1 ki (note that equality holds when t is even and each ki is 2,

so this upper bound is best possible). Stated more concisely, we have

Lemma 5.2.1. Suppose that a partially ordered set P , of cardinality s ≥ 2, is a

cartesian product of the chains P1, P2, . . ., Pt, where each Pi has cardinality ki.

Then

w(P ) ≤
⌊
s

2K

(
K

bK/2c

)⌋
,

where K :=
∑t

i=1(ki − 1).

We now define a constant b,

b :=

√
2

π
.

Proposition 5.2.2. Let K be a positive integer. Then(
K

bK/2c

)
≤ b2K√

K
. (5.2.1)
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Proof. 1 First consider the case where K = 2t (t ∈ N), and note that

2t

[(
2t

t

)
1

4t

]2

=
1

2

(
3

2

3

4

)(
5

4

5

6

)
. . .

(
2t− 1

2t− 2

2t− 1

2t

)
=

1

2

t∏
j=2

(
1 +

1

4j(j − 1)

)

By Wallis’ Formula, the expression in the middle converges to 2/π. Hence, since

the expression on the right is increasing, we have 2t
[(

2t
t

)
1
4t

]2 ≤ 2/π, that is,
(

2t
t

)
≤

b4t/
√

2t, as claimed. If K is odd, we have
(

K
bK/2c

)
= 1

2

(
K+1

b(K+1)/2c
)
, and the bound

in (5.2.2) follows from the even case above.

Corollary 5.2.3. Suppose that a partially ordered set P , of cardinality s ≥ 2, is a

cartesian product of t chains. Let ki and K be as in Lemma 5.2.1. Then

w(P ) ≤
⌊
s

2K

(
K

bK/2c

)⌋
≤
⌊
bs√
K

⌋
≤
⌊

bs√
log s

⌋
.

Furthermore, if each chain has the same cardinality p, then w(P ) ≤ bbpt/
√
t(p− 1)c.

Proof. By Lemma 5.2.1 and Proposition 5.2.2, we have

w(P ) ≤ s

2K

(
K

bK/2c

)
≤ s

2K

(
b2K√
K

)
=

bs√
K

If each ki = p, then K = t(p − 1), and the second part of the claim follows. Since

K =
∑t

i=1(ki − 1) ≥
∑t

i=1 log ki = log s, the first part also follows, and the proof

is complete.

5.3 Preliminary results on induced modules for finite

groups

5.3.1 Composition factors in induced modules

Let F be a field, let G be a finite group, and let V be a module for G over F. Let

0 = N0 < N1 < . . . < Na = V

be a G-composition series for V , and say that a factor Ni/Ni−1 is complemented if

there exists a submodule Si of V containing Ni−1 such that V/Ni−1 = Ni/Ni−1 ⊕
1The idea for this bound arose from a discussion at the url

http://math.stackexchange.com/questions/58560/elementary-central-binomial-coefficient-
estimates.
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Si/Ni−1. Also, for an irreducible F[G]-module W , write tW (V ) for the number of

complemented composition factors of V isomorphic to W .

Now, fix an irreducible F[G]-module W with tW (V ) ≥ 1. Then there exists

a submodule M of V with the property that V/M is G-isomorphic to W : Define

RW (V ) to be the intersection of all such M . In particular, RW (V ) contains the

radical Rad(V ) of V .

Lemma 5.3.1. V/RW (V ) ∼= W⊕tW (V ).

Proof. Let t := tW (V ), and write R := RW (V ) = M1 ∩M2 ∩ . . .∩Me, where V/Mi

is isomorphic to W . Then

V/R ≤ (V/M1)⊕ (V/M2)⊕ . . .⊕ (V/Me)

and hence V/R is a direct sum of k copies of W , where k ≤ e. Since tW (V ) =

tW (V/R), we have t = k, and this completes the proof.

Lemma 5.3.2. Suppose that V = U ↑GH , for a subgroup H of G and an H-module

U , and suppose that W is a 1-dimensional F[G]-module. Then tW (V ) ≤ dimU .

Proof. Let R = RW (V ) and t = tW (V ). Writing bars to denote reduction modulo

R, we have

V = N1 ⊕N2 ⊕ . . .⊕Nt

where each Ni is isomorphic to W . In particular, if we write

V/Rad(V ) =
∑

X an irreducible F[G]-module

XfX(V ),

then we have t ≤ fW (V ). Moreover, since dimW = 1, we have

fW (V ) = dim HomF[G](V,W ) = dim HomF[H](U,W ↓H) = fW↓H (U) ≤ dimU

where the second equality above follows from Theorem 2.2.5. This completes the

proof.

We will need an easy consequence of Lemma 5.3.2. To state it, we first

require two definitions and a remark.

Definition 5.3.3. Let G be a non-trivial finite group, and F a field. A projective

representation of G of dimension m over F is a homomorphism ρ : G→ PGLm(F).
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Define

RF(G) := min {m : G has a non-trivial representation of dimension m over F} ; and

RF(G) := min {m : G has a non-trivial projective representation of dimension m over F} .

Also define

R(G) := min
{
RF(G) : F a field

}
Definition 5.3.4. Let G be a finite group, let F be a field, and let V be an F[G]-

module. Define dG(V ) to be the minimal number of elements required to generate

V as an F[G]-module.

Remark 5.3.5. Let G, F and V be as in Definition 5.3.4, and let t be the number

of complemented G-composition factors of V . We claim that dG(V ) ≤ t. Note first

that t is precisely the number of irreducible constituents of V/Rad(V ). In partic-

ular, it follows that dG(V/Rad(V )) ≤ t: let v1, . . ., vt ∈ V such that V/Rad(V ) is

generated, as a G-module, by {Rad(V ) + v1, . . . ,Rad(V ) + vt}. Let M be the G-

submodule of V generated by {v1, . . . , vt}. Then V = M + Rad(V ). Since Rad(V )

is contained in every maximal submodule of V , it follows that V = M , and hence

dG(V ) ≤ t, as claimed.

The corollary of Lemma 5.3.2 can now be stated as follows.

Corollary 5.3.6. Let G be a finite group, let H be a subgroup of G, and let U be

an H-module, over a field F. Let V := U ↑GH . Then

dG(V ) ≤ dimU |G : H| − dimU

RF(G)
+ dimU.

Proof. Write t for the number of complemented G-composition factors of V which

are not isomorphic to the trivial G-module 1G. By Remark 5.3.5, we have

dG(V ) ≤ t1G(V ) + t.

Since dimV = dimU |G : H|, we have

t ≤ dimU |G : H| − dimU

RF(G)
.

The result now follows immediately from Lemma 5.3.2.
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5.3.2 Induced modules for Frattini extensions of nonabelian simple

groups

In this subsection, we make some observations on modules for Frattini extensions

of nonabelian simple groups. That is, modules for groups G with G/Φ(G) a non-

abelian simple group. For the terminology used in the proof, we refer the reader to

Section 2.3.

The main result of this section reads as follows.

Proposition 5.3.7. Let G be a finite group with a normal subgroup N ≤ Φ(G)

such that G/N ∼= T , where T is a non-abelian finite simple group. Also, let W be

a nontrivial irreducible G-module, over an arbitrary field F. Then

(i) Each proper normal subgroup of G is contained in N . In particular, N =

Φ(G).

(ii) KerG(W ), the kernel of the action of G on W , is contained in N .

(iii) n := dimW ≥ R(T ).

Proof. Part (i) follows since N ≤ Φ(G) and G/N is simple. Part (ii) now follows

from Part (i) since W is non-trivial.

We will now prove (iii). In what follows, we will use the terminology and

theory discussed in Section 2.3. By (ii), we may assume that G is faithful on W . In

particular, we may view G as a subgroup of GLn(F). Let L be a normal subgroup of

G, and assume that W ↓L is non-homogeneous. If K is the kernel of the action of G

on the homogeneous components of W ↓L, then K is a proper normal subgroup of

G, so K ≤ N by Part (i). Thus, HN < G for some stabiliser H of a homogeneous

component. Hence, |G : H| ≥ |G : HN | = |G/N : HN/N | ≥ RF(T ), since any

proper subgroup E of T gives rise to a nontrivial permutation representation for T

of dimension |T : E| over F (a non-trivial projective representation of dimension |T :

E| is then achieved by reducing modulo scalars). Thus, the number of homogeneous

components is at least RF(T ), and the result follows.

So we may assume that W ↓L is homogeneous for each normal subgroup L

of G. Hence, by Lemma 2.3.6, we may assume that Z(G) is cyclic and that each

abelian characteristic subgroup of G is contained in Z(GLn(F)).

Let L be the generalised Fitting subgroup of G, and extend the field F so

that F is a splitting field for each subgroup of L, and so that the resulting field

extension is normal (see Remark 2.3.8).
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We distinguish two cases.

1. L is soluble. In this case, since L > Z(G), Or(G) must be non-central, for

some prime r, and Or(G)CG(Or(G)) ≥ L. Also, since Or(G) is non-central,

we have Or(G), CG(Or(G)) ≤ N by Part (i). Thus, since N ≤ Φ(G) ≤ L, it

follows that N = L = Or(G)CG(Or(G)). Hence, by [35, Lemma 1.7], there

exists a positive integer m such that

(1) Or(G) is a central product of its intersection with Z := Z(G) and an

extraspecial group E of order r1+2m;

(2) Z(E) coincides with the subgroup of Z of order r (recall that Z is cyclic);

(3) EZ/Z is a completely reducible Fr[G]-module under conjugation; and

(4) CG/Z(EZ/Z) = Or(G)CG(Or(G))/Z.

It follows from (4) that T ∼= G/N = G/Or(G)CG(Or(G)) is a non-trivial

completely reducible subgroup of GL2m(r). It then follows that

RFr(T ) ≤ 2m. (5.3.1)

Next, by Lemma 2.3.7, W ↓E is completely reducible and its irreducible

constituents are non-trivial. Let U be such a constituent. Since F is a splitting

field for E, U is absolutely irreducible. Hence, dimU ≥ rm, by [24, Theorem

5.5]. Thus, by (5.3.1), we have

R(T ) ≤ RFr(T ) ≤ 2m ≤ rm ≤ dimU ≤ dimW,

which gives us what we need.

2. L is insoluble. By [25, Lemma 2.14], L contains a normal subgroup X of G

of the form X = S1 ◦ . . . ◦ St, where each Si is isomorphic to a quasisimple

group S. But since N ≤ Φ(G), N is nilpotent. Also, G/N is simple, so we

must have G = X and G is quasisimple. In particular, N = Z ≤ Z(GLn(F)).

Hence, T ∼= G/Z ≤ PGLn(F) and dimW ≥ RF(T ) ≥ R(T ), as required.

This completes the proof.

We close this section with an easy lemma concerning the alternating group

Alt(d).
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Lemma 5.3.8. Let D ∼= Alt(d) be the alternating group of degree d ≥ 5, and let

p be prime. Then D contains a soluble subgroup E with at most two orbits on

{1, . . . , d}, such that each orbit has p′-length.

Proof. Assume first that p = 2. Then since d is either odd, or a sum of two odd

numbers, we can take E := 〈x1x2〉, where x1 is a cycle of odd length, either x2 = 1

or x2 is a cycle of odd length, and d is the sum of the orders (i.e. lengths) of x1

and x2.

So assume that p > 2, and write d = tp + k, where 0 ≤ k ≤ p − 1. If

k 6= p − 1, then take E1 to be a soluble transitive subgroup of Alt(tp − 1), and

take E2 to be a soluble transitive subgroup of Alt(k + 1). If k = p − 1, then take

E1 to be a soluble transitive subgroup of Alt(tp + 1), and take E2 to be a soluble

transitive subgroup of Alt(k− 1) (note that k− 1 > 0 since p > 2). Finally, taking

E := E1 × E2 ≤ D give us what we need, and proves the claim.

5.4 Induced modules for finite groups

We begin with some terminology.

Definition 5.4.1. Let M be a group, acted on by another group G. A G-subgroup

of M is a subgroup of M which is stabilised by G. We say that M is generated

as a G-group by X ⊂ M , and write M = 〈X〉G, if no proper G-subgroup of M

contains X. We will write dG(M) for the cardinality of the smallest subset X of

M satisfying 〈X〉G = M . Finally, write M∗ := M\{1}.

Note that the definition of dG(M) is consistent with the notation introduced

in Definition 5.3.4 in the case where M is a G-module.

Definition 5.4.2. Let G be a group, acting on a set Ω. Write χ(G,Ω) for the

number of orbits of G on Ω.

The purpose of this section is to derive upper bounds for dG(M) when M is

a submodule of an induced module for G. To this end, we introduce some notation

which will be retained for the remainder of the section:

• Let G be a finite group.

• Fix a subgroup H of G of index s ≥ 2.

• Fix a subgroup H1 of H of index d ≥ 1.
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• Let U be a module for H1 of dimension a, over a field F.

• Let K := coreG(H), and fix a subgroup K ′ of K.

• Set V := U ↑HH1
and W := V ↑GH to be the induced modules. Note also that

V ↑GH∼= U ↑GH1
.

• Denote the set of right cosets of H in G [respectively H1 in H] by Ω [resp.

Ω1].

• Define

m := m(K ′) = min{χ(QΩ1 ,Ω1) : Q ≤ K ′ and QV is semisimple}.

We do not exclude the case d = 1, that is, H = H1.

5.4.1 Induced modules: The soluble case

This section is essentially an analogue of [8, Section 5]. We first recall the constant

b,

b :=

√
2

π
.

We will also recall, from Chapter 1, the following definition.

Definition 5.4.3. For a positive integer s with prime factorisation s = pr11 p
r2
2 . . . prtt ,

set ω(s) :=
∑
ri, ω1(s) :=

∑
ripi, K(s) := ω1(s)− ω(s) =

∑
ri(pi − 1) and

ω̃(s) =
s

2K(s)

(
K(s)⌊
K(s)

2

⌋).
The main result of this section reads as follows.

Theorem 5.4.4. Suppose that GΩ contains a soluble transitive subgroup, and let

M be a submodule of W . Also, denote by χ = χ(K,V ∗) the number of orbits of K

on the non-zero elements of V . Then

dG(M) ≤ min

{
ad− am
RF(K ′)

+ am,χ

}
ω̃(s) ≤ min

{
ad− am
RF(K ′)

+ am,χ

}⌊
bs√
log s

⌋
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where b :=
√

2/π. Furthermore, if s = pt, with p prime, then

dG(M) ≤ min

{
ad− am
RF(K ′)

+ am,χ

}⌊
bpt√
t(p− 1)

⌋
.

Remark 5.4.5. If K has infinitely many orbits on the non-zero elements of V ,

then we assume, in Theorem 5.4.4, and whenever it is used in the remainder of the

thesis, that

min

{
ad− am
RF(K ′)

+ am,χ

}
=
ad− am
RF(K ′)

+ am.

We begin our work towards the proof of Theorem 5.4.4 by first collecting a

series of lemmas from [8, Section 5].

Lemma 5.4.6 ([8], Lemma 5.1). Suppose that GΩ contains a soluble transitive

subgroup. Then there is a right transversal T to H in G, with a partial order 4

and a full order 6, satisfying the following properties:

(i) Whenever t1, t2, t3 ∈ T with t1 < t2 4 t3, we have t4 < t3, where t4 is the

unique element of T such that t1t
−1
2 t3 ∈ Ht4.

(ii) With respect to this partial order, T is a cartesian product of k chains, of

length p1, p2, . . ., pk, where k = ω(s), and p1, p2, . . ., pk denote the (not

necessarily distinct) prime divisors of s.

Proof. Let F be a subgroup of G such that FΩ is soluble and transitive. By [8,

Lemma 5.1], there exists a right transversal T for F ∩H in F such that the image

T Ω has a partial order 4′ and a full order 6′ satisfying

(a) Whenever t1, t2, t3 ∈ T with t1
Ω<′t2

Ω4′t3Ω, we have t4
Ω<′t3

Ω, where t4 is the

unique element of T such that (t1t
−1
2 t3)Ω ∈ (F ∩H)Ωt4

Ω.

(b) With respect to this partial order, T Ω is a cartesian product of k chains, of

length p1, p2, . . ., pk, where k = ω(|F : F ∩H|) = ω(|G : H|) = ω(s), and p1,

p2, . . ., pk denote the (not necessarily distinct) prime divisors of s.

For t1, t2 ∈ T , say now that t1 4 t2 if t1
Ω4′t2Ω, and t1 6 t2 if t1

Ω6′t2Ω.

Since FΩ acts transitively on the set of cosets of H in G, T is a right transversal

for H in G. By definition, (a) and (b) above imply that (i) and (ii) hold for this

choice of 4 and 6. This gives us what we need.
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For the remainder of Section 5.4 assume that GΩ contains a soluble transitive

subgroup, and fix T to be a right transversal for H in G as exhibited in Lemma

5.4.6. Then we may write the induced module W = V ↑GH as W =
⊕

t∈T V ⊗ t,
where the action of G is given by

(v ⊗ t)ht′ = vh1 ⊗ t1,

where tht′ = h1t1, h, h1 ∈ H, t, t′, t1 ∈ T . Thus, each element w in W may be

written as w =
∑

t∈T v(w, t)⊗ t, with uniquely determined coefficients v(w, t) in V

(see Definition 2.2.2).

Definition 5.4.7 ([8], Section 5). Let w ∈ W be non-zero. The height of w,

written τ(w), is the largest element of the set {t ∈ T : v(w, t) 6= 0}, with respect

to the full order 6. Also, we define µ(w) := v(w, τ(w)). Thus, µ(w) is non-zero,

and v(w, t) = 0 whenever t > τ(w). The element µ(w)⊗ τ(w) is called the leading

summand of w.

Remark 5.4.8. In the language of Definition 5.4.7, Lemma 5.4.6 Part (i) states

that if the height of w is t2, and if t2 4 t3, then the height of wt
−1
2 t3 is t3. Further,

the leading summand of wt
−1
2 t3 is µ(w)⊗ t3.

The formulation in Remark 5.4.8 leads to an important technical point.

Proposition 5.4.9. Let M be a submodule of W . Then M has a generating set X

with the following property: No subset Y of X, whose image τ(Y ) in T is a chain

with respect to the partial order 4, can have more than

min

{
ad− am
RF(K ′)

+ am,χ

}
elements, where χ = χ(K,V ∗) denotes the number of orbits of K on the nonzero

elements of V .

Before proving Proposition 5.4.9, we need a preliminary lemma.

Lemma 5.4.10. A K ′-composition series for V contains at most am factors iso-

morphic to the trivial module.

Proof. Let Q ≤ K ′ such that QV is semisimple and χ(QΩ1 ,Ω1) = m. By Theorem
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2.2.4,

V ↓Q=
(
U ↑HH1

)
↓Q∼=

m⊕
i=1

Uxi , (5.4.1)

where Uxi := (U ⊗ xi) ↑QQ∩Hxi
1

, dimUxi = dimU = a, for each i, and
∑

j |Q :

Q ∩ Hxi
1 | = |H : H1| = d. Since QV is semisimple, the number of Q-composition

factors of Uxi = (U ⊗ xi) ↑QQ∩Hxi
1

isomorphic to the trivial module 1Q is precisely

dim HomF[Q]((U ⊗ xi) ↑
Q

Q∩Hxi
1

, 1Q) = dim HomF[Q∩Hxi
1 ]((U ⊗ xi), 1Q∩Hxi

1
),

applying Theorem 2.2.5. This is at most dim(U ⊗xi) = dimU = a. The result now

follows immediately from (5.4.1).

Proof of Proposition 5.4.9. Set e := ad−am
RF(K′) + am, and let X be a finite generating

set for M , consisting of non-zero elements. Suppose that Y := {w0, w1, . . . , we} is

a subset of X whose image under τ forms a chain in T : Say τ(w0) 4 τ(w1) 4 . . . 4

τ(we).

Consider now the vectors µ(w0), µ(w1), . . ., µ(we): For 1 ≤ i ≤ e+ 1 let Wi

denote the K ′-module generated by µ(w0), . . ., µ(wi−1), and consider the series of

K ′-modules

0 =: W0 ≤W1 ≤ . . . ≤We+1 (5.4.2)

Suppose that Wi < Wi+1 for all i. Then the series (5.4.2) can be extended to give

a K ′-composition series for V . Thus, Lemma 5.4.10 implies that at most am of the

factors Wi+1/Wi are trivial. Furthermore, the rest have dimension at least RF(K ′).

It follows that dimWe+1 =
∑e+1

i=1 dimWi/Wi−1 ≥ am+ (e+ 1− am)RF(K ′) > ad,

which is a contradiction, since dimV = ad.

Thus, we must have µ(wi) ∈Wi for some i. In this case,

µ(wi) =
i−1∑
j=0

∑
k∈K′

λj,kµ(wj)
k,

for some scalars λj,k. Moreover, the element

x :=

i−1∑
j=0

∑
k∈K′

λj,kw
kτ(wj)τ(wj)

−1τ(wi)
j
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of M has the same leading summand as wi, by Lemma 5.4.6 Part (i) (see also

Remark 5.4.8). Hence, either x = wi and wi may be removed from X, or wi may

be replaced in X by the element wi − x, which has height strictly preceding wi in

the full order 6. In this way, the resulting (modified) set X still generates M . This

procedure can only be carried out a finite number of times, and when it can no

longer be repeated, the (modified) generating set can have no more than e elements.

If χ ≥ e, then we are done, so assume that χ < e. Let v and w be elements

of X whose images τ(v) and τ(w) are comparable (with respect to 4) in T : Say

τ(v) 4 τ(w). Suppose that µ(w) and µ(v) lie in the same K-orbit of V , and let

g ∈ K such that µ(w)g = µ(v). Since K is normal in G, the leading summand of

wg is µ(v)⊗τ(w). Thus, by replacing w with wg, we may assume that µ(v) = µ(w).

Then, using Lemma 5.4.6 Part (i) again, we see that vτ(v)−1τ(w) has the same leading

summand as w. Write vτ(v)−1τ(w) = x + µ(v) ⊗ τ(w), and w = y + µ(v) ⊗ τ(w),

for x, y ∈ V , and let u = y − x. Then, we see that, as in the proof of [8, Lemma

5.2], either u = 0, and w = vτ(v)−1τ(w) may be omitted from X, or u 6= 0, and

w = u + vτ(v)−1τ(w) may be replaced in X by the element u, which has height

strictly preceding τ(w) in the full order 6. This way, the resulting set obtained

from X still generates M . The procedure outlined above can only be carried out

a finite number of times, and when it can no longer be repeated, the (modified)

generating set can contain no more than χ elements. This completes the proof.

Before proving Theorem 5.4.4, we note the following easy consequence of

Dilworth’s Theorem ([20, Theorem 1.1]):

Lemma 5.4.11. If a partially ordered set P has no chain of cardinality greater than

k, and no antichain of cardinality greater than l, then P cannot have cardinality

greater than kl.

Proof of Theorem 5.4.4. Let T be a right transversal for H in G with full and

partial orders 6 and 4, as in Lemma 5.4.6. Now define a partial order on the

elements of W as follows: First, for each t ∈ T , choose a full order on the elements

of W of height t. Now, for w1 and w2 in W , say that w1 < w2 if τ(w1) is less than

τ(w2) in (T ,4), or if τ(w1) = τ(w2) but w1 precedes w2 in the full order chosen

for elements of height τ(w1).

Then τ : W → T is a poset homomorphism which takes incomparable ele-

ments to incomparable elements, so no antichain of its domain can have cardinality

greater than ω̃(s), by Lemmas 5.2.1 and 5.4.6 Part (ii). Let X be a generating
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set for M with the properties guaranteed by Proposition 5.4.9. Then no chain in

X can have more than min{ad−amRF(K′) + am,χ} elements. Lemma 5.4.11 then implies

that

|X| ≤ min

{
ad− am
RF(K ′)

+ am,χ

}
ω̃(s) ≤ min

{
ad− am
RF(K ′)

+ am,χ

}⌊
bs√
log s

⌋
,

where the second inequality follows from Corollary 5.2.3. If s = pt for p prime, then

|X| ≤ min

{
ad− am
RF(K ′)

+ am,χ

}⌊
bpt√

log t(p− 1)

⌋
,

again by Lemma 5.4.11 and Corollary 5.2.3. This completes the proof.

5.4.2 Induced modules for finite groups: The general case

In this section, we prove a weaker form of Theorem 5.4.4 for general finite groups

(i.e. those G for which GΩ does not necessarily contain a soluble transitive sub-

group). We retain the notation introduced at the beginning of Section 5.4.

We begin with a definition. Recall the definitions of ω̃(s), sp, and lpp (s)

from Definitions 1.3.2 and 2.4.1.

Definition 5.4.12. For a prime p, set

E(s, p) := min


 bs√

(p− 1) logp sp

 , s

lpp (s/sp)

 and Esol(s, p) := min {ω̃(s), sp}

where we take
⌊
bs/
√

(p− 1) logp sp

⌋
to be ∞ if sp = 1.

Proposition 5.4.13. Let p be prime. Then Esol(s, p) ≤ E(s, p).

Proof. By Corollary 5.2.3 we have ω̃(s) ≤
⌊

bs√
(p−1) logp sp

⌋
. Also, it is clear that

sp ≤ s
lpp (s/sp) . The result follows.

Remark 5.4.14. For any finite group G and any G-module M , dG(M) is bounded

above by χ(G,M∗).

For the remainder of this section, we will make a further assumption: that

the field F has characteristic p > 0. We are now ready to state and prove the main

result of this section.
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Theorem 5.4.15. For a prime q 6= p, let Pq be a Sylow q-subgroup of G. Also, let

P ′ be a maximal p′-subgroup of G. Let M be a submodule of the induced module

W = V ↑GH .

(i) If G is soluble, then

dG(M) ≤ min

{
ad− aχ(P ′ ∩K,Ω1)

RF(P ′ ∩K)
+ aχ(P ′ ∩K,Ω1), χ(P ′ ∩K,V ∗)

}
sp.

(ii) Let N be a subgroup of G such that NΩ is soluble, and let si, 1 ≤ i ≤ t, be

the sizes of the orbits of N on Ω. Then

(a) We have

dG(M) ≤min

{
ad− aχ(N ∩ P ′ ∩K,Ω1)

RF(N ∩ P ′ ∩K)
+ aχ(N ∩ P ′ ∩K,Ω1),

χ(N ∩ P ′ ∩K,V ∗)
}
×

t∑
i=1

ω̃(si).

(b) If N is soluble, and P ′N is a p-complement in N , then

dG(M) ≤min

{
ad− aχ(P ′N ∩K,Ω1)

RF(P ′N ∩K)
+ aχ(P ′N ∩K,Ω1),

χ(P ′N ∩K,V ∗)
}
×

t∑
i=1

Esol(si, p).

(iii) dG(M) ≤ min
{
ad−aχ(Pq∩K,Ω1)

RF(Pq∩K) + aχ(Pq ∩K,Ω1), χ(Pq ∩K,V ∗)
}
s/sq.

(iv) Assume that sp > 1. Then

dG(M) ≤ min

{
ad− am
RF(K ′)

+ am,χ(K,V ∗)

}⌊
bs√
log sp

⌋
.

Proof. The proof is based on the idea of Lucchini et al. used in the proof of

[37, Lemma 4]. Let Q be a subgroup of G, and choose a full set {x1, x2, . . . , xt}
of representatives for the (H,Q)-double cosets in G. Also, for 1 ≤ i ≤ t, put

si := |Q : Q ∩Hxi | (note that, by Hxi , we mean, as usual, the conjugate subgroup
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x−1
i Hxi). By Theorem 2.2.4 we have

W ↓Q= (V ↑GH) ↓Q=

t⊕
i=1

Vxi (5.4.3)

where Vxi
∼= (V ⊗ xi) ↑QQ∩Hxi . Comparing dimensions of the left and right hand

side of (5.4.3) above, we get

ads = dimW =
t∑
i=1

ad|Q : Q ∩Hxi | = ad
t∑
i=1

si

so that
∑t

i=1 si = s. Clearly, the si represent the sizes of the orbits of Q on the

right cosets of H in G.

Next, for 1 ≤ i ≤ t, set Vi := Vx1 ⊕ Vx2 ⊕ . . . ⊕ Vxi . Then, we have a chain

0 = V0 ≤ V1 ≤ . . . ≤ Vt = W of Q-submodules of W . This allows us to define

the chain of Q-modules 0 = M0 ≤ M1 ≤ . . . ≤ Mt = M , where Mi := M ∩ Vi.
Furthermore, in this case, the quotient Mi/Mi−1 is (isomorphic to) a Q-submodule

of Vxi . Hence

dG(M) ≤ dQ(M) ≤
t∑
i=1

dQ(Mi/Mi−1). (5.4.4)

Note that V ⊗ xi is isomorphic to an induced module (U ⊗ xi) ↑H
xi

H
xi
1

. Hence,

Theorem 2.2.4 implies that (V ⊗ xi) ↓Q∩K is isomorphic to a direct sum

(V ⊗ xi) ↓Q∩K∼=
⊕
j

Uxi,j , (5.4.5)

where Uxi,j
∼= (U ⊗ xi,j) ↑Q∩K

Q∩K∩H
xi,j
1

is an induced module for Q ∩K, and∑
j |Q ∩K : Q ∩K ∩H1

xi,j | = |Hxi : Hxi
1 | = d.
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Suppose that (|Q|, p) = 1. Then each Vxi is a semisimple F[Q]-module, so

dQ(Mi/Mi−1) ≤ dQ(Vxi)

≤ dQ∩Hxi (V ⊗ xi)

≤ dQ∩K(V ⊗ xi)

≤
∑
j

dQ∩KUxi,j

≤
∑
j

min

{
a|Q ∩K : Q ∩K ∩Hxi,j

1 | − a
RF(Q ∩K)

+ a, χ(Q ∩K,

[Uxi,j ]
∗)

}

≤ min

∑
j

a|Q ∩K : Q ∩K ∩Hxi,j
1 | − a

RF(Q ∩K)
+ a,

∑
j

χ(Q ∩K,

[Uxi,j )]
∗)

}
= min

{
ad− aχ(Q ∩K,Ω1)

RF(Q ∩K)
+ aχ(Q ∩K,Ω1), χ(Q ∩K,V ∗)

}
The fourth inequality above follows from (5.4.5), while the fifth follows from Corol-

lary 5.3.6 and Remark 5.4.14. Thus

dG(M) ≤ min

{
ad− aχ(Q ∩K,Ω1)

RF(Q ∩K)
+ aχ(Q ∩K,Ω1), χ(Q ∩K,V ∗)

}
t (5.4.6)

by (5.4.4).

Write sp := pβ and sq := qα. Also, write s = pβqαk and |H| = pδqγl, where

|H|p = pδ, |H|q = qγ . We are now ready to prove the theorem.

(i) Suppose that G is soluble, and take Q := P ′ to be a p-complement in G. Then

|Q| = qα+γkl. Hence, si = |Q : Q ∩Hxi | ≥ qαk = s/sp. Part (i) now follows

from (5.4.6), since s =
∑t

i=1 si ≥ ts/sp.

(ii) Take Q := N . By Theorem 5.4.4, we have

dQ(Mi/Mi−1) ≤min

{
ad− aχ(Q ∩ P ′ ∩K,Ω1)

RF(Q ∩ P ′ ∩K)
+ aχ(Q ∩ P ′ ∩K,Ω1),

χ(Q ∩ P ′ ∩K,V ∗)
}
ω̃(si).
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Part (a) of (ii) now follows from (5.4.4). Next, assume that N is soluble, with

a p-complement P ′N . Then

dQ(Mi/Mi−1) ≤min

{
ad− aχ(Q ∩ P ′ ∩K,Ω1)

RF(Q ∩ P ′ ∩K)
+ aχ(Q ∩ P ′ ∩K,Ω1),

χ(Q ∩ P ′ ∩K,V ∗)
}

(si)p

by Part (i). Also, P ′N = N ∩ P ′ for some maximal p′-subgroup P ′ of G, so

Part (b) follows from (5.4.4) by combining the above with Part (ii)(a).

(iii) In the general case, takeQ := Pq. Then |Q| = qα+γ , so si = |Q : Q∩Hxi | ≥ qα.

Also, s =
∑t

i=1 si ≥ tqα = tsq. Part (iii) then follows from (5.4.6).

(iv) Here, we have β > 0 since sp > 0. Let P be a Sylow p-subgroup of G, and set

Q = KP . Then si = |Q : Q ∩ Hxi | = |QHxi |/|Hxi | ≥ |PHxi |/|Hxi | =

|P : P ∩ Hxi | ≥ pβ, for each i. Since K ≤ coreQ(Q ∩ Hxi), we have

χ(coreQ (Q ∩Hxi), (V ⊗ xi)∗) ≤ χ(K,V ∗) =: χ for each i. Then (5.4.4) and

Theorem 5.4.4 give

dG(M) ≤
t∑
i=1

min

{
ad− am
RF(K ′)

+ am,χ

}⌊
bsi√
log si

⌋

≤
t∑
i=1

min

{
ad− am
RF(K ′)

+ am,χ

}⌊
bsi√
β

⌋

≤ min

{
ad− am
RF(K ′)

+ am,χ

}⌊ t∑
i=1

bsi√
β

⌋

= min

{
ad− am
RF(K ′)

+ am,χ

}⌊
bs√
β

⌋
This proves (iv).

Since ad−f
e + f ≤ ad for positive integers e and f , the following corollary is

immediate.

Corollary 5.4.16. Let M be a submodule of W . Also, let q, Pq and P ′ be as in

Theorem 5.4.15. Then

(i) If G is soluble, then dG(M) ≤ min {ad, χ(P ′ ∩K,V ∗)} sp.
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(ii) Let N be a subgroup of G such that NΩ is soluble, and let si, 1 ≤ i ≤ t, be

the sizes of the orbits of N on Ω. Then

(a) We have dG(M) ≤ min {ad, χ(N ∩ P ′ ∩K,V ∗)}
∑t

i=1 ω̃(si).

(b) If N is soluble, and P ′N is a p-complement in N , then

dG(M) ≤ min
{
ad, χ(P ′N ∩K,V ∗)

} t∑
i=1

Esol(si, p).

(iii) dG(M) ≤ min {ad, χ(Pq ∩K,V ∗)} s/sq.

(iv) dG(M) ≤ min {ad, χ(K,V ∗)}
⌊

bs√
log sp

⌋
.

We also record the following, which is an immediate consequence of Corollary

5.4.16.

Corollary 5.4.17. Define E′ to be Esol if GΩ contains a soluble transitive subgroup,

and E′ := E otherwise. Let M be a submodule of W . Then dG(M) ≤ adE′(s, p).

Using the definition of E(s, p), and Lemma 2.4.2, we also deduce the follow-

ing.

Corollary 5.4.18. Let M be a submodule of W , and fix 0 < α < 1.

(i) If sp ≥ sα, then dG(M) ≤ adE(s, p) ≤ ad

⌊
bs
√

1
α√

log s

⌋
;

(ii) If sp ≤ sα, then dG(M) ≤ adE(s, p) ≤ ad
⌊

1
1−α s

c′ log s

⌋
;

(iii) We have

dG(M) ≤ adE(s, p) ≤


⌊

2ads
c′ log s

⌋
, if 2 ≤ s ≤ 1260,⌊

adbs
√

2√
log s

⌋
, if s ≥ 1261.

Proof. Part (i) follows immediately from the definition of E(s, p), while Part (ii)

follows from the definition and Lemma 2.4.2. Finally, set α := 1/2. Then

2ads

c′ log s
≤ adbs

√
2√

log s

for s ≥ 1261, so Part (iii) also follows.
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The following is also immediate, from Part (ii) of Theorem 5.4.15.

Corollary 5.4.19. Let M be a submodule of W . If G contains a soluble subgroup

N , acting transitively on Ω, then

dG(M) ≤min

{
ad− aχ(P ′N ∩K,Ω1)

RF(P ′N ∩K)
+ aχ(P ′N ∩K,Ω1), χ(P ′N ∩K,V ∗)

}
× E(s, p)

where P ′N is a p-complement in N .

5.5 An application to induced modules for bottom heavy

groups

The proofs of the main results of this thesis will usually only require the bounds

on dG(M) from Corollary 5.4.16. For a specific case of the proof of Theorem 1.2.3

however, we will need the stronger bounds provided by Theorem 5.4.15. This case

is the ‘bottom heavy case’, which we will now define. Throughout, we retain the

notation introduced at the beginning of Section 5.4. In particular, H is a subgroup

of G of index of index s ≥ 2, H1 is a subgroup of H of index d ≥ 1, Ω is the set of

right cosets of H in G, Ω1 is the set of right cosets of H1 in H, and K := KerG(Ω).

Note that we also continue to assume that the field F has characteristic p > 0.

Definition 5.5.1. Assume that KΩ1 , viewed as a subgroup of Sym (d), contains

Alt(d). Then we say that the triple (G,H,H1) is bottom heavy.

Before stating the main rsult of this section, we introduce Vinogradov no-

tation: we will write

A� B

to mean A = O(B). The main result can now be stated as follows.

Proposition 5.5.2. Assume that d ≥ 5 and that (G,H,H1) is bottom heavy. Let

M be a submodule of W . Then

(i) dG(M) ≤ 2as, and;

(ii) If sp > 1, then dG(M)� as√
log sp

.

Before proving Proposition 5.5.2, we require the following:
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Proposition 5.5.3. Assume that (G,H,H1) is bottom heavy and that d ≥ 5.

Choose K ′ to be a subgroup of K minimal with the property that K ′Ω1 ∼= Alt(d).

Then a K ′-composition series for V ↓K′ has at most 2a factors isomorphic to the

trivial K ′-module.

Proof. By the minimality of K ′, we have C := coreH(H1)∩K ′ ≤ Φ(K ′), and hence

C is soluble. Let E be a subgroup of K ′ containing C such that E/C is soluble

and, viewed as a subgroup of Sym (d), has at most two orbits, such that each orbit

is of p′-length (such a subgroup exists by Lemma 5.3.8). Then E is soluble, so we

may choose a p-complement F in E. Then F/F ∩ C also has at most two orbits

(and each F -orbit has p′-length).

Next, consider the F -module X := V ↓F∼= U ↑HH1
↓F . Since F ≤ K ′, it

suffices to prove that X has at most 2a trivial composition factors. To see this,

note that since F has at most two orbits on Ω1 (i.e. the cosets of H1 in H),

represented by x1 and x2, say, Theorem 2.2.4 yields

X ∼= X1 ⊕X2 or X ∼= X1

where Xi
∼= (U ⊗ xi) ↑FF∩Hxi

1

. Now, since F has p′-order, Xi is a semisimple F -

module. Hence, the number of trivial factors in an F -composition series for Xi is

precisely the number of trivial summands of Xi, which is

dim HomF[F ](Xi, 1F ),

where 1F denotes the trivial F -module. By Theorem 2.2.5, this is equal to

dim HomF[F∩Hxi
1 ](U ↓F∩Hxi

1
, 1F∩Hxi

1
) ≤ dimU = a.

The claim follows.

Proof of Proposition 5.5.2. Choose K ′ to be a subgroup of K minimal with the

property that K ′Ω1 ∼= Alt(d). Then

coreH(H1) ∩K ′ ≤ Φ(K ′). (5.5.1)

Hence, since

Alt(d) ∼= K ′Ω ∼= K ′/coreH(H1) ∩K ′,

Proposition 5.3.7 applies: RF(K ′) ≥ R(Alt(d)). Note also that m ≤ 2 by Lemma
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5.3.8. Since d� R(Alt(d)) (see [29, Proposition 5.3.7]), Part (ii) now follows from

Theorem 5.4.15 Part (iv).

We now prove (i). It follows from Lemma 5.3.8 that K ′ has a subgroup N

such that NΩ1 is soluble and has at most 2 orbits. Furthermore, each orbit has

p′-length. Also, N is soluble, by (5.5.1).

We now want to apply Corollary 5.4.16 Part (ii)(b), with (G,H,H1, V,Ω)

replaced by (H,H1, H1, U,Ω1) (also, (a, s, d) is replaced by (a, d, 1)): let di, for

i ≤ 2, denote the lengths of the NΩ1 orbits. Then

Esol(di, p) ≤ (di)p = 1,

so Esol(di, p) = 1. Hence for each H-submodule M ′ of the induced module V =

U ↑HH1
, we have

dH(M ′) ≤ a
t∑
i=1

Esol(di, p) ≤ 2a.

Since M is a submodule of

U ↑GH1
∼= V ↑GH∼=

s∑
i=1

V ⊗ ti

where (see Definition 2.2.2) each V ⊗ ti is isomorphic, as an H-module, to V , the

result now follows.
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Chapter 6

Minimal generation of

transitive permutation groups

6.1 Introduction

In this chapter, we state and prove the second main result of this thesis, which

is stated as Theorem 1.2.2 in Chapter 1. The theorem follows in the primitive

case from Theorem 2.1.15, so this chapter deals predominantly with the case when

G ≤ Sym(n) is imprimitive. In this case, G is a large subgroup of a wreath product

RoS, whereR is primitive of degree r ≥ 2, S is transitive of degree s ≥ 2, and n = rs.

Due to the nature of our bounds, the most difficult cases to deal with are when

R = Sym(2) or R = Sym(4), i.e. when G has a minimal block of cardinality either

2 or 4. (Essentially, this is because Sym(2) and Sym(4) have large composition

lengths relative to their degree.) We deal with the Sym(4) case in Corollary 6.2.8;

the idea being that we can use the transitive action of the Sylow 3-subgroup in

Sym(4) on the non-identity elements of the Klein 4-group V E Sym(4) to reduce

the contribution of V to our bounds (this is the primary reason we include the

invariant χ in our bounds in Chapter 4).

However, no such option is available to us when R ∼= Sym(2), since Sym(2)

is abelian. If G has another minimal block, of cardinality larger than 2, then we

can avoid the problem by using this block instead. However, we cannot do this if

all minimal blocks for G have cardinality 2, so assume that this is the case. Then,

as we will prove in Section 5.2 below, we have d(G) ≤ E(s, 2) + d(S). Now, since

we just need to bound d(S), we apply the same methods to the transitive group

S ≤ Sym(s).
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Apart from finitely many cases, our methods yield the upper bound we want:

the only problems occur when we “repeatedly get” blocks of cardinality 2. This is

encapsulated in the following non-standard definition.

Definition 6.1.1. Let G be a transitive permutation group, and let

X := (R1, R2, . . . , Rt)

be a tuple of primitive components for G, where each Ri has degree ri ≥ 2. Define

blX,2(G) := min {i : ri 6= 2} − 1, and

bl2(G) := min {blX,2(G) : X a tuple of primitive components for G} .

We call bl2(G) the 2-block number of G.

Alternatively, the 2-block number of a transitive permutation group G can

be defined inductively as follows: if G is primitive, or if G is imprimitive with a

minimal block of cardinality greater than 2, then set bl2(G) := 0. Otherwise, G

is imprimitive and all minimal blocks for G have cardinality 2. Let ∆ be such a

minimal block, and let Γ := {∆g : g ∈ G} be the set of G-translates of ∆. Also,

let K := KerG(Γ). Then define bl2(G) := 1 + bl2(G/K).

For example, a transitive 2-group G of degree 2k will have bl2(G) = k.

In other words, any tuple of primitive components for G will consist entirely of

Sym(2)s. This is because for any prime p, any minimal block of any transitive

p-group has cardinality p.

Remark 6.1.2. If bl2(G) ≥ 1, then G has a block of size 2bl2(G), by Remark 2.1.8.

We can now restate Theorem 1.2.2 more precisely as follows.

Theorem 6.1.3. Let G be a transitive permutation group of degree n ≥ 2. Then

(1) d(G) ≤
⌊

cn√
logn

⌋
,where c := 1512660

√
log (21915)/(21915) = 0.920581 . . ..

(2) d(G) ≤
⌊

c1n√
logn

⌋
, where c1 :=

√
3/2 = 0.866025 . . ., unless each of the following

conditions hold:

(i) n = 2kv, where v = 5 and 17 ≤ k ≤ 26, or v = 15 and 15 ≤ k ≤ 35;

(ii) G contains no soluble transitive subgroups; and
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(iii) bl2(G) ≥ f , where f is specified in the middle column of Table A.2 (see

Appendix A).

In these exceptional cases, the bounds for d(G) in Table A.2 hold.

Recall that by “log”, we always mean log to the base 2. The following is

immediate from Theorem 6.1.3.

Corollary 6.1.4. Let G be a transitive permutation group of degree n, containing

a soluble transitive subgroup. Then

d(G) ≤
⌊

c1n√
log n

⌋
,

where c1 =
√

3/2.

As can be seen from the proof of Theorem 6.1.3, and the statement of

the theorem itself, the cases when bl2(G) is large are the most difficult to deal

with using our methods. We believe that the finite number of exceptions given in

Theorem 6.1.3 Part (2) are not exceptions at all, that is, we believe that the bound

d(G) ≤ bc1n/
√

log nc should hold for all n and all G.

Note also that, as shown in [28], the bounds in our results are of the right

order. Moreover, the infimum of the set of constants c satisfying d(G) ≤ cn/
√

log n,

for all soluble transitive permutation groups G of degree n ≥ 2, is the constant c1

in Theorem 6.1.3, since d(G) = 4 when n = 8 and G ∼= D8 ◦D8. We conjecture that

the best “asymptotic” bound, that is, the best possible upper bound when one is

permitted to exclude finitely many cases, is d(G) ≤ bc̃n/
√

log nc, where c̃ is some

constant satisfying b/2 ≤ c̃ < b =
√

2/π (see Example 6.3.2 for more details).

In Section 6.2 we discuss an application of the results of Chapter 4 to wreath

products. We reserve Section 6.3 for the proof of Theorem 6.1.3.

6.2 Wreath products

We first make the following easy observation.

Proposition 6.2.1. Let A = T1×T2× . . .×Tf , where each Ti is isomorphic to the

nonabelian finite simple group T . Suppose that M ≤ A is a subdirect product of A,

and suppose that M ′ EM is also a subdirect product of A. Then M ′ = M .
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Proof. We prove the claim by induction on f , and the case f = 1 is trivial, so assume

that f > 1. Since M is subdirect, each M ∩ Ti is normal in Ti. If M = A, then

since the only normal subgroups of A are the groups
∏
i∈Y Ti, for Y ⊆ {1, . . . , f},

the result is clear. So assume that M ∩ Ti = 1 for some i. Then M ′ ∩ Ti = 1,

and M ′Ti/Ti and MTi/Ti are subdirect products of
∏
j 6=i Tj . It follows, using the

inductive hypothesis, that M ′Ti = MTi. Hence M ′ = M , since M ∩ Ti = 1, and

the proof is complete.

We also need the following result of Lucchini and Menegazzo.

Theorem 6.2.2 ([32] and [36]). Let L be a proper minimal normal subgroup of

the finite group G. Then d(G) ≤ d(G/L) + 1. Furthermore, if L is the unique

minimal normal subgroup of G, then d(G) ≤ max {2, d(G/L)}.

We will now fix some notation which will be retained for the remainder of

the chapter.

• Let R be a finite group (we do not exclude the case R = 1).

• Let S be a transitive permutation group of degree s ≥ 2.

• Let G be a large subgroup of the wreath product R o S (see Definition 2.1.7).

• Write B := R(1) ×R(2) × . . .×R(s) for the base group of R o S.

• write π : G→ S for the projection homomorphism onto the top group.

• Let H := NG(R(1)) = π−1(StabS(1)).

• Let Ω := H\G.

• Let K := G ∩B = coreG(H) = KerG(Ω).

Recall that for a subgroup N of R, BN ∼= N s denotes the direct product of the

distinct S-conjugates of N . In particular, if N ER, then BN ER o S. Throughout,

we will view R as a subgroup of B by identifying R with R(1). We also note that

• |G : H| = s; and

• S = GΩ.

In particular, the notation is consistent with the notation introduced at the begin-

ning of Section 5.4.
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Remark 6.2.3. The results in this section will be obtained by applying the results

in Chapter 4 with H = H1 and d = 1 (see the notation introduced at the beginning

of Section 5.4).

Remark 6.2.4. If R is a transitive permutation group, acting on a set ∆, then

G is an imprimitive permutation group acting on the set ∆ × {1, 2, . . . , s}, and

H = StabG((∆, 1)). Furthermore H∆ = R, since G is large (see Remark 2.1.11).

Our strategy for proving Theorem 6.1.3 can now be summarised as follows:

Step 1: Show that K is “built” from induced modules for G, and non-abelian

G-chief factors.

Step 2: Derive bounds on d(G) in terms of the factors from Step 1 and d(S).

Step 3: Use Theorem 6.2.2, together with the results from Chapter 4, to bound

the contributions from the factors in Step 1 to the bound from Step 2.

Step 4: Use induction to bound d(S).

We begin with Step 1.

Lemma 6.2.5. Suppose that R > 1 and that 1 := N0 ≤ N1 ≤ . . . ≤ Ne = R is a

normal series for R, where each factor is either elementary abelian, or a nonabelian

chief factor of R. Consider the corresponding normal series 1 := G ∩ BN0 ≤ G ∩
BN1 ≤ . . . ≤ G∩BNe = G for G. Let Vi := Ni/Ni−1 and Mi := G∩BNi/G∩BNi−1.

(i) If Vi is elementary abelian, then Mi is a submodule of the induced module

Vi ↑GH .

(ii) If Vi is a nonabelian chief factor of R, then Mi is either trivial, or a nonabelian

chief factor of G.

Proof. Assume first that Vi is elementary abelian, of order pa say. Then BNi/BNi−1

is a module for G of dimension as = a|G : H| over the finite field of order p.

Furthermore, BNi/BNi−1 is generated, as a G-module, by the H-module Vi. It now

follows from Proposition 2.2.6 that BNi/BNi−1 is isomorphic to the induced module

Vi ↑GH . This proves (i).

Next, suppose that Vi is a nonabelian chief factor of R. Write bars to denote

reduction modulo BNi−1 . Then G is a large subgroup of the wreath product R o S,

and Ni is a nonabelian minimal normal subgroup of R. So we just need to prove
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that G ∩ BNi is either trivial or a nonabelian minimal normal subgroup of G. To

this end, consider the projection maps

ρj : NG(R(j))→ R(j)

defined in (2.1.1). Suppose that M is a normal subgroup of G contained in G∩BNi .
Then M ≤ NG(R(1)), and hence ρ1(M) is a normal subgroup of ρ1(NG(R(1))) =

R(1) contained in the minimal normal subgroup of R(1) corresponding to Ni. If

ρ1(M) = 1 then ρj(M) = 1 for all j, since π(G) = S is transitive. Hence, in this

case, we have M = 1. Otherwise, ρ1(M) ∼= Ni, and M is a subdirect product of

s copies of Ni. In this case, since a minimal normal subgroup of a finite group

is a direct product of simple groups, we must have M = G ∩ BNi by Proposition

6.2.1. Thus, if G∩BNi is non-trivial, then G∩BNi is a nonabelian minimal normal

subgroup of G, as required.

For the remainder of this section, suppose that 1 := N0 ≤ N1 ≤ . . . ≤ Ne =

R is a chief series for R, and let Vi := Ni/Ni−1 and Mi := G ∩ BNi/G ∩ BNi−1 . If

Vi is abelian we will also write |Vi| = paii , for pi prime.

We now have Step 2.

Corollary 6.2.6. We have

d(G) ≤
∑

Vi abelian

dG(Mi) + cnonab(R) + d(S)

Proof. We will prove the corollary by induction on |R|. If |R| = 1 then the bound

is trivial, since G ∼= S in that case, so assume that |R| > 1, and note that

G/M1 is a large subgroup of (R/V1) o S. (6.2.1)

Suppose first that V1 is abelian. Then M1 is a G-module, so

d(G) ≤ dG(M1) + d(G/M1).

Since cnonab(R) = cnonab(R/V1), (6.2.1) and the inductive hypothesis give the result.

So we may assume that V1 is nonabelian. Then M1 is either trivial or a min-

imal normal subgroup of G, by Lemma 6.2.5 Part (ii). Hence, d(G) ≤ d(G/M1) + 1

by Theorem 6.2.2. The result now follows, again from (6.2.1) and the inductive

hypothesis.
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Before stating our next corollary, we refer the reader to Definition 5.4.12 for

a reminder of the definitions of the functions E and Esol. The next two corollaries

deal with Step 3.

Corollary 6.2.7. Define E′ to be Esol if S contains a soluble transitive subgroup,

and E′ := E otherwise. Then

(i) d(G) ≤
∑

Vi abelian aiE
′(s, pi) + cnonab(R) + d(S).

(ii) Suppose that |R| = 2 and s = 2mq, where q is odd, and that S has a tuple of

primitive components X = (R2, . . . , Rt), where blX,2(S) ≥ 1. Let Γ be a full

set of blocks for S of size 2blX,2(S), and set S̃ := SΓ. Then

d(G) ≤
blX,2(S)∑
i=0

E′(2m−iq, 2) + d(S̃).

(iii) Suppose that |R| = 2 and s = 2m3, and that S contains no soluble transitive

subgroups. Then by Corollary 4.3.7 there exists a Mersenne prime p1 = 2a−1

and a triple of integers (e, t1, t), with e ≥ 1, and t ≥ t1 ≥ 0, such that

(1) m = ea+ t, and;

(2) There exists a subgroup N of G, such that NΩ is soluble and has 2e+t1

orbits, with
(
e
k

)
2t1 of them of length 3pk1 × 2t−t1, for each 0 ≤ k ≤ e.

Here, we have

d(G) ≤
e∑

k=0

2t−t1
(
e

k

)
Esol(3p

k
12t1 , 2) + d(S).

Proof. By Corollary 6.2.6, we have

d(G) ≤
∑

Vi abelian

dG(Mi) + cnonab(R) + d(S).

Now, by Corollary 5.4.17, dG(Mi) ≤ E′(s, pi). This proves (i).

To prove (iii) first note that, by Corollary 4.3.7, and as mentioned in the

statement of (iii), there exists a Mersenne prime p1 := 2a− 1, and a triple (e, t1, t),

with e ≥ 1, and t ≥ t1 ≥ 0, such that

(i) m = ea+ t, and;
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(ii) There exists a subgroup N of G, such that NΩ is soluble and has 2e+t1 orbits,

with
(
e
k

)
2t1 of them of length 3pk1 × 2t−t1 , for each 0 ≤ k ≤ e.

Note that, since |R| = 2, the base group K ≤ Rs of G is soluble. Hence, since

NΩ ∼= N/N ∩K is soluble, it follows that N itself is also soluble. Corollary 5.4.16

Part (ii)(b) (with ad = 1) then implies that

dG(M1) ≤
e∑

k=0

2t1
(
e

k

)
Esol(3p

k
12t−t1 , 2)

Since |R| = 2, we have d(G) ≤ dG(M1) + d(S), and the result follows.

Finally, we prove Part (ii). We will show that

d(S) ≤
blX,2(S)∑
i=1

E(2m−iq, 2) + d(S̃) (6.2.2)

by induction on blX,2(S). The result will then follow, since d(G) ≤ E′(2mq, 2)+d(S)

by Part (i). Now, by hypothesis, S has a tuple of primitive components X =

(R2, . . . , Rt). Also, |R2| = 2 since blX,2(S) ≥ 1. Hence, by Theorem 2.1.9, S is a

large subgroup of a wreath product R2 oS2, where either S2 = 1, or S2 is a transitive

permutation group of degree 2m−1q, with a tuple Y := (R3, . . . , Rt) of primitive

components. If S2 = 1 then the result follows, since s = 4 and S̃ = 1 in that case.

So assume that S2 > 1. By Part (i), we have

d(S) ≤ E′(2m−1q, 2) + d(S2) (6.2.3)

If blX,2(S) = 1 then S2 = S̃ and (6.2.2) follows from (6.2.3). So assume that

blX,2(S) > 1. Then blY,2(S2) = blX,2(S) − 1 ≥ 1. The inductive hypothesis then

yields d(S2) ≤
∑blY,2(S2)

i=1 E(2m−1−iq, 2)+d(S̃) =
∑blX,2(S)

i=2 E(2m−iq, 2)+d(S̃). The

bound (6.2.2) now follows immediately from (6.2.3), which completes the proof.

The next corollary will be key in our proof of Theorem 6.1.3 when G is

imprimitive with minimal block size 4.

Corollary 6.2.8. Assume that R = S4 or R = A4. Define E′ to be Esol if S

contains a soluble transitive subgroup, and E′ := E otherwise. Then

d(G) ≤ E′(s, 2) + min

{
bs√

log s2
,
s

s3

}
+ E′(s, 3) + d(S).
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Proof. Let ∆ := {1, 2, 3, 4}, so that R is transitive on ∆. We have V1
∼= 22, V2

∼= 3,

and V3
∼= 2 if R ∼= S4. Since K∆ is a normal subgroup of H∆ = R (see Remark

6.2.4), K∆ is isomorphic to either 22, A4, or S4. In the first two cases M3 is trivial,

so

d(G) ≤ dG(M1) + dG(M2) + d(S) ≤ 2E′(s, 2) + E′(s, 3) + d(S)

by Corollaries 6.2.6 and 5.4.17. So assume that K∆ ∼= S4. Then a Sylow 3-

subgroup P3 of K∆ acts transitively on the non-identity elements of V1. Thus,

χ(P3 ∩K,V ∗1 ) = 1, so

dG(M1) ≤ min

{
bs√

log s2
,
s

s3

}
by Corollary 5.4.16 Parts (iii) and (iv), with (p, q) := (2, 3). The result follows.

6.3 The proof of Theorem 6.1.3

In this section, we prove Theorem 6.1.3. First, we deal with Step 4: the inductive

step. As mentioned in Section 6.1, the cases where bl2(G) is large are the most

difficult to deal with using our methods. In these cases, we have d(G) ≤ E(s, 2) +

d(S) and usually the bounds on d(S) which come from the inductive hypothesis then

suffice to prove the theorem. However in some small cases the inductive hypothesis

does not suffice, and we have to work harder. These cases, of which there are finitely

many, are the subject of Appendix A, and include both the exceptional cases from

Theorem 6.1.3 (Table A.2), and some additional cases which have a large 2-part

(Table A.1). The purpose of Lemma 6.3.1 is to prove that the bounds in Appendix

A hold.

Throughout this section, we retain the same notation as introduced im-

mediately following Theorem 6.2.2, with one additional assumption: that R is a

primitive permutation group of degree r ≥ 2. Hence, G is a transitive permutation

group of degree n := rs, and Remark 6.2.4 applies. Also, set E′ to be Esol if S

contains a soluble transitive subgroup, and E′ := E otherwise.

Recall also that paii denote the orders of the abelian chief factors of R, for

pi prime.

Lemma 6.3.1. Assume that Theorem 6.1.3 holds for degrees less than n. Then

(i) The bounds in Table A.1 (see Appendix A) hold, and;

(ii) If n and f are as in Table A.2, and either
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(a) G contains a soluble transitive subgroup; or

(b) bl2 (G) < f ,

then d(G) ≤ bc1n/
√

log nc, where c1 =
√

3
2 .

(iii) If n and f are as in Table A.2, and

(a) G contains no soluble transitive subgroup; and

(b) bl2 (G) < f ,

then, the bounds in Table A.2 (Appendix A) hold.

Proof. We first recall some bounds which will be used throughout the proof. We

have

d(G) ≤ sblog rc+ d(S), if r ≥ 4; and (6.3.1)

d(G) ≤
∑
i

aiE
′(s, pi) + cnonab(R) + d(S). (6.3.2)

These bounds follow from Corollary 2.1.16 and Corollary 6.2.7 Part (i) respectively.

To bound d(S) above, we use Table B.1 (Appendix B) if 2 ≤ s ≤ 32;

otherwise, we use either the previous rows of Tables A.1 and A.2; or the bound

d(S) ≤ bc1s/
√

log sc (from the hypothesis of the lemma) if s is not in Tables A.1

or A.2.

We will first prove (i) and (ii).

(i) and (ii) The values of n occurring in Table A.1 are n = 2m for 6 ≤ m ≤ 11;

n = 2m+13 for 3 ≤ m ≤ 19; n = 2m5 for 3 ≤ m ≤ 16; and n = 2m15 for 2 ≤
m ≤ 14. We distinguish a number of cases. Recall that n = rs. Throughout,

we define E′′ := Esol if s is of the form s = 2m, and E′′ := E otherwise.

(Note that a transitive group of prime power degree always contains a soluble

transitive subgroup.)

1. r > 16. Then d(G) ≤ sblog rc+d(S) by (6.3.1). Combining this with the

bounds on d(S) described above gives the required for each n in Table

A.1, and each possible pair (r, s) with r > 16 and n = rs, except when

(n, r, s) = (3145728, 24, 131072). However, each primitive group of de-

gree 24 is either simple, or has a simple normal subgroup of index 2 (using

the MAGMA [6] database). Hence, in this case, (6.3.2), together with the
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hypothesis of the lemma, gives d(G) ≤ E(s, 2)+1+bc1s/
√

log sc = 52895.

This gives us what we need.

2. r = 2. We distinguish two sub-cases.

(a) S contains a soluble transitive subgroup. Then d(G) ≤ Esol(s, 2) +

d(S) by (6.3.2), and this, together with the bounds on d(S) described

above gives the bounds in Table A.1 in each of the relevant cases.

(b) S contains no soluble transitive subgroups. Then s is not of the

form s = 2m. We distinguish each of the relevant cases.

i s = 2m3, for some 3 ≤ m ≤ 19. By using the MAGMA database

[6], we see that each transitive permutation group of degree 24

contains a soluble transitive subgroup, so we must have s =

2m3 ≥ 48. In particular, 4 ≤ m ≤ 19. By Corollary 6.2.7 Part

(iii) there exists a Mersenne prime p1 = 2a − 1 and a triple

of integers (e, t1, t), with e ≥ 1, and t ≥ t1 ≥ 0, such that

m = ea+ t, and

d(G) ≤
e∑

k=0

2t−t1
(
e

k

)
Esol(3p

k
12t1 , 2) + d(S). (6.3.3)

Since 4 ≤ m ≤ 19, the possibilities for n and the triple (a, e, t)

are as follows:

Table 5.1

s (a, e, t)

48 (3, 1, 1)

96 (3, 1, 2), (5, 1, 0)

192 (3, 1, 3), (3, 2, 0), (5, 1, 1)

384 (3, 1, 4), (3, 2, 1), (5, 1, 2), (7, 1, 0)

768 (3, 1, 5), (3, 2, 2), (5, 1, 3), (7, 1, 1)

1536 (3, 1, 6), (3, 2, 3), (3, 3, 0), (5, 1, 4), (7, 1, 2)

3072 (3, 1, 7), (3, 2, 4), (3, 3, 1), (5, 1, 5), (7, 1, 3),

(5, 2, 0)

6144 (3, 1, 8), (3, 2, 5), (3, 3, 2), (5, 1, 6), (7, 1, 4),

(5, 2, 1)

12288 (3, 1, 9), (3, 2, 6), (3, 3, 3), (3, 4, 0), (5, 1, 7),

(7, 1, 5), (5, 2, 2)
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Table 5.1 ctd.

n (a, e, t)

24576 (3, 1, 10), (3, 2, 7),

(3, 3, 4), (3, 4, 1),

(5, 1, 8), (7, 1, 6),

(13, 1, 0), (5, 2, 3)

49152 (3, 1, 11), (3, 2, 8),

(3, 3, 5), (3, 4, 2),

(5, 1, 9), (7, 1, 7),

(13, 1, 1), (5, 2, 4),

(7, 2, 0)

98304 (3, 1, 12), (3, 2, 9),

(3, 3, 6), (3, 4, 3),

(3, 5, 0), (5, 1, 10),

(7, 1, 8), (13, 1, 2),

(5, 2, 5), (7, 2, 1),

(5, 3, 0)

196608 (3, 1, 13), (3, 2, 10),

(3, 3, 7), (3, 4, 4),

(3, 5, 1), (5, 1, 11),

(7, 1, 9), (13, 1, 3),

(5, 2, 6), (7, 2, 2),

(5, 3, 1)

Table 5.1 ctd.

s (a, e, t)

393216 (3, 1, 14), (3, 2, 11),

(3, 3, 8), (3, 4, 5),

(3, 5, 2), (5, 1, 12),

(7, 1, 10), (13, 1, 4),

(17, 1, 0), (5, 2, 7),

(7, 2, 3), (5, 3, 2)

786432 (3, 1, 15), (3, 2, 12),

(3, 3, 9), (3, 4, 6),

(3, 5, 3), (3, 6, 0),

(5, 1, 13), (7, 1, 11),

(13, 1, 5), (17, 1, 1),

(5, 2, 8), (7, 2, 4),

(5, 3, 3)

1572864 (3, 1, 16), (3, 2, 13),

(3, 3, 10), (3, 4, 7),

(3, 5, 4), (3, 6, 1),

(5, 1, 14), (7, 1, 12),

(13, 1, 6), (17, 1, 2),

(19, 1, 0), (5, 2, 9),

(7, 2, 5), (5, 3, 4)

Going through each of the relevant values of n in the first column

of Table A.1, each triple (a, e, t) in the last column of Table 5.1,

and each possible value of t1 ≤ t, with n/2 = 2ea+t3, the required

bound follows from (6.3.3) each time.

ii s = 2m5, for some 2 ≤ m ≤ 15; or s = 2m15 for some 1 ≤ m ≤
14. Then the bound d(G) ≤ E(s, 2) + d(S), together with the

bounds on d(S) described above, give the bounds in Table A.1

in each case.

3. r = 3. Here, d(G) ≤ E′′(s, 3) + E′′(s, 2) + d(S), and the bounds from

Table A.1 follow in each case from applying the usual upper bounds on

d(S).
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4. r = 4. Then

d(G) ≤ E′′(s, 2) + min

{
bs√

log s2
,
s

s3

}
+ E′′(s, 3) + d(S) (6.3.4)

by Corollary 6.2.8. Combining this with the bounds on d(S) described

above again gives the bound from the second column of Table A.1 for

each of the values of n in the first column, as required.

5. r = 5. The possible lists of chief factors of the primitive group R of

degree 5 can be obtained from the MAGMA database [6]. In particular,

applying (6.3.2) yields

d(G) ≤ 2E′′(s, 2) + E′′(s, 5) + d(S).

Again, combining this with the bounds on d(S) described above yields

the required bound from Table A.1 in each case.

6. r = 6. Again, we take the possible lists of chief factors of the primitive

group R of degree 6 from the MAGMA database [6], and apply (6.3.2).

We get

d(G) ≤ E′′(s, 2) + 1 + d(S).

Combining this with the bounds on d(S) described above yields the

required bound from Table A.1 in each of the relevant cases.

7. r = 8. After obtaining the possible chief factors of R from the MAGMA

database, we again apply (6.3.2) and get

d(G) ≤ 3E′′(s, 2) + E′′(s, 3) + E′′(s, 7) + d(S).

Using the above with the bounds on d(S) described previously gives the

required bound from Table A.1 in each case.

8. 10 ≤ r ≤ 16. In each case, we use the same approach as in the previous

case, so to avoid being too repetitive we will just check the r = 16 case.

Again we can take the possible lists of chief factors of the primitive

groups R of degree 16 from the MAGMA database, and apply (6.3.2).

We get

d(G) ≤ 7E′′(s, 2) + E′′(s, 3) + max{E′′(s, 3), E′′(s, 5)}+ d(S).
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As before, combining this with the usual bounds for d(S) gives the

bounds in Table A.1 in each case.

(iii) We now consider the bounds in Table A.2., i.e. the exceptional cases from

Theorem 6.1.3. Thus, either n = 2m5 and 17 ≤ m ≤ 26, or n = 2m15 and

15 ≤ m ≤ 35. Note that 0 ≤ bl2(G) ≤ m. If bl2(G) = 0 then (6.3.1) for

r > 16, and (6.3.2) for 2 < r ≤ 16, as in our proofs in (i) and (ii) above

yields the required bounds in each case.

So assume that bl2(G) ≥ 1. Then

d(G) ≤
bl2(G)∑
i=1

E(2m−i5, 2) + d(S̃) (6.3.5)

where S̃ is transitive of degree 2m−bl2(G)v, by Corollary 6.2.7 Part (ii).

Now, fix a transitive permutation group G of degree n where n is one of the

values from the first column of Table A.2. Suppose first that bl2(G) ≤ f ,

where f is the corresponding value to n in the second column of Table A.2.

To bound d(S̃) above, we use Table B.1 (Appendix B) if 2 ≤ 2m−bl2(G)v ≤ 32;

otherwise, we use the previous rows of Tables A.1 and A.2. Combining these

bounds for d(S̃) with (6.3.5) yields d(G) ≤ bc1n/
√

log nc in each case, as

required.

If G contains a soluble transitive subgroup, then the bound at (6.3.5) with

E replaced by Esol holds, and yields d(G) ≤ bc1n/
√

log nc in each case, as

needed.

So we may assume that bl2(G) > f , and that G contains so soluble transitive

subgroups. In particular, the bound at (6.3.5) again holds. If S̃ is primitive

of degree 2m−bl2(G)v, then the bound d(S̃) ≤ blog (2m−bl2(G)v)c of Theorem

2.1.15 gives us the required bound in Table A.2 in each case. So assume that

S̃ is imprimitive, with minimal block size r̃ > 2. Also, write s̃ := 2m−fGv/r̃.

With (r, s) replaced by (r̃, s̃), we can now apply (6.3.1) if r̃ > 16, and (6.3.2)

for 2 < r ≤ 16, as in cases (i) and (ii) above. (Note that dtrans(S̃) is bounded

above using Table B.1 if 2 ≤ s̃ ≤ 32). This gives us the required bound in

Table A.2 in each case. (We perform these calculations for each possible value

of fG, and each pair (r̃, s̃) with r̃ > 2 and 2m−fGv = r̃s̃.) This completes the

proof.
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We are now ready to prove Theorem 6.1.3.

Proof of Theorem 6.1.3. The proof is by induction on n. Suppose first that G is

primitive. The result clearly holds when n ≤ 3. When n ≥ 4, we have log n ≤
c1n/
√

log n, so the result follows immediately from Theorem 2.1.15. This can serve

as the initial step.

The inductive step concerns imprimitive G. For this, we now use the no-

tation introduced immediately following Theorem 6.2.2. Write Vi for the abelian

chief factors of R, and write |Vi| = paii . Recall that a(R) denotes the composition

length of R. In particular, a(R) ≥
∑

i ai + cnonab(R). The inductive hypothesis,

together with the bounds obtained in Corollaries 5.4.18 and 2.1.16, give

d(G) ≤
⌊

2a(R)s

c′ log s

⌋
+

⌊
c1s√
log s

⌋
(if 2 ≤ s ≤ 1260) (6.3.6)

d(G) ≤

⌊
a(R)b

√
2s√

log s

⌋
+

⌊
cs√
log s

⌋
(if s ≥ 1261) (6.3.7)

d(G) ≤

⌊
a(R) 2

c′ s√
log s

⌋
+

⌊
cs√
log s

⌋
(for all s ≥ 2) (6.3.8)

d(G) ≤ sblog rc+

⌊
cs√
log s

⌋
(for r ≥ 4, s ≥ 2) (6.3.9)

respectively. Note that (6.3.6) and (6.3.7) follow from Corollaries 5.4.18 and 6.2.7

Part (i), and together imply (6.3.8), while (6.3.9) follows from Corollary 2.1.16.

Recall that we need to prove that d(G) ≤ c1rs/
√

log rs for all cases apart from

those listed in Theorem 6.1.3 Part (2).

Suppose first that r ≥ 481. Then 6.3.8, together with Theorem 2.1.14, gives

d(G) ≤
([(2 + c0) log r − (1/3) log 24] 2

c′ + c)s
√

log s
.

This is less than c1rs/
√

log rs for r ≥ 481 and s ≥ 2, which gives us what we need.

So we may assume that 2 ≤ r ≤ 480. Suppose first that 10 ≤ r ≤ 480, and

consider the function

f(e, z, w) =
(eb
√

2 + c)
√
z + w

2z
√
w

defined on triples of positive real numbers. Clearly when the pair (e, z) is fixed, f

becomes a decreasing function of w. We distinguish two sub-cases:
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(a) s ≥ 1261. For each of the cases 10 ≤ r ≤ 480, we compute the maximum value

aprim(r) of the composition lengths of the primitive groups of degree r, using

MAGMA. Each time, we get f(aprim(r), log r, log s) ≤ f(aprim(r), log r, log 1261)

< c1, and the result then follows, in each case, from (6.3.7).

(b) 2 ≤ s ≤ 1260. For each fixed r, 10 ≤ r ≤ 480, and each s, 2 ≤ s ≤ 1260, we

explicitly compute min {b2aprim(r)s/(c′ log s)c, sblog rc} + bc1s/
√

log sc. Each

time, except when r = 16 and 72 ≤ s ≤ 1260, this integer is less than or

equal to bc1rs/
√

log rsc, which, after appealing to the inequalities at (6.3.6)

and (6.3.9), gives us what we need. If r = 16, and 72 ≤ s ≤ 1260, we have

d(G) ≤ 7E(s, 2) + 2E(s, 3) + bc1s/
√

log sc, by Corollary 6.2.7 Part (i), and this

gives the required bound in each case (the chief factors of the primitive groups

of degree 16 are computed using MAGMA - see Table B.2).

Finally, we deal with the cases 2 ≤ r ≤ 9. In considering each of the relevant

cases, we take the possible lists of chief factors of R from the MAGMA database.

In each case, we bound d(S) above by using Table B.1 if 2 ≤ s ≤ 32, Lemma 6.3.1 if

s is in the left hand column of Table A.1 or Table A.2, or the inductive hypothesis

otherwise.

(a) r = 2. Corollary 6.2.7 Part (i) gives d(G) ≤ E(s, 2) + d(S). Write s =

2mq, where q is odd, and assume first that s < 1066. If lpp(q) ≥ 19, then

d(G) ≤ s/19 + c1s/
√

log s, using the inductive hypothesis, and this is less than

2c1s/
√

log 2s for s < 1066. So assume further that lpp(q) ≤ 17. Then q is of the

form q = 3l35l57l711l1113l1317l17 , where 0 ≤ l3 ≤ 2, and 0 ≤ li ≤ 1, for i = 5,

7, 11, 13 and 17. Fix one such q. Then 0 ≤ m ≤ m(q) := blog (1066/q)c, and

by using the upper bounds on d(S) described above, we have the upper bound

d(G) ≤ E(2mq, 2) + d(S). We repeat this for each of the 96 possible values of

q, and each 0 ≤ m ≤ m(q). In each case, the upper bound computed gives us

what we need.

Thus, we may assume that s ≥ 1066. We distinguish two sub-cases.

(i) s2 ≥ s858/1000. Then E(s, 2) ≤ bs/
√

log s2 ≤ bs
√

1000/858/
√

log s. Hence,

d(G) ≤ bs
√

1000/858/
√

log s + c1s/
√

log s, and this is less than or equal

to 2c1s/
√

log 2s for s ≥ 1066, as required.

(ii) s/s2 ≥ s142/1000. Then, by Lemma 2.4.2, we have

E(s, 2) ≤ s/(c′ log (s/s2)) ≤ (1000/142)s/c′ log s,
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and hence d(G) ≤ (1000/142)s/(c′ log s) + c1s/
√

log s. Again, this is less

than or equal to 2c1s/
√

log 2s, for s ≥ 1066.

(b) r = 3. Here, Corollary 6.2.7 Part (i) gives d(G) ≤ E(s, 3) + E(s, 2) + d(S).

Using the bounds for d(S) described above, this gives us what we need whenever

2 ≤ s ≤ 5577, and whenever S is one of the exceptional cases listed in Theorem

6.1.3 Part (2) )in these cases, we take the bounds for d(S) from Table A.2).

Otherwise, s ≥ 5578, and we use Corollary 5.4.18 to distinguish two cases, with

α = 1/3.

(i) s2, s3 ≤ s1/3. Then d(G) ≤ 3s/(c′ log s)+c1s/
√

log s, and this is less than

or equal to 3c1s/
√

log 3s for s ≥ 3824.

(ii) s2 ≥ s1/3, or s3 ≥ s1/3. Then lpp (s/s3) ≥ s1/3 or lpp (s/s2) ≥ s1/3, so

d(G) ≤ b
√

3s/
√

log s+s2/3 +c1s/
√

log s, and this is at most 3c1s/
√

log 3s,

for s ≥ 5578.

(c) r = 4. Here Corollary 6.2.8 implies that

d(G) ≤ E(s, 2) + min

{
bs√

log s2
,
s

s3

}
+ E(s, 3) + d(S).

Using the bounds on d(S) described above, this yields the required upper bound

whenever S is one of the exceptional cases of Theorem 6.1.3 Part (2), and

whenever 7 ≤ s ≤ 115062. When 2 ≤ s ≤ 6, G is transitive of degree 4s, and

the result follows by using Table B.1. So assume that s ≥ 115063, and that s is

not one of those cases listed in Theorem 6.1.3 Part (2). Using Corollary 5.4.18,

with α = 45/100, we distinguish three cases.

(i) s2, s3 ≤ s45/100. Then d(G) ≤ (300/55)s/(c′ log s) + c1s/
√

log s, and this

is less than or equal to 4c1s/
√

log 4s for s ≥ 115063, as needed.

(ii) s2 ≥ s45/100. Then d(G) ≤ 2
√

100/45bs/
√

log s + s55/100 + c1s/
√

log s,

and this is at most 4c1s/
√

log 4s, for s ≥ 82517.

(iii) s3 ≥ s45/100. Then d(G) ≤
√

100/45bs/
√

log s + 2s55/100 + c1s/
√

log s,

which is less than or equal to 4c1s/
√

log 4s, for s ≥ 44. This completes

the proof of the theorem in the case r = 4.

(d) r = 5. Corollary 6.2.7 Part (i) gives d(G) ≤ E(s, 5) + 2E(s, 2) + d(S). Again,

this gives us what we need for each s in the range 3 ≤ s ≤ 552, and each

exceptional S. Also, s = 2 implies that G is transitive of degree 10, and the
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result follows from Table B.1. Thus, we may assume that s ≥ 553. Applying

Corollary 5.4.18, with α = 2/5, yields three cases.

(i) s2, s5 ≤ s2/5. Then d(G) ≤ 5s/(c′ log s) + c1s/
√

log s, which is less than

or equal to 5c1s/
√

log 5s for s ≥ 553, as required.

(ii) s2 ≥ s2/5. Then d(G) ≤ 2b
√

5/2s/
√

log s+ s3/5 + c1s/
√

log s, and this is

no greater than 5c1s/
√

log 5s when s ≥ 139.

(iii) s5 ≥ s2/5. Then d(G) ≤ b
√

5/2s/
√

log s + 2s3/5 + c1s/
√

log s, which is

less than or equal to 5c1s/
√

log 5s for s ≥ 17.

(e) r = 6. Here, Corollary 6.2.7 Part (i), together with the inductive hypothesis,

gives d(G) ≤ E(s, 2) + 1 + d(S). Using the usual bounds on d(S), this is at

most b6cs/
√

log 6sc for 2 ≤ s ≤ 1260, and whenever S is one of the exceptional

cases. Otherwise, s ≥ 1261, and d(S) ≤ c1s/
√

log s. Hence, by Corollary 5.4.18

Part (iii), d(G) ≤ b
√

2s/
√

log s + 1 + cs/
√

log s, which is less than or equal to

6c1s/
√

log 6s for s ≥ 2. This completes the proof of the theorem in the case

r = 6.

(f) r = 7. Here, d(G) ≤ E(s, 2)+E(s, 3)+E(s, 7)+d(S), again using Corollary 6.2.7

Part (i). Bounding d(S) as described previously, this is at most b7c1s/
√

log 7sc
for each s in the range 2 ≤ s ≤ 1260, and each exceptional S. Otherwise,

s ≥ 1261, and by Corollary 5.4.18 Part (iii) d(G) ≤ 3b
√

2s/
√

log s+c1s/
√

log s.

This is less than 7c1s/
√

log 7s for s ≥ 7, and, again, we have what we need.

(g) r = 8. Using Corollary 6.2.7 Part (i), d(G) ≤ 3E(s, 2)+E(s, 3)+E(s, 7)+d(S).

In each of the cases 2 ≤ s ≤ 272, and each exceptional case, this bound, together

with the bounds on d(S) described above, give us what we need. Thus, we may

assume that s ≥ 273. Then the inductive hypothesis gives d(S) ≤ c1s/
√

log s,

and applying Corollary 5.4.18, with α = 37/100, yields three cases.

(i) max {s2, s3, s7} ≤ s37/100. Then d(G) ≤ (500/63)s/(c′ log s) + c1s/
√

log s,

which is less than or equal to 8c1s/
√

log 8s for s ≥ 273, as required.

(ii) s2 ≥ s37/100. Then d(G) ≤ 3b
√

100/37s/
√

log s + 2s63/100 + c1s/
√

log s,

and this is no greater than 8c1s/
√

log 8s when s ≥ 98.

(iii) max {s3, s7} ≥ s37/100. Then d(G) ≤ 2b
√

100/37s/
√

log s + 3s63/100 +

c1s/
√

log s, which is less than or equal to 8c1s/
√

log 8s for s ≥ 27.
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(h) r = 9. By Corollary 6.2.7 Part (i), d(G) ≤ 4E(s, 2) + 3E(s, 3) + d(S). When

3 ≤ s ≤ 2335, and when S is one of the exceptional cases, this bound, together

with the usual bounds on d(S), give us what we need. If s = 2, then G

is transitive of degree 18, and the result follows from Table A.1. Otherwise,

s ≥ 2336, and d(S) ≤ c1s/
√

log s, using the inductive hypothesis. We now use

Corollary 5.4.18 to distinguish three cases, with α = 37/100.

(i) s2, s3 ≤ s37/100. Then d(G) ≤ (700/63)s/(c′ log s) + c1s/
√

log s, and this

is less than or equal to 9c1s/
√

log 9s for s ≥ 2336, as needed.

(ii) s2 ≥ s37/100. Then d(G) ≤ 4b
√

100/37s/
√

log s + 3s63/100 + c1s/
√

log s,

which is no larger than 9cs/
√

log 9s, whenever s ≥ 1197.

(iii) s3 ≥ s37/100. Here, d(G) ≤ 3b
√

100/37s/
√

log s + 4s63/100 + c1s/
√

log s,

and this is less than or equal to 9c1s/
√

log 9s for s ≥ 148.

This completes the proof of Theorem 6.1.3.

We conclude with the example mentioned in the introduction, which shows

that the bound of Theorem 6.1.3 is of the right form. This family of examples is

constructed in [28, (3.2)].

Example 6.3.2. Let A be an elementary abelian group of order 22k−1, and write

R for the radical of the group algebra F2[A]. For a positive integer t, write Rt :=

{a1a2 . . . at : ai ∈ R}, and consider the 2-group G := Rk−1 oA.

The largest trivial submodule of F2[A] is 1-dimensional, while dim (Rk−1) >

1, by [28, 3.2]. Hence, the centraliser CA(Rk−1) of Rk−1 in A is a proper characteris-

tic subgroup of A; since A is characteristically simple, it follows that CA(Rk−1) = 1.

Thus, CG(Rk−1) = Rk−1, so Z := Z(G) = CRk−1(A). Again, since the largest triv-

ial submodule of F2[A] is 1-dimensional, and Z is nontrivial, it follows that Z has

order 2, and hence Z is the unique minimal normal subgroup of G. Let H be a

subspace complement to Z in Rk−1. Then H has codimension 1 in Rk−1, and hence

has index 22k in G. It is also clear that H is core-free in G, so G is a transitive

permutation group of degree 22k.

Next, note that

√
2k

(
2k

k

)
1

4k
=

[
1

2

(
3

2

3

4

)(
5

4

5

6

)
. . .

(
2k − 1

2k − 2

2k − 1

2k

)]1/2

=

1

2

k∏
j=2

(
1 +

1

4j(j − 1)

)1/2
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As in the proof of Corollary 5.2.3, the expression in the middle converges to b =√
2/π, by Wallis’ formula. Hence, since the expression on the right is increasing, we

conclude that for all ε > 0, there exists a positive integer k such that
√

2k
(

2k
k

)
1
4k
≥

b− ε, that is,
(

2k
k

)
≥ (b− ε)4k/

√
2k.

Now, the derived subgroup G′ of G is Rk, and G/G′ ∼= (Rk−1/Rk) × A is

elementary abelian of rank
(

2k−1
k−1

)
+ 2k − 1, using [28, Proof of (2.4)]. Since G is a

2-group, it follows that G′ = Φ(G). Thus, for large enough k we have

d(G) =

(
2k − 1

k − 1

)
+ 2k − 1 =

1

2

(
2k

k

)
+ 2k − 1 ≥ (b− ε)22k

2
√

2k
+ 2k − 1.
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Chapter 7

Enumerating subgroups of

Sym(n): A reduction of a

conjecture of Pyber

7.1 Introduction

Apart from its independent interest, the invariant d(G) is also useful in subgroup

enumeration. Indeed, if G is a finite group and d(H) ≤ m for all subgroups H of

G, then G has at most |G|m subgroups. This is often a crude upper bound, but

the method can sometimes be used effectively if combined with other results. For

instance, every permutation group G of degree n can be generated by a soluble

subgroup, together with another element g ∈ G (see [3]). Moreover

(1) There are at most 217n maximal soluble subgroups in Sym(n) [45, Lemma 4.1];

(2) The order of a soluble subgroup of Sym(n) is at most 24
n−1

3 [21, Theorem 3];

(3) Each subgroup of Sym(n) can be generated by n+1
2 elements [40, Lemma 5.2].

From these results, we deduce that there are at most 217n24
n−1

3
n+1

2 soluble sub-

groups of Sym(n), and hence at most 217n24
n−1

3
n+1

2 ×n! = 24o(n
2)+n2

6 subgroups of

Sym(n) in total. This proof is due to Pyber [45, Theorem 4.2], and his result in

full reads as follows.

Theorem 7.1.1. Let Sub(Sym(n)) denote the set of subgroups of Sym(n). Then

2o(n
2)+n2

16 ≤ |Sub(Sym(n))| ≤ 24o(n
2)+n2

6 .
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An easy counting argument shows that the elementary abelian subgroup

H := 〈(1, 2), (3, 4), . . .〉 ≤ Sym(n), of order 2b
n
2
c, has 2o(n

2)+n2

16 subgroups. Thus,

the lower bound in Theorem 7.1.1 is sharp. Furthermore, Pyber conjectures that

this is the “correct” bound [44, Page 210]. That is, that the number of subgroups

of Sym(n) is precisely 2o(n
2)+n2

16 . For more information see his paper [44], or his

excellent survey [45].

In this chapter, we prove a result which reduces Pyber’s conjecture. First,

we note the following definition.

Definition 7.1.2. Let G be a finite group.

(a) Define Sub(G) to be set of subgroups of G.

(b) For a positive integer m, define

Subm(Sym(n)) := {H ≤ Sym(n) : Each H-orbit has length at most m}.

Now, J.C. Schlage-Puchta (private correspondence), has proved that if the

quantity

f(n) := max{d(G) log |G|/n2 : G ≤ Sym(n) transitive}

approaches 0 as n tends to ∞, then there exists an absolute constant c such that

the number of subgroups of Sym(n) is at most 2o(n
2)| Subc(Sym(n))|. This reduces

Pyber’s conjecture to counting the number of subgroups of Sym(n) which have all

orbit lengths bounded above by c.

Motivated by this, we prove the following result, which was already discussed

in Chapter 1.

Theorem 1.2.3. There exists an absolute constant C such that

d(G) ≤
⌊

Cn2

log |G|
√

log n

⌋
whenever G is a transitive permutation group of degree n ≥ 2.

In particular, the discussed reduction of Pyber’s conjecture follows. We

remark that the bound in Theorem 1.2.3 is ‘asymptotically best possible’. See

Example 7.3.3 for more details. We think one could come up with a good estimate

for C by using our methods and working a little bit harder on the “small cases”,

as we did in the proof of Theorem 6.1.3, but we did not do so here.
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Our strategy for the proof of Theorem 1.2.3 will be to bound d(G) log |G|, for

a fixed transitive group G, in terms of the degrees of a tuple of primitive components

for G. The key result in this direction is Proposition 7.3.2, which we prove in Section

6.3. The proof of Theorem 1.2.3 is also contained in Section 6.3, while Section 6.2

contains results on minimal generator numbers, composition length, and orders of

transitive groups.

7.2 Preliminary results

7.2.1 Minimal generator numbers in wreath products

In proving Theorem 1.2.3, we will omit reference to the constant C, and just use

the Vinogradov notation defined immediately after Definition 5.5.1. We will now

restate some results from Chapters 2, 3 and 4 in this language for the convenience

of the reader.

We begin with Theorems 2.1.14 and 1.2.2.

Theorem 7.2.1. Let R be a primitive permutation group of degree r. Then a(R)�
log r.

Theorem 7.2.2. Let S be a transitive permutation group of degree s ≥ 2. Then

d(S)� s/
√

log s.

We also note the following useful consequence of Corollaries 6.2.6 and 5.4.18,

and Theorem 7.2.2.

Corollary 7.2.3. Let R be a finite group, let S be a transitive permutation group

of degree s ≥ 2, and let G be a large subgroup of the wreath product R o S. Then

d(G)� a(R)s√
log s

.

Theorem 2.1.15 reads as follows in Vinogradov notation.

Theorem 7.2.4 ([25], Theorem 1.1). Let H be a subnormal subgroup of a prim-

itive permutation group of degree r. Then d(H)� log r.

Finally, we will need the following theorem of Cameron, Solomon and Turull;

note that we only give a simplified version of their result here.

Theorem 7.2.5 ([10], Theorem 1). Let G be a permutation group of degree

n ≥ 2. Then a(G)� n.

84



7.2.2 Orders of transitive permutation groups

We now turn to bounds on the order of a transitive permutation group G, of degree

n. First, we fix some notation which will be retained for the remainder of the

chapter. Let G be a transitive permutation group of degree n, and let (R1, . . . , Rt)

be a tuple of primitive components forG, where eachRi is primitive of degree ri, and∏
i ri = n. Furthermore, we will write π1 for the identity map G→ G, and for i ≥ 2,

we will write πi to denote the projection πi : Gπi−1 ≤ Ri−1 o (Ri oRi+1 o . . . oRt)→
Ri oRi+1 o . . . oRt.

The following is a simplified version of a theorem of C. Praeger and J. Saxl

[43] (which was later improved by A. Maróti in [39]).

Theorem 7.2.6 ([43], Main Theorem). Let G be a primitive permutation group

of degree r, not containing Alt(r). Then log |G| � r.

Since the symmetric and alternating groups are 2-generated, the next corol-

lary follows immediately from Theorems 7.2.4 and 7.2.6.

Corollary 7.2.7. Let G be a subnormal subgroup of a primitive permutation group

of degree r. Then d(G) log |G| � r log r.

7.3 The proof of Theorem 1.2.3

Before proceeding to the proof of Theorem 1.2.3, we require an application of the

results in Section 6.2. First, we need a preliminary lemma.

Lemma 7.3.1. Let R and S be transitive permutation groups of degree r ≥ 2 and

s ≥ 1 respectively, let D be a subgroup of Sym(d) containing Alt(d), let P be a large

subgroup of the wreath product D o S, and let G be a large subgroup of R o P . Also,

write Ui for the abelian chief factors of R. Suppose that d ≥ 5. Then

(i) There exists a large subgroup Q of the wreath product R oD, and an embedding

θ : G→ Q o S, such that Gθ is a large subgroup of Q o S.

(ii) Let H := NQ(R(1)). Then Q has a normal series

1 = N0 ≤ N1 ≤ . . . < Nt < Nt+1 ≤ Nt+2 = Q,

where for each abelian Ui with i ≤ t, Ni/Ni−1 is contained in the Q-module

Ui ↑QH ; and for each non-abelian Ui with i ≤ t, Ni/Ni−1 is either trivial or a

non-abelian chief factor of Q. Also, Nt+1/Nt
∼= Alt(d), and |Nt+2/Nt+1| ≤ 2.
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Proof. Note first that G is an imprimitive permutation group of degree rds, with a

block ∆1 of size r, by Remark 2.1.8. Now, by Remark 2.1.11, G is also a subgroup of

the wreath product X := (RoD)oS. Hence, G also has a block of size rd, again using

Remark 2.1.8. Let ∆ be a block of size rd containing ∆1. Let H1 := StabG(∆1)

and H := StabG(∆). Then H1 ≤ H, and ∆1 is a block for H∆ of size r, with

block stabiliser H∆
1 . Let Γ1 be the set of H-translates of ∆1, and let Γ be the set

of G-translates of ∆. Then G is a large subgroup of H∆ oGΓ, while H∆ is a large

subgroup of H∆1
1 o HΓ1 , by Theorem 2.1.9. By Definition 2.1.7, H∆1

1
∼= R. Thus,

to complete the proof of Part (i) we just need to show that HΓ1 ∼= D and GΓ ∼= S

(we then take Q = H∆).

First, let π : G ≤ R o P → P denote projection over the top group. Note

that Hπ ≤ P is a permutation group of degree ds, stabilising a block of size d.

Furthermore, since Ker(π) = coreG(H1) ≤ H1 ≤ H, we have s = |G : H| = |Gπ :

Hπ|. Thus, Hπ is the full (set-wise) stabiliser of a block for P of size d. It follows

that HΓ1 ∼= D, since P is large in D o S.

Since Ker(π) = KerG(∆G
1 ) ≤ KerG(Γ), we have GΓ ∼= π(G)Γ = PΓ = S,

as needed. Finally, since Q is a large subgroup of R o D, and D ∼= Alt(d) or

D ∼= Sym(d), Part (ii) follows from Lemma 6.2.5.

The mentioned application can now be given as follows.

Proposition 7.3.2. Let R be a finite group, let S be a transitive permutation group

of degree s ≥ 2, let D be a subgroup of Sym(d) containing Alt(d), let P be a large

subgroup of the wreath product D o S, and let G be a large subgroup of R o P . Also,

let K1 be the kernel of the action of P ≤ D o S on a set of blocks of size d, and let

A be the induced action of K1 on a fixed block ∆ for P . Assume that A 6= 1, that

d ≥ 5, and set g(d, s) := max{1, d√
log s
}. Then

(i) d(G)� a(R)s; and

(ii) d(G)� a(R)g(d,s)s√
log s

.

Proof. Let Ui, for 1 ≤ i ≤ t say, denote the chief factors of R. Also, if Ui is abelian,

write |Ui| = paii , for pi prime. By Lemma 7.3.1 Part (i), G is a large subgroup of

Q o S, where Q is a large subgroup of R oD. Let H1 := NQ(R(1)). By Lemma 7.3.1

Part (ii), Q has a normal series

1 = N0 ≤ N1 ≤ . . . ≤ Nt < Nt+1 ≤ Nt+2 = Q,
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where each abelian factor Ni/Ni−1, for i ≤ t, is contained in the Q-module Ui ↑QH1
,

and each nonabelian factor is a chief factor of Q. Also, Nt+1/Nt
∼= Alt(d), and

|Nt+2/Nt+1| ≤ 2. In particular,

cnonab(Q) ≤ cnonab(R) + 1. (7.3.1)

Denote by B the base group of Q oS, and consider the corresponding normal series

1 = G ∩BN0 ≤ G ∩BN1 ≤ G ∩BN2 ≤ . . . ≤ G ∩BNt (7.3.2)

< G ∩BNt+1 ≤ G ∩BNt+2 = G ∩B (7.3.3)

for G ∩B. Let Mi be the abelian factors in (7.3.2). Then

d(G)�
∑

Ui abelian

dG(Mi) + cnonab(R) +
s√

log s
(7.3.4)

by Corollary 6.2.6 and Theorem 7.2.2. Viewing G as a subgroup of Q o S, let

H := NG(Q(1)). Also, let π : R oP → P denote projection over the top group. Since

Hπ ≤ P stabilises a block of size d, we may assume, without loss of generality, that

Hπ = StabP (∆)

(recall that ∆ is a block of size d for P ≤ D oS). Note also that Mi is a submodule

of the induced module Ui ↑HH1
↑GH∼= Ui ↑GH1

, by Lemmas 6.2.5 and 7.3.1.

Fix i in the range 1 ≤ i ≤ t such that Ui is abelian. Suppose first that

spi ≤
√
s. Then Corollary 5.4.18 Part (ii), with α := 1/2, gives

dG(Mi)�
aids

log s
≤ aig(d, s)s√

log s
(7.3.5)

Assume next that spi >
√
s for some fixed i. Let K := coreG(H). Note that

Kπ = K1 ≤ P , since Hπ = StabP (∆) is a block stabiliser. Then

1 < A = (Kπ)∆ E (Hπ)∆ = D,

so (Kπ)∆ ≥ Alt(d). Hence, Proposition 5.5.2 Part (ii) implies that

dG(Mi)�
ais√
log spi

≤
√

2ais√
log s

� aig(d, s)s√
log s

. (7.3.6)
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Thus, (7.3.4), (7.3.5) and (7.3.6) yield:

d(G)�
∑

Ui abelian

aig(d, s)s√
log s

+ cnonab(R) +
s√

log s

� a(R)g(d, s)s√
log s

+
s√

log s

� a(R)g(d, s)s√
log s

+
g(d, s)s√

log s
� a(R)g(d, s)s√

log s

and this proves Part (ii).

Finally, 7.3.4 and Proposition 5.5.2 Part (i) give

d(G)�
∑

Ui abelian

ais+ cnonab(R) +
s√

log s

� a(R)s+
s√

log s
� a(R)s

and this completes the proof.

We are now ready to prove Theorem 1.2.3.

Proof of Theorem 1.2.3. Let f(G) = d(G) log |G|
√

log n/n2. We will prove, by in-

duction on n, that f(G) � 1. If G is primitive, then f(G) � (log n)3/2/n by

Corollary 7.2.7, and the claim follows.

For the inductive step, assume that G is imprimitive. Fix a tuple

(R1, R2, . . . , Rt) of primitive components for G, where each Ri is primitive of degree

ri, say. Also, for 1 ≤ i ≤ t− 1, let ∆i be a block of size ri for πi(G) ≤ Ri oπi+1(Ri),

and denote by Ai the induced action of Kerπi(G)({∆i
g : g ∈ πi(G)}) on ∆i (in

particular, note that Ai ERi). Finally, set At := πt(G). Then

|G| ≤
t∏
i=1

|Ai|
n

r1...ri (7.3.7)

Next, for 1 ≤ i ≤ t, we define the functions fi as follows

fi(G) :=
d(G)n log |Ai|

√
log n

r1r2 . . . rin2
=
d(G) log |Ai|

√
log n

r1r2 . . . rin
(7.3.8)

The inequality at 7.3.7 then yields f(G) ≤
∑t

i=1 fi(G). We claim that fi(G) �
(i−1)
2i−1 for 2 ≤ i ≤ t, and that f1(G)� 1. The result will then follow. Indeed, in this

case, f(G)�
∑∞

i=1
i−1
2i−1 � 1.
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To this end, first fix i in the range 2 ≤ i ≤ t. Clearly we may assume that

Ai is non-trivial. Let D = Ri, S := πi(G), and note that G is a large subgroup of

a wreath product R o P , where R is transitive of degree r := r1r2 . . . ri−1, and P

is a large subgroup of D o S. Set d := ri, s := ri+1 . . . rt, and m := max {r, d, s}.
Suppose first that d ≥ 5 and that D contains the alternating group Alt(d). (In

particular, we are in the “bottom heavy” situation of Proposition 7.3.2.) Then Ai,

being a nontrivial normal subgroup of D, also contains Alt(d). Note that |Ai| ≤ dd.
We distinguish two cases. Note throughout that log n ≤ logm3 � logm.

1. s ≤ 2(log d)2
. Then n = rds ≤ m2

12(logm1)2
, where m1 := max {r, d}. Thus,

log n ≤ 2 logm1 + (logm1)2 � (logm1)2. Since a(R)� r by Theorem 7.2.5,

Proposition 7.3.2 Part (i) then implies that d(G)� rs. Hence, from 7.3.8 we

deduce

fi(G)� rsd log d logm1

r2d2s
=

log d logm1

rd
� log r

r
≤ (i− 1)

2i−1

since r ≥ 2i−1, and this gives us what we need.

2. s > 2(log d)2
. Note that m ∈ {r, s} in this case. Set g(d, s) := max

{
1, d√

log s

}
.

Then

g(d, s) log d ≤ d (7.3.9)

since
√

log s > log d. Now, Theorem 7.2.5 gives a(R)� r. Hence, Proposition

7.3.2 Part (ii) gives d(G)� rg(d,s)s√
log s

. Hence, since n ≤ m3, we have

fi(G)� rg(d, s)sd log d
√

logm

r2d2s
√

log s

=
g(d, s) log d

√
logm

rd
√

log s

≤ d
√

logm

rd
√

log s
by (7.3.9),

≤
√

log r

r
≤
√
i− 1

2i−1
since m ∈ {r, s}.

This gives us what we need.

Next, suppose that either d ≤ 4, or that D does not contain Alt(d). Then

log |Ai| � d by Theorem 7.2.6. Now, G is a large subgroup of R o P , where P is
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transitive of degree ds. Also, a(R)� r by Theorem 7.2.5. Then, by Corollary 7.2.3

we have

d(G)� rds√
log ds

.

Thus

fi(G)� rdsd
√

logm

r2d2s
√

log ds
=

√
logm

r
√

log ds
≤
√

log r

r
≤
√
i− 1

2i−1

and again this gives us what we need.

Finally, we deal with the case i = 1. Here, set r := r1, s := r2r3 . . . rt, and

m = max {r, s}. Then |Ai| ≤ rr and log n � logm. Also, G is a large subgroup

of a wreath product R o S, where R is primitive of degree r, and S is transitive of

degree s. Thus, a(R)� log r by Theorem 7.2.1. Thus, Corollary 7.2.3 implies that

d(G) ≤ s log r/
√

log s, and hence

fi(G)� (log r)sr log r
√

logm

r2s
√

log s
=

(log r)2
√

logm

r
√

log s
≤ (log r)5/2

r
� 1.

This completes the proof.

We conclude with an example which shows that the bound of Theorem 1.2.3

is asymptotically best possible.

Example 7.3.3. Let A be an elementary abelian group of order 22k−1, let R be the

radical of the group algebra F2[A], and let G := Rk−1 o A be the 2-group defined

in Example 6.3.2, so that G is a transitive permutation group of degree n := 22k.

Let ε > 0, and recall that for large enough k we have

d(G) =

(
2k − 1

k − 1

)
+ 2k − 1 =

1

2

(
2k

k

)
+ 2k − 1 ≥ (b− ε)22k

2
√

2k
+ 2k − 1.

Furthermore, |Rk−1| = 2
∑2k−1
i=k−1 (2k−1

i ) = 222k−1−2k−2 ∼ 2n/2. Hence, |G| ∼ 2n−1,

which shows that d(G) log |G| is at least a constant times n2/
√

log n.
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Appendix A

Upper bounds for d(G) for some

transitive groups of small

degree

We begin with a definition.

Definition A.0.1. Let n be a positive integer. We define

dtrans(n) := max{d(G) : G is a transitive permutation group of degree n}

In Table A.2 below, the groups G in the third column are transitive permu-

tation groups of degree n with bl2(G) ≥ f (see Definition 6.1.1). The upper bounds

presented in Table A.2 are proved in Lemma 6.3.1 and Theorem 6.1.3.
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Table A.1

n dtrans(n) ≤

48 16

64 20

96 31

128 40

192 57

256 75

384 109

512 145

283 203

210 271

293 392

211 523

2103 738

Table A.1 ctd

n dtrans(n) ≤

2113 1431

2123 2718

2133 5292

2143 10118

2153 19770

2163 38002

2173 74467

2183 143750

2193 282317

2203 546854

235 9

245 18

255 34

Table A.1 ctd

n dtrans(n) ≤

265 66

275 130

285 258

295 514

2105 1026

2115 2050

2125 4098

2135 8194

2145 16386

2155 32770

2165 65538

2215 15

Table A.1 ctd

n dtrans(n) ≤

2315 27

2415 52

2515 100

2615 196

2715 388

2815 772

2915 1540

21015 3076

21115 6148

21215 12292

21315 24580

21415 49156

93



Table A.2

n f d(G) ≤

2175 5 130900

2185 4 257722

2195 4 504220

2205 4 984067

2215 4 1919461

2225 4 3745164

2235 5 7312620

2245 5 14290701

2255 6 27953017

2265 7 54725580

21515 6 98308

Table A.2 ctd

n f d(G) ≤

21615 4 196612

21715 3 392700

21815 3 773166

21915 3 1512660

22015 3 2952202

22115 3 5758386

22215 3 11235497

22315 3 21937865

22415 3 42872110

22515 3 83859059

Table A.2 ctd

n f d(G) ≤

22615 4 164176748

22715 4 321692696

22815 4 630835627

22915 4 1237980292

23015 5 2431149936

23115 5 4777379825

23215 5 9393534359

23315 6 18480443646

23415 7 36376783048

23515 8 71639170628

Remark A.0.2. The bounds in Tables A.1 and A.2 were proved using the methods

developed in this thesis (see the proofs of Lemma 6.3.1 and Theorem 6.1.3). We do

not expect that they are sharp.
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Appendix B

Generator numbers for some

transitive groups of small

degree

Below is the table of values of dtrans(n) for n ≤ 32. We use the classification of

the transitive groups of degree up to 32 [11; 26] and MAGMA [6] to compute these

values. The third column of the table contains the numbers i such that

dtrans(n) = d(TransitiveGroup(n, i))

in the MAGMA database (these numbers are only included when dtrans(n) is greater

than 2).

Let G be a transitive permutation group of degree n ≤ 32. Then G is in the

MAGMA database, and we use the following procedure to compute d(G).

1. Check if G is cyclic. If so, then d(G) = 1 and we are done.

2. Assume that G is not cyclic. If G is a p-group, for some prime p, then we

compute the minimal number of generators for the elementary abelian group

G/Φ(G), and this is precisely d(G).

3. Suppose that G is not a p-group. Then we compute all elementary abelian

quotients of G. Let m be the largest integer such that G has an elementary

abelian quotient of order pm, for p prime. Then we try to find a generating

set for G of size m. If we succeed, then d(G) = m, and again we are done.
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4. Finally, if none of the previous steps work, we compute m := d(G/[G,G])

(which is instantly done since G/[G,G] is abelian), and we try to find a

generating set for G of size m. If we succeed, then d(G) = m.

The above procedure is of course not guaranteed to compute d(G) exactly for any

finite group G, but for each transitive group of degree at most 32 in the MAGMA

database, it does work, and so gives us the numbers in Table B.1.
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Table B.1

d dtrans(n) Numbers i such that the max. of d(G) is attained at the group

TransitiveGroup(n, i) in the MAGMA database

2 1

3 2

4 2

5 2

6 2

7 2

8 4 [22]

9 3 [5,12,21]

10 3 [27]

11 2

12 4 [242]

13 2

14 2

15 2

16 6 [197,448,1082,1083,1084,1547]

17 2

18 4 [89,333,379,380,471,554]

19 2

20 5 [581,893]

21 3 [64,65,82,95,97,106]

22 2

23 2

24 6 [12495,21182,22267,23285,23531,23532,23650,24304]

25 3 [5,9,22,30,33,61,62,70,84,97,109,112]

26 3 [25,43,46,60]

27 6 [894]

28 4 [629,931,936,1153,1158,1300,1305,1448,1832]

29 2

30 4 [372,636,816,1258,1589,1724,2141,2551,2642,2708,2929,3004,

3305,3429,3430,3437,3462,3483,3490,3844,3871,3872,3873,3874,

3891,4068,4166,4175,4179,4180,4183,4190,4191,4192,4200,4240,

4255,4348,4436,4659,4662,4667,4923,5043,5258,5320]

31 2

32 10 [1422821,1422822,1514676,2224558,2424619]
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